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[1] The development of shear instabilities of a wave-driven alongshore current is 
investigated. In particular, we use weakly nonlinear theory to investigate the possibility 
that such instabilities, which have been observed at various sites on the U.S. coast and in 
the laboratory, can grow in linearly stable flows as a subcritical bifurcation by resonant 
triad interaction, as first suggested by Shrira eta/. [1997]. We examine a realistic 
longshore current profile and include the effects of eddy viscosity and bottom friction. We 
show that according to the weakly nonlinear theory, resonance is possible and that these 
linearly stable flows may exhibit explosive instabilities. We show that this phenomenon 
may occur also when there is only approximate resonance, which is more likely in 
nature. Furthermore, the size of the perturbation that is required to trigger the instability is 
shown in some circumstances to be consistent with the size of naturally occurring 
perturbations. Finally, we consider the differences between the present case examined and 
the more idealized case of Shrira et a/. [ 1997]. It is shown that there is a possibility of 
coupling between triads, due to the richer modal structure in more realistic flows, 
which may act to stabilize the flow and act against the development of subcritical 
bifurcations. Extensive numerical tests are called for. INDEX TERMS: 4546 Oceanography: 
Physical: Nearshore processes; 4512 Oceanography: Physical: Currents; 4203 Oceanography: General: 
Analytical modeling; KEYWORDS: nearshore oceanography, longshore current, instability 

Citation: Dodd, N., V. Iranzo, and M. Caballeria (2004), A subcritical instability of wave-dri ven alongshore currents, J Geophys. 
Res., 109, C02018, doi:IO.I029/200JJC001106. 

1. Introduction 

[2] Surf zone, wave-driven alongshore currents (referred 
to as longshore currents hereinafter) can be observed along 
many stretches of coast around the world. These currents are 
generated by surface gravity waves, when they break in 
shallow water on a beach at an off-normal angle. The 
current, denoted V, typically attains a maximum value, Vmax• 
at some location in the surf zone, and tails off in either 
direction. This physical situation is depicted in Figure 1. 

[3] It is now recognized that, like other shear flows of 
hydrodynamics, these currents may become unstable. This 
process was first reported by Oltman-Shay et al. [ 1989], and 
has since been observed at field sites [ Oltman-Shay and 
Howd, 1993] and in the laboratory [ Reniers et al., 1997]. 
Bowen and Holman [ 1989] first described the essential 
dynamics of these instabilities, and other linear investiga­
tions have since also been performed [see, e.g., Dodd et al., 
1992; Putrevu and Svendsen, 1992; Falques and Iranzo, 
1994]. With the aid of a normal mode analysis [see Drazin 
and Reid, 1981 ], these investigations reveal a theoretically 
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linear or almost linear dependence of frequency on along­
shore wave number of the unstable modes (i .e., those 
wavelengths possessing a positive growth rate), which 
distinguishes these motions from other low-frequency near­
shore waves, like edge or leaky waves. 

[ 4] These linear investigations successfully show the 
basic kinematics of these motions (frequency-wave number 
relation and likely fastest growing (dominant) mode), but 
are necessarily limited in their scope. They are only valid 
for small amplitude motions, and do not give information on 
how big these instabilities become and what their long-term 
development looks like. 

[ s] Subsequent fully nonlinear numerical investig!itions 
[see, e.g., Allen et al., 1996; Slinn et al., 1998; Ozkan­
Haller and Kirby, 1999] have illustrated the complicated 
vortical motions associated with shear waves. They have 
also been used to verify weakly nonlinear analyses [see 
Dodd and Thornton, 1992; Feddersen , 1998], which have 
shown these flows to be supercritical to single wavelength 
disturbances, which grow by self-interaction; and to wave 
packet disturbances, centered on a single dominant mode, 
so that they are uniformly stable below some critical 
dissipation threshold. In practical terms this means that 
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the stability/instability threshold defined by the linear theory 
holds true for finite amplitude disturbances of this type. See 
Dodd et al. [2000] for an overview of the whole area. 

[6] Shrira et a/. [1997] , in another weakly nonlinear 
study, examined another possible route to destabilization. 
Using the example of the simple model of Bowen and 
Holman [1989], they demonstrated that growth by triad 
resonance could lead to explosive growth (i.e., unbounded 
growth in a finite time) in the coupled amplitude equation 
system of three resonant modes, and that, in principle, this 
could occur when the unperturbed flow was both unstable 
or stable. In other words, it might be possible for a linearly 
stable flow to destabilize if it were perturbed by a finite­
amplitude disturbance of this type. Moreover, Haller et a/. 
[1999] have subsequently shown that forced disturbances 
due to natural wave groupiness can provide a suitable 
perturbation, both in spatial structure and in frequency-wave 
number relation. 

[7] In this study we examine whether these kinds of 
subcritical instabilities can be shown numerically to exist 
(Shrira et al. [1997] showed only the possibility that 
explosive instabilities could exist), and just how big these 
disturbances need to be in order to induce explosive 
growth. We first present the equations of motion and the 
main simplifications and assumptions pertaining thereto 
(section 2), and then develop the linear theory, including 
eddy viscosity and (initially) bottom friction (section 3). 
After that, we derive the corresponding amplitude equations 
(section 4), which govern the long-time development of 
these resonant systems. This was done (without eddy 
viscosity) by Shrira et al. [1997], but the equations were 
not solved. In the process of doing this, we illustrate each 
part by means of a simplified (constant depth) example, 
which is nevertheless more realistic than the Bowen and 
Holman [1989] profile in being a smooth (i.e., not piece­
wise) longshore current profile; it also includes eddy vis­
cosity. Finally, in section 6 we consider some related 
mechanisms that may have a bearing on these kinds of 
motions and whether they are likely to exist in the field, and 
then (section 7) we present some conclusions. 

2. Equations of Motion 

[s] The coordinate system is depicted in Figure l, which 
shows an alongshore-uniform current (y is the alongshore 
direction). We consider the depth- and time-averaged equa­
tions of continuity and momentum, and therefore a depth­
uniform current, V(x), the instabilities in which develop on a 
timescale much larger than that of the wind or swell waves 
that generate the current. Perturbations in the driving terms 
(radiation stresses) are omitted here, so we neglect coupling 
with the incident wave field. Including both bottom friction 
and eddy viscosity, these equations become 

( I ) 

(2) 

(3) 

y 
z 

V(x) 

X 

z=-h(x) 

Figure 1. Sketch of physical situation. 

where (u(x, y, t), V(x) + v(x, y, t)) is the current, 
comprising the mean longshore current, (0, V), and the 
perturbations, (u, v). Here fw is a (constant) bottom 
friction coefficient, and for the purposes of this study, we 
have taken this friction to be linear, thus avoiding the 
necessity of linearization later on. Dodd [1994] conducts a 
study into the effect of these various different lineariza­
tions. The differences were found not to be crucial. Eddy 
viscosity terms are represented by T 1,2 , which incorporate 
an eddy viscosity coefficient v, which we take as 
constant. Falques et al. [1994] and Caballeria et al. 
[1997] have examined the effect of a nonconstant eddy 
viscosity coefficient in linear analyses. They conclude that 
it can induce an initial destabilization in the current, but 
that overall the difference is small. Interestingly, Putrevu 
eta/. [1998] find similar initially anti-dissipative behavior 
for a constant coefficient; we remark on this later. Here 
h(x, y) is the still water depth and TJ(X, y, t) is the free 
surface elevation of the perturbed motion. Note that the 
solution u = (0, V(x)) and 'TJ = 0 is a simple solution of 
the system of equations (l) - (3). We take this basic state 
(which includes no set-up; the inclusion of set-up makes 
little difference to linear analyses) as the starting point for 
our stability analysis. 

[9] We use nondimensionalizations: (u, v) = V0 (it, V), 'T] = 
'T]oTJ, h = h0h, (x, y) = x0 (.X, jl), V = VoV and t = t0t, where 

v.2 
'llo = _Q_ 

g 
xo 

to=-. 
Vo 

(4) 

This gives rise to a Froude number Fr = /f£, which can be 
taken to be « I, for realistic flows [see Bo.:Je"n and Holman , 
1989; Dodd and Thornton, 1990; Falques and Iranzo, 
1994]. 

[to] We also consider constant depth . This is not realistic, 
but it has been shown [Falques and Jranzo, 1994] that 
results from linear analyses for constant depth are quantita­
tively similar to those for variable depth. 
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[11] Under these two assumptions (iz = 1 and Fr « 1), 
equations (1)- (3) become 

u, + Vuy = - "lx + v[2uxx + v-'Y + uyy]- fw u - (uux + vuy), 

(5) 

v1 + Vvy + uVx = -"ly + v [vxx + u-'Y + 2vyy]- fwv- (uvx + vvy), 

(6) 

Ux + Vy = 0, (7) 

where we have dropped carets in all terms apart from !he 
nondimensional eddy viscosity (v) and bottom friction (f w) 
coefficients, which are the two control parameters in the 
problem 

j = J,vxo 
w hoVo 

. v 
v =--. 

Vox a 

(8) 

(9) 

[1 2] Finally, we introduce a stream function '\);, such that 

where a prime denotes differentiation with respect to x . This 
equation is the same as the Orr-Sommerfeld equation 
[Drazin and Reid, 1981] except for the addition of the 
bottom friction term. 

[14] The adjoint equation is required for subsequent 
calculation of the coefficients for the evolution equation. 
It is 

.~;;,(1 )1111 + ( v _ .&__ 2 . ~1?) ;;,< ' > 11 +2v,;;,<'>' + ( ·~ k4 + .&.!? _ w) ~< ' > 1 k '+'kn 
1 k 1 k '+'kn '+'kn 

1 k 1 k kn 

_ [.+_( 1)" _ k2.+_( 1)] ( 14) 
- Ckn 't'kn 't'kn · 

Note that in the adjoint problem, although the eigenfunc­
tions, ¢ i~) , are different from <j>i!( (for the same k and n ), the 
eigenvalues c~rn are identical. This provides a useful check 
on the numerical code. 

[1s] To summarize: For a given k we get a spectrum of 
eigenvalues (w~rn) and eigenfunctions (<j>g;), and the (linear) 
stream function is of the form 

( 1) ) ( 1) "( ) ( ) '\)Jkn (x ,y, I = <jlkn exp l ky - Wknrl exp Wkn; l 

=<Pi~) exp i(ky - Wkn t ) exp (a kn t ). ( 15) 

u = Re{ -'I)Jy} 

v = Re{'\)Jx}, 

(10) We rewrite equation (13) in operator form as 

so that we can rewrite these equations as 

Note that equation ( 11) is nonlinear. This equation forms the 
basis for the weakly nonlinear development for constant 
depth. 

3. Linear Theory 

[ 13] The first part of the weakly nonlinear development is 
to linearize equation (11 ), under the assumption that ampli­
tudes, while finite, are still small in some sense, and that 
their amplitude can be represented through a small param­
eter. We also introduce a harmonic time and alongshore (y) 
dependence so that 

( 12) 

where the superscript (1) denotes the linear solution, and the 
subscripts k and n denote the value of k (alongshore wave 
number) and the particular mode (n) for that k. We take k as 
real, so Wknr represents the (real) frequency, and W~rn; the 
growth rate; cknr = w~rn,Jk then represents the phase velocity 
of the mode. We introduce equation (12) into the linearized 
equation (11) to get 

.c ,~..(l) = 0 
'+'kn ' ( 16) 

and its adjoint equation (14) as 

£.+_(1) = 0 
'+'kn ' ( 17) 

(1 6] The boundary conditions are <j>~)(O) = 0 and <j>_gl'(O) = 
0, and <j>~((oo) = 0 and <J>i.!('(oo) = 0. These state that 
we have no normal flow and a no-slip condition at the 
shore boundary, and that the eigenfunctions decay suitably 
as x --+ oo. Similar conditions apply for the adjoint 
equation. 

3.1. An Example 
[ 11] We choose an example that includes both a smooth V 

profile and a constant depth. We take the profile considered 
by Falques and Iranzo [1994], which in dimensional form 
is 

V(x) = a.xexp ( -(bx)") = Voil.X exp ( - (bx) "), ( 18) 

for n = 3. This profile has a peak given by V max = Vo ~ 
0.4968~ at x = x0 ~ 0.6934 b- [Falques and Iranzo , 19~4]. 
Using this profile also has the advantage of allowmg 
verification of the numerical code. Falques and Iranzo 
[1994] examine a dimensional case: Vmax ~ 1.2 m s- 1 and 
Xo = 90 m. This translates to a = 1.395 and b = 0.693 where 

v(x) = axexp ( -(b.xr). ( 19) 

This profile is shown in Figure 2. We use this profile in 
equation (13). 
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Figure 2. Nondimensional V, Vx, and V xx profiles of 
longshore current profile (equation ( 18)) [Falques and 
Iranzo, 1994]. 

[1s] We first solve the inviscid problem C.lw = iJ = 0); 
see Figure 3. The same growth rate curve is shown in 
Figure 9 of Falques and Jranzo [ 1994] (in nondimensional 
units). When compared, results are identical. An interest­
ing feature is that the growth rate curve possesses two 
maxima, which do not correspond to different modes (see 
Figure 3). A 

[1 9] For constant depth, results for fw =f. 0 (bottom 
friction present) can be obtained from those for .lw = 0 by 
replacing VJ~c11 by W~c11 = VJ~c11 - ].,. The effect of bottom 
friction is therefore to reduce growth rates uniformly for all 
k, with frequencies unaffected. Results for ]IV =f. 0 are 
therefore obtainable directly from those for ]IV = 0, so we 
retain ]IV = 0 for the remainder of this section. 

3.2. Eddy Viscosity and Viscous Destabilization 
[20] The introduction of eddy viscosity has a pro­

nounced effect. The gradual increase of viscosity can be 
seen in Figure 4 (positive growth rates) and Figure 5 
(frequencies). It results in the appearance of a separate 
mode, initially with small growth rates, which for 0.0002 < 
iJ < 0.0005 yields a distinct instability curve (see Figure 5 
for the equivalent dispersion lines). Thereafter, this curve 
is damped and the "main" curve dominates when iJ = 

0.005. 
[21] As 0 increases, a spectrum of dispersion curves 

emerges; see Figure 5. Most of these are decaying (stable) 
modes, so their growth rates are not apparent in Figure 4. 
By iJ = 0.04, there is a clear dividing line between two sets 
of modes (only the first 15 obtained from the numerical 
solution are shown here). This line separates shear wave 

type modes (which possess exponentially decaying asymp­
totic behavior as k--> oo, and are true physical modes in that 
they converge as the number of computational nodes, N --> 

oo) from numerical ones (which exhibit neither of these 
behaviors). (Note that there may be some true solutions with 
asymptotic oscillatory behavior as k --> oo included in this 
set, but they are not physically relevant; we do not pursue 
this here, however; see Appendix B). The shear wave 
modes all are stable for iJ = 0.04. Note, however, that as 
iJ changes, the main shear wave dispersion curve remains 
largely unaffected, whereas the other shear wave curves 
move noticeably. We refer to these latter modes as viscous 
modes. Note that we also solved this problem without 
imposing the boundary condition <P~~'(O) = 0, in order to 
test the robustness of the solution. Results were qualitatively 
and quantitatively very close to those presented throughout 
this paper. 

[22] This progression shows the initial destabilization 
induced by the eddy viscosity. For 0.00001 < iJ < 0.00 I 
the maximum growth rate increases from about a ;::::::; 0. J 20 
for iJ = 0.00001 to a ;::::::; 0.127 for iJ = 0.00 I. Falques et a/. 
[1994] and Caballeria eta!. [1997] both note this behavior, 
but for nonconstant v with a maximum around the position 
of V,wx· 

[23] Putrevu eta!. [1998] examine this effect for constant 
v using the Bowen and Holman [1989] profile. They note 
that viscosity extends the range of instability and increases 

I 
.'!'.. 
13 
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0.01 
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0.002 : 
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I 
.'!'.. 
t> 

X 10-3 

1.5 

... ·--· .. 

.. 
·. 

0.5 

~L_----o~.o-1----o~.oL2~ 

k [m-1] 

Figure 3. (left) Dispersion diagram, and (right) corre­
sponding growth rate curves, for equation ( 13) and V profile 
(equation (19)) for iJ = j w = 0.0. Quantities are shown in 
dimensional units based on scalings vmax = 1.2 m s- 1 and 
x0 = 90 m. Note that in the numerical code a value of 0 = 

0.000001 is used. 
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Figure 4. Positive growth rates as a function of k 
(nondimensional quantities) for V profile (equation (19)) 
for eddy viscosities (] w = 0) (from top left to bottom right): 
i) = 0.00001, 0.0001, 0.0002, 0.00025, 0.0003, 0.0004, 
0.0005, 0.001, 0.005, 0.01, 0.02, 0.04. 

the growth rates. Putrevu et al. [1998] find that for I o-4 < 
v < 10- 1 m2 s- 1

, increased viscosity destabilizes the 
current, and that this includes the physically relevant 
interval 10- 3 < v < 10- 1 m2 s - I, which translates into 
approximately 10- 5 < iJ < 0.001, the upper bound of which 
is also roughly the value of iJ giving the peak growth rate 
here; see Figure 4. 

[24] In the present model the maximum dimensional 
growth rate is cr:::::; 0.0017 s- 1

, for v:::::; 0.1 m2 s- 1
• That 

predicted by Putrevu et al. [1998] is cr :::::; 0.009 s- 1
• 

However, for larger v the growth rate continues to increase 
in the Putrevu et al. [1998] model, so it is not clear if, and 
if so where, a peak exists for that simplified problem. 
Nevertheless, the explanation of Putrevu et al. [1998], that 
phase changes in velocity components induced by the 
inclusion of eddy viscosity result in energy extraction from 
the longshore current and therefore further destabilization, 
seems to apply here too. This can be seen in more detail in 
Figure 6, in which the two terms on the right of the energy 
equation, 

(20) 

are plotted, for iJ = 0.00001 (k = 1.42), and iJ = 0.001 (k = 
1.36), each k being the peak of the growth rate curves for that 
value of iJ. The direct effect of dissipation is very small, even 
for v = 0.001 (apart from very near to x = 0), but it is always 

purely to damp. However, the mixing term is also affected, 
with a stabilization around its main peak (corresponding to 
the backshear in V), but a destabilization nearer to the shore. 
The result is a small overall destabilization in the mixing 
term. The total effect (mixing plus eddy viscosity) in this 
figure appears to be a slight stabilization (contrary to 
Figure 4), but this is due to the normalization used (maxi <P I = 
I and 1m { <P } = 0 when I<P I = 1 ), which, for different k, results 
in different velocity magnitudes (for iJ = 0.00001, Um ax = 
1.704 m S- l and Vmax = 1.95 m S-

1
; for V = 0.001, Umax = 

1.632 m s- 1 and Vm ax = 1.919 m s- 1
). Normalization with 

equal velocities gives us a destabilization, in line with 
Figure 4. The present study therefore corroborates the 
findings of Putrevu et al. [ 1998]. 

[zs] In the next section we develop the weakly nonlinear 
theory, and apply the theory to a test case. A realistic 
value for iJ is iJ :::::; 0.001 - 0.01 (corresponding to v :::::; 
0.1 - 1 m2 s- 1

) , including the effects of dispersive mixing 
[Ozkan-Haller and Kirby, 1999]; this implies instability. But 
it is the stable current that is most interesting, because this 
provides us with an opportunity to see if finite amplitude 
destabilization can be observed for a linearly stable flow. 
Therefore we choose iJ = 0.04 (v = 4.32 m2 s- 1

) . We show 
the full dispersion diagrams (those including negative 
growth rates) for this example in Figure 7. Note that in this 
figure we removed all the numerical modes, and we present 
dimensional growth rates and frequencies. In the next 
section we focus on the case iJ = 0.04 and investigate the 

1 2 
k 

1 2 
k 

0 1 2 
k 

0 1 2 
k 

Figure 5. Dispersion diagrams (nondimensional) for V 
profile (equation (18)) for eddy viscosities (j w = 0) with 
(from top left to bottom right) : iJ = 0.00001, 0.0001, 0.0002, 
0.00025, 0.0003, 0.0004, 0.0005, 0.001, 0.005, 0.01, 0.02, 
0.04. 
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possibility that resonant triads can grow explosively and 
thereby render a linearly stable flow unstable. 

4. Long-Time Evolution 

[ 26] The weakly nonlinear development in this section 
follows that presented by Craik [ 1985]. The reader is 
referred there for fuller descriptions of the development. 

[ 21] We use the linear solutions of the last section to 
model the nonlinear (long-time) growth of the instabilities. 
Therefore we expand 'ljJ as 

k=-oo n= 1 
00 00 

= 2:::: l::=Ank (t)<j>~~)eiXn<e"•*t, (21 ) 
k=-oo n=l 

where <P~Vei(ky-""•*t)e"•*t are solutions of the linear 
problem (16). The amplitudes Ank express the long-time 
variation of each mode. 

4.1. Weak Nonlinearity and Three Wave Resonance 
[ 28] If we assume that the amplitude of the disturbance, 

though finite, is still small in some sense so that the 
departure from linear theory is small, we can assume that 
a small number of the linear modes in equation (21) can 
accurately represent the disturbance 'ljJ. The studies of 
Dodd and Thornton [1992] and Feddersen [1998] were 

-1 uv Vx dx= 0.0068136 v =0.00108 

-v I u2 + u2 + ~ + ~ dx= -4.5822e-06 
X y X y 

Total= 0.006809 

4 6 8 10 
X 

-I uv Vx dx= 0.0072036 v =0.108 

-vI u2 + u2 + ~ + ~ dx= -0.00049914 
X y X y 

7 
UJ 

"' .s Total = 0.0067044 

-5L_ ____ ~-------L------~------~----~ 
0 2 4 6 8 10 

X 

Figure 6. Cross-shore profiles of -uvVx (dotted line) and 

-v [u; + u; + v; + ~ J (dashed line) and their integrals 

(solid lines) for V profile (equation (19)) for (top) 0 
0.00001 (k = 1.42), and (bottom) 0 = 0.001 (k = 1.36). 

-1 

-2 

~~ -3 

t:> -4 ··, 

-5 

-6 

-? o'----...,o,..,.o'-os=----~o ..... o1 _____ o=-.o'-1,-5 -----=-o.,..,.o2,_---o,--J.o2s 
k[m- 1] 

Figure 7. Dispersion diagrams (dimensional) for V profile 
(equation (19)) for (top) 0 = 0.04 and (bottom)] w = 0. Only 
the " inviscid" shear wave and the least stable viscous shear 
wave growth rate curves can be seen. 

based on this assumption, with one linear eigenfunction 
providing the dominant mode. Here, in contrast, we follow 
Shrira et al. [ 1997] in assuming that there is (in general) 
more than one dominant mode. Specifically, we consider 
three such modes, and express equation (21) as 

3 

'\)J(x,y, t) = 2:::: EAj(T)<J>j')ei(k;y-w;t)e"JI + O(t:2) 
j=l 

3 

= l::= EAj(T)<J>)')eiX;e";t + 0(t:2), 

j= l 
(22) 

where we have replaced the subscripts kn with a single one 
indicating the mode number. The amplitudes €Aj(1) are, by 
hypothesis, small and slowly varying ( E « 1 and T = Et), 
and it is this variation that we now study. 
4.1.1. Three Wave Resonance and 
Amplitude Equations 

[ 29] The interaction of these modes will generate other 
harmonics, which are represented in equation (22) as the 
higher order terms. Importantly, the triad in equation (22) is 
resonant, so that 

X1 +xz = X3· 

(23) 

(24) 

(25) 

Therefore interactions of the components of equation (22) 
will produce resonant (secular) terms at 0(E2

) (self­
interaction of a single mode only produces resonance at 
0(E3

)). 
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0.8 

13 0.6 

0.4 

Triad C 

k k 

Figure 8. Dispersion diagrams (nondi~ensional) for V 
profile (equation (18)) for 0 = 0.04 and f w = 0. Solid line 
arrows are the triad vectors: [kt, w 1] , [k2 , w2] and [k3, w 3] 

of the resonant triads; (a = 1.395, b = 0.693, n = 321 ,jw = 0). 
Only the first 30 eigenmodes, in order of increasing decay 
rate, are plotted. Note that for Triad F a different scale has 
been used to illustrate the whole triad. 

[3o] The remainder of this standard development is pre­
sented in Appendix A 1. The result is a set of three nonlinear 
amplitude equations, 

(26) 

(27) 

(28) 

where I-Lt ,2,3 are complex constants (see Appendix Al), 
a 1,2,3 = A1,2,3e0

' ·
2

·'' , and an asterisk denotes a complex 
conjugate. 
4.1.2. Analytical Results 

[3t] The system of equations (26)- (28) admits explosive 
solutions under certain initial conditions and for certain 
values of Gj and I-Lj · Unfortunately, no necessary and 
sufficient conditions are known to the authors (see Craik 
[ 1985] for a discussion of some special cases). Wang [1972] 
derives sufficient conditions for the non-existence of explo­
sive solutions for general values of Gj and I-Lj· In our case we 
have Gj < 0 for allj, so a stable node exists at a 1 = a2 = a3 = 

0. Therefore, near enough to this node, we have asymptot­
ically exponentially decaying solutions (the linear decay). In 
fact, it can be shown in a similar manner to Wang [1972] 
that any solution satisfying the condition 

(29) 

tends to the origin as t --+ oo, where G = miniGjl forj = 1, 2, 
3, as does any solution such that 

(30) 

where j.L = max ii-Ljl forj = 1, 2, 3. While these conditions are 
only sufficient (i.e. , not satisfying them does not imply 
instability), it seems reasonable to suppose that their relative 
size may give an indication as to the likelihood of finding 
explosive solutions for given values of I-Lj and Gj. Note, also, 
that different normalizations of ¢Jl l lead to different values 
for I-Lj (although the system_ is invariant to the normalization 
of the adjoint functions ¢jll). Results given by different 
normalizations are directly transformable between each 
other; see Appendix A. 

4.2. Resonance in Our Example 
[32] We can find resonant triads in the dispersion diagram 

for 0 = 0.04, either considering modes lying on only one 
dispersion curve, or on different ones, as well as taking the 
same mode twice. A number of such triads are shown in 
Figure 8. In Triad A we take one mode twice. Triad B includes 
the fastest growing (here slowest decaying) mode. This mode 
has a dimensional growth rate of - 6.1 X 1 o-5 s- 1

. Triad cis 
representative of the family of modes that lie on the main 
dispersion line, of which A and Bare special cases. Triads D, 
E, and F include viscous modes. Interestingly, one such mode 
(in Triad D) is situated at the point at which two modes cross, 
so, in theory, we could take either in our triad. However, the 
growth (decay) rates are very different: - 8.2 X 10- 5 

S- l for 
the mode on the main dispersion curve; - 6.6 x 10- 3 s- 1 for 
the viscous mode. Note also that in both Triads D and F, one 
mode is the same as that occurring in Triad A (k = 0.72). In 
Table 1 the values of k, w, and G associated with these triads 
are given, along with the analytical estimates B 1 and 8 2 and 
an indication (~w) of the departure from exact resonance of 
the values shown. 

[33] On the basis ofthe estimates (equations (29) and (30)) 
(see Table 1), it appears that Triad B, including the FGM, 
would be the best candidate for investigation. We begin here. 
4.2.1. Triad B 

[34] Numerous numerical experiments were tried. All 
these experiments ultimately resulted in an " explosion" 
(i .e., unbounded growth in a finite time), if a large enough 
initial amplitude was defined. Initially, the procedure was to 
fix one initial mode amplitude at zero, assign a second some 
finite value, and vary the third until an explosion was 
encountered, thus establishing a threshold. Then the second 
amplitude was incremented and the process repeated, which 
resulted in three sets of initial amplitudes, corresponding to 
the three different modes. Numerical integration was carried 
out using a Gear method, which is particularly suited to 
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Table 1. Table Showing Nondimensional Resonant Wave Numbers (k;) and Frequencies (m;), as Well as 
(Dimensional) Decay Rates (a;), Values of 1-J.;, Nearness to Exact Resonance (6-m), and Two Analytical 
Estimates of Amplitudes Below Which Explosive Growth Cannot Occur (8 1 and 8 2) for the Resonant Triads 
Shown in Figure ga 

k tv· r:r · ll. tv 81 Bz 

A 0.720 0.322 -0.0090 0.219 - 0.926i 
0.720 0.322 - 0.0090 0.2 19 - 0.926i - 1.43 X 10- 4 0.028 0.028 
1.440 0.645 -0.0547 - 0.514- 0.216i 

B 0.550 0.275 -0.0 178 0.094 - 1.649i 
0.910 0.387 - 0.0046 0.320 - 0.403i 4.89 X 10- 3 0.013 0.008 
1.460 0.657 - 0.0588 - 0.500 - 0.169i 

c 0.300 0.202 -0.0322 0. 704 - 2.456i 
1.450 0.651 - 0.0567 0.370 + 0.444i 5.89 X 10- 3 0.067 0.038 
1.750 0.847 - 0.1373 - 0.355 + 0.376i 

D 0.720 0.322 -0.0090 -0.042 - 0.297i 
0.910 0.387 - 0.0046 0.018 - 0.133i 5.30 X 10- 3 0.012 0.046 
1.630 0.705 - 1.1210 - 0.387 + 1.443i 

E 0.360 0.222 -0.0289 - 0.734 - l.IIOi 
0.550 0.166 - 0.4152 0.310 + 0.168i 9.40 X 10- 4 0.024 0.011 
0.910 0.387 -0.0047 - 0.097 - 0.077i 

F 0.720 0.322 - 0.0090 1.340 + 0.167i 
2.250 1.270 - 0.3423 - 0.050 + 0.349i 3.90 X 10- 3 0.044 0.020 
2.970 1.588 - 1.5796 - 0.251 + 0.745i 

G 0.930 0.476 - 0.0015 0.725 - 9.744i 
0.930 0.476 - 0.0015 0.725 - 9.744i 3.2 X 10- 4 0.016 0.018 
1.860 0.952 - 0.00079 - 0.924 + 0.359i 

•see section 4.2. Note that normalization of eigenfunctions is the same for all triads: max ie!> I = I. The final triad (G) is 
depicted in Figure 19. 

dealing with stiff problems [Press et a!., 1992]. They were 
subsequently verified using a Runge-Kutta solver. As 
mentioned, explosive growth was always observed if the 
variable amplitude was increased enough. 

2 

"' 0 

C02018 

[35] Of particular interest is the smallest amplitude nec­
essary for explosive instability. All combinations of modes 
showed a minimum amplitude similar in size in each case, 
but noticeably smaller when the two non-zero amplitudes 
included component a2, the least stable mode. This seems 
physically reasonable since the linear decay associated with 
a2 is comparatively small. We do not present here all the 
results of the numerical experiments, as they were qualita­
tively similar to each other. Instead we focus below on the 
amplitude necessary to achieve this explosion, and on the 
dimensional time taken for this to occur. 

-2 -20~---------------' 

[36] In Figure 9 we show an example of one such critical 
amplitude being established in the numerical experiments. 
Of particular note here are the top two panels, which show 
such a threshold being encountered for one set of initial 
conditions. The top left panel shows a stable set of initial 
conditions (the linear decay can be seen in the plot of the 
log amplitudes immediately below). The top right panel 
shows the explosion resulting when the initial amplitude 
lla(O)II is increased a little further; the explosion can clearly 
be seen, and the growth is evidently faster than exponential. 
Finally, note also that initial conditions like some of those 
here (one zero, one finite, and one finite but small ampli­
tude) approach a stable node of the system (if two initial 
amplitudes are zero, then they will remain so and the third 
will decay exponentially; see Appendix A). This seems to 
be what we find. 

[37] The time that it takes for an explosion to occur for a 
given initial condition (texp) is also significant. Changes in 
texp resulting from further (small) increases in lla(O)II can 
also be seen in Figure 9. The explosion is evident (top right 
panel) and occurs after 506 nondimensional time units 

2 

"' 0 .1. 
-----..;;> 

-2 

2 

"' 0 .L::I -
-2~----~------~ 

2.--,.----------, 

"'0~ 

-2L_~L---------~ 
0 200 400 600 

t (non-dim) 

10.------------.-, 

200 400 600 
t (non-dim) 

Figure 9. Amplitudes and log amplitudes of modes for 
Triad B for four different initial amplitudes for (top row) 
a 1(0) = 0.02, a2(0) = 0.147; (second row) a 1(0) = 0.02, 
aiO) = 0.148; (third row) a 1(0) = 0.02, a2(0) = 0.149; 
(bottom row) a 1(0) = 0.02, a2(0) = 0.160. 
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Figure 10. Times until an explosion Ctexp) as a function of 
initial triad "energy" (Triad B). 

(ndtu). Also shown are similar explosions for very small 
further increases in initial amplitudes of less than 1% and 
about 6%. Note that just a 1% increase in "amplitude" of 
the triad Clla(O)II) gives a reduction in explosion time of 
50%. 

[38] This is further illustrated in Figure 10. Here, how­
ever, we plot the dimensional time it takes for an explosion 
to occur against the initial amplitudes. The dramatic de­
crease in time taken for just a very small increase is readily 
apparent. The effect of further increases in initial amplitudes 
is less pronounced. Note that a 13% increase in initial 
amplitudes from critical values gives an explosion time of 
about 2.5 hours, and a 25% increase results in 2.0 hours. It 
is worth noting that Ozkan-Haller and Kirby [1999] report 
that their numerical simulations (of the SUPERDUCK data 
sets) reach finite amplitude within about 30 min to 1 hour, 
depending largely on the eddy viscosity coefficient (albeit 
for a linearly unstable flow). Approximately similar results 
are reported by Slinn et al. [1998]. 

[39] To get a better idea of the overall picture, we also run 
numerous simulations with random initial amplitudes. The 
procedure followed was to initialize each real and imaginary 
part of each of the three complex amplitudes such that 

Re{ aj(O)} = FB2r 

Im{ aj(O)} = FB2r, 
(3 1) 

for j = 1, 2, 3, where each r is an independent random number 
uniformly distributed between ±1, B2 is the analytical 
stability bound (equation (30)), and (in this case) F = 10. 
Thus we have random phases and random initial amplitudes 

distinctly above the sufficient stability bound B2 . The results 
of 10,000 such simulations are shown in Figure 11 . Note that 
all simulations were tenninated after 1000 ndtu ( ~2 1 hours) 
if an explosion had not already been encountered, implying 
that the initial conditions resulted in stability. These non­
explosive simulations are indicated at the top of the figure . 
The explosive simulations can be seen clearly, and are mostly 
clustered between l and 6 hours. The stable simulations all 
appear at the top of the figures (at 1000 ndtu). 

[4o] The importance of the initial amplitude of the a2 
mode can be further seen when each individual amplitude is 
plotted in the same way. There is an apparent threshold of 
la2(0) I ~ 0.05 that is required for explosive growth. The a2 
mode possesses the smallest decay rate, so its presence for 
explosive growth to occur seems intuitively reasonable. 
There is apparently no such threshold for a 1• The mode a3 

seems (somewhat counterintuitively) also to possess a 
threshold. However, we know from our earlier experiments 
with a(O) = (0.02, 0.148, 0.0) that no such threshold exists. 
In fact, taking larger initial amplitudes in a 1 or a2 allows 
a3(0) to be arbitrarily small. The same is also true for a 1 (0). 
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Figure 11. Plot of the dependence of teAP (hours) on initial 
amplitudes for 20,000 random simulations based on 
equation (31) for F = 10 for Triad B. Circles indicate the 
value of texp for a given initial amplitude for a simulation 
run until an explosion is encountered, or until 1000 ndtu 
(~21 hours). (top left) Total amplitude lla(O) II also shown is 
the analytical threshold B2 (dashed line), and the "manu­
ally" established threshold amplitude lla(O) II = 0.168 (dotted 
line); (top right) la 1(0) I also shown is the manually 
established threshold amplitude component a 1(0) = 0.02 
(dotted line); (bottom left) la2(0)1 also shown is the manually 
established threshold amplitude component a 1(0) = 0.148 
(dotted line); (bottom right) la3(0)1. 
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Table 2. Triad A: Nondimensional Initial Amplitudes Necessary 
for Explosive Growth to Occur in the System of Equations (32) and 
(33) for V Profile (Equation (19)) for 0 = 0.04a 

a 1{0) OJ(O) 11 5(0) 11 a 1(0) OJ(O} 11 5{0} 11 

0.0010 0.33150 0.3325 0.11 32 0.05000 0.1632 
0.0050 0.23600 0.2410 0. 1146 0.04000 0.1546 
0.0100 0.19500 0.2050 0.1137 0.03000 0.1437 
0.0200 0.15480 0.1748 0.1112 0.02000 0.1312 
0.0300 0.13240 0.1624 0.1075 0.01000 0.1175 
0.0350 0.12430 0.1593 0.1071 0.00900 0.1161 
0.0400 0.11760 0.1576 0.1067 0.00800 0.1147 
0.0450 0.11180 0.1568 0.1062 0.00700 0.1132 
0.0500 0.10670 0.1567 0.1053 0.00500 0.1103 
0.0550 0.10230 0.1573 0.1034 0.00100 0.1044 
0.0600 0.09827 0.1583 0.1030 0.00010 0.1031 
0.0650 0.09461 0.1596 0.1029 0.00000 0.1029 
0.0700 0.09120 0.1612 
0.0750 0.08794 0.1629 
0.0800 0.08474 0.1647 
0.0850 0.08151 0.1665 
0.0900 O.D7813 0.1681 
0.1000 O.D7027 0.1703 
0.1003 0.07000 0.1703 
0.1088 0.06000 0.1688 

•Figures are correct to four significant figures. 

Thus it is the total amplitude (here 115(0) 11) that is crucial 
to the subsequent development of subcritical instabilities, 
which can also be seen if a larger value ofF in equation (31) 
is taken. 

[41 ] However, these apparent thresholds are significant. 
This is because in reality (as we shall see) a value of 
115(0)11 = 0.168 (achieved right at the stability threshold 
and representing a small such value; see Figures 9 and 11) 
still represents a substantial "push" to the system, and 
means that for practical purposes, there probably is a 
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Figure 12. Stability curve for the experiments for Triad A 
shown in Table 2 in terms of amplitudes a 1(0) and a 3(0). 

required threshold for the a2 (i.e., the slowest decaying) 
mode for this triad. It should further be noted that when 
explosions do occur, they do so overwhelmingly after about 
l hour and before 6 hours duration, indicating a window of 
time after which it may be expected that linear decay 
predominates. 

[ 42] Finally, it is worth noting that of all the simulations 
run in Figure 11, for which 115(0)11 > 0.168 (about 7,000), 
90% resulted in eventual linear decay. Of course, a larger 
value of F in equation (31) would have resulted in an 
increased percentage of destabilizations, but, as previously 
mentioned, the usefulness of looking at yet larger perturba­
tions is dubious; see section 4.5. 
4.2.2. Triad A 

[43] Similar numerical experiments were performed on 
Triad A. Here there are only two modes (a 1 = a2), so the 
system of equations (26)- (28) reduces to two equations, 

(32) 

(33) 

Note that in this system we can, at least in theory, expect to 
find explosions with a 1(0) :1 0 and a 3(0) = 0, because the 
self-interaction of the a 1 mode directly excites a3 via 
equation (33). On the other hand, a 1 (0) = 0 "* stability. 

[44] Because the system has only two modes (or three, 
with one counted twice), it is easier to illustrate the results 
of our "manual" numerical experiments for Triad A. 
They are summarized in Table 2. We depict these results 
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Figure 13. Times until an explosion Ctexp) as a function of 
initial triad "energy" (Triad A). In values for 11 5(0)11 , a 1(0) 
has been counted twice. 
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Figure 14. Plot of the dependence of l exp (hours) on initial 
amplitudes for 50,000 random simulations based on 
equation (31) for F = 2 for Triad A. Circles indicate the 
value of t exp for a given initial amplitude for a simulation 
run until an explosion is encountered, or until 1000 ndtu 
(;:::;21 hours) . (top left) Total amplitude ll a(O) II ; also shown 
is the analytical threshold B2 (dashed line), and the 
manually established threshold amplitude ll a(O) II = 0.103 
(dotted line) ; (top right) la 1(0) I also shown is the 
' manually ' established threshold amplitude component 
a 1(0) = 0.103 (dotted line); (bottom left) la3(0)I (bottom 
right) total amplitude ll a(O) II for F = 10; also shown is the 
analytical threshold B2 (dashed line), and the manually 
established threshold amplitude ll a(O) II = 0.103 (dotted 
line). Note that these values of ll a(O) II imply that a1(0) is 
counted just once. 

graphically in a corresponding stability diagram; see 
Figure 12. Once more, explosions were always obtained 
with a big enough initial amplitude. It is interesting to note 
that the smallest critical amplitudes were encountered for 
a3 = 0, which, again, seems reasonable because this mode 
possesses a much larger linear decay rate than a 1• Note, 
however, the existence of another local critical amplitude 
minimum at about a 1(0) = 0.05 and a3(0) = 0.1067. 

[ 45] In Figure 13 we again show the variation in l exp 

starting from critical conditions (a 1 (0) = 0.1 03 , a3(0) = 0), 
gradually increasing the amplitude a 1 (0). A similar picture 
to that seen in Figure 1 0 is observed. 

[46] Once again , we show a more comprehensive set of 
(50,000) numerical experiments, in Figure 14. Again, each 
symbol shows l exp for that ll a(O) II and, once more, an 
apparent threshold emerges, this time for ah significantly 
lower than a1 = 0.1 03 . As before (Triad B), this is not 
strictly a threshold (explosions for arbitrarily small, finite 

values for a 1 can be found), but in practical terms it 
probably does constitute a threshold for subcritical insta­
bilities. Once again, explosions occur overwhelmingly 
between 1 and 6 hours. If we consider again the ratios of 
explosive to stable simulations, we find that for runs such 
that ll a(O) II > 0.103 (about 12,000 for F = 2 for these 
calculations), 91 % resulted in eventual linear decay. 

[ 47] Finally, to illustrate the effect of taking a larger value 
for F, we show in the fmal panel of Figure 14 the Cll a(O) II , 
lexp) plot for another set of simulations for which F = 10. It 
can immediately be seen that the threshold we established 
by earlier experiments Cll a(O) II;:::; 0.103, taking a1 just once) 
is real. In contrast, there are no apparent thresholds for a 1 or 
a3 (not shown). For F = 10, 95% of all simulations for 
which ll a(O) II > 0.103 are explosive. 

4.3. Triads C-F 
[48] Similar numerical experiments were performed on 

Triads C-F. Only Triad D exhibited explosive instabilities 
despite (in the cases of Triads E and F) values ofF = 50 
being used. The results for Triad D were qualitatively 
similar to those for Triad B, with a threshold of lla(O) II ;:::; 
0.3. Again, the greatest individual threshold dependence is 
on the slowest decaying mode (in this case, mode 2). 

[49] The stability thresholds established for Triads A and 
B are nondimensional at this point. It is necessary to convert 
them into dimensional predictions to see if they are phys­
ically relevant estimates. Before doing this, we first see if 
the amplitude equations for non-exact resonance exhibit 
similar behavior. 

4.4. Approximate Resonance 
[so] Recall that in Table 1 we showed values D.m, which 

provide a measure of the degree to which the resonant triads 
are not exact. It is important to consider the effect of non­
exact resonance because in the field, this type of resonance 
is likely to be found, rather than exact resonance. 

[s1] For non-exact (temporal) resonance, 

(34) 

(35) 

so that 

X i + X2 = X3 - D:rot , (36) 

X3 -Xi = X2 + D:rot , (37) 

X3 - X2 =Xi + D:rot. (38) 

In these circumstances the amplitude equations (26)- (28) 
become 

(39) 

(40) 

( 41 ) 
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Table 3. Table Comparing Critical Amplitudes for Most Unstable Initial Conditions of Triad A (Table 2) for Exact and Approximate 
Resonance Equations 

Equations (26) - (28) 

Triad .6.1:0 a1(0) az(O) GJ(O) 

A - 1.43 X 10 4 0. 1030 0.0000 0.0 
A - 1.43 X 10 4 0.0900 0.0900 0.0782 
A - 1.43 X 10 4 0.0600 0.0600 0.0983 
A - 1.43 X 10 4 0.0 100 0.0100 0.1950 
A - 1.43 X 10- 4 0.0010 0.0010 0.3315 

[52] In order to see if this non-exact resonance has a 
substantial effect on the critical amplitudes we performed 
further numerical experiments, in which the deviation from 
exact resonance noted in Table 1 is used in the system of 
equations (39) - (41 ). In Table 3, some results for Triad A 
are shown. It can be seen that there is little difference 
between exact and non-exact results in terms of critical 
boundaries. Progressively larger values of ~w lead to larger 
required values of lla(O) II for explosions to be observed (not 
shown). However, the values are not significantly larger 
than those required for exact resonance. This was a general 
feature of the experiments we performed. The result implies 
that it is sufficient to consider conditions close to exact 
resonance in order to get realistic, physical predictions. 

4.5. Dimensional Amplitudes 
[53] For the predictions of sections 4.2. 1 and 4.2.2 to be 

physically meaningful , we need to convert them to dimen­
sional predictions and relate them to the longshore current. 
In Figure 15 we show the dimensional values of lui, lvl 
and the associated free surface elevations for explosive 
conditions for Triad 8 (a(O) = (0.02, 0.148, 0)) shown in 
Figure 9. In Figure 16 we do the same for Triad A (a(O) = 
(0.103, 0.103, 0)). 

[54] In both cases the free surface elevations shown are 
reconstructed from the y momentum equation, 

(

W . V 2 ]w) . V " . V' , 
"' = - - V + 2t - k + -. V - 1 - V + I- U + VU . 
'I k k k k k '> 

(42) 

and are very small, as expected. (Note that there is some 
loss of significant figures in calculation of 11 in some areas 
of the profile for both triads .) 

[55] The perturbations shown in Figures 15 and 16 are 
substantial in terms of a proportion of the maximum long­
shore current (1.2 m s- 1

). The total variation (i.e., maximum 
positive to negative velocity) in the Triad 8 case is about 
0.04 Vm<L< for VJ and 0.02 Vmax for u 1, and about 0.35 Vmax for 
v2 and 0.27 Vm<L< for u2 , where u 1 is the velocity associated 
with the a 1 mode, etc. For the Triad A example (Figure 16), 
these figures are 0.23 Vmax for v 1 and 0.15 Vmax for u 1• To give 
an idea ofthe size of these perturbations, we show in Figure 17 
a vector plot of the perturbation for the Triad A example 
above, superimposed on the background longshore current. 
It can be seen that these perturbations, though reasonably 
large, do not dwarf the mean current, and are perhaps not 
inconsistent with naturally occurring perturbations. 

5. Inclusion of Bottom Friction 

[56] The analysis of the preceding section seems to 
indicate that this kind of explosive growth might be possible 

A~~roximate Eguations (39)- ( 41) 

lla(O) II a 1(0) az(O) a3(0) lla(O) II 
0.2060 0.103 0.0000 0.0 0.2058 
0.2582 0.0900 0.0900 0.0782 0.2581 
0.2 182 0.0600 0.0600 0.0983 0.2182 
0.2150 0.0100 0.0 100 0.1950 0.2150 
0.3335 0.0010 0.0010 0.3315 0.3335 

in realistic flows . However, so far we have examined flows 
without bottom friction. This was because the linear stabil­
ity results with bottom friction follow straightforwardly 
from a simple transformation. However, in realistic flows, 
bottom friction will also play a substantial role in suppress­
ing (linear) instabilities. Therefore, in such a realistic flow, 
which is linearly stable but close to instability (and thus a 
candidate for possible explosive growth; recall that we 
apparently need at least one mode of a triad with a small 
decay rate), the eddy viscosity will be significantly smaller 
than 0 = 0.04, and so the bottom friction will contribute. 
Therefore the linear dispersion curves are likely to be 
significantly different from those for i) = 0.04 and ]"' = 
0.0 (Figure 7). 

[57] In Figure 18 we show a dispersion diagram for i)= 
0.001 (v = 0.108 m2 s- 1

) and]w = 0.13. This value ofv is 
more representative of that usually taken in the surf zone 
[see Ozkan-Haller and Kirby, 1999]. The dimensional value 
f.v will depend on the constant depth chosen, but an order of 

~~ 0.01K ----.:_______.................... .... . . ... . .. l 
¥, -o o~L__---""--~o<::::..-..__ __ .. _ .............. _ .... _ ... _ ... _ .. _ .. _ ......... _·_· _· _· _· _·_J 

-i_:~b>=?==' ',,, ,,, ' ·l 
X 10"3 

0 2 4 6 8 10 
x lNon-Diml 

Figure 15. Dimensional lui, lvl, and 1111 envelope profiles 
for explosive initial conditions for Triad 8: a(O) = (0.02, 
0.148, 0) ; (top three plots) a1(0); (bottom three plots) a2(0). 
These conditions lead to explosive growth of system of 
equations .(26)- (28) for V profile (equation ( 19)) with i) = 
0.04 and fw = 0. 
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Figure 16. Dimensional lui, lvl, and 1111 envelope profiles 
for explosive initial conditions for Triad A: a(O) = (0.1 03, 
0.0, 0). These conditions lead to explosive growth of the 
system of equations (26)- (28) for V profile (equation (19)) 
with v = 0.04 and Jw = 0. 
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Figure 17. Vector plot of critical amplitude perturbation 
for Triad A (a(O) = (0.1 03, 0, 0)) superimposed on the mean 
current for V profile (equation (18)). The alongshore range 
is two wavelengths of mode a 1• 
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Figure 18. Dispersion diagrams (dimensional) for V 
profile (equation (19)) for v = 0.001 and Jw = 0.13. The 
incomplete dispersion lines result there because the 
associated decay rate (at k ~ 2.3) becomes so large that it 
no longer constitutes one of the first 30 modes; in reality, it 
does not suddenly cease at this value. 

magnitude estimate can be obtained for h0 = 2 m, which 
gives f w = 0.0035 m s- 1

• This corresponds to a friction 
coefficient in a quadratic drag law of cd ~ 0.01 (weak 
current approximation) or cd ~ 0.003 (strong current ap­
proximation), using an orbital velocity of 0.5 m s- 1 and a 
longshore current of 1.2 m s - I . These values are consistent 
with those used in nearshore circulation modeling. This case 
has been chosen to create similar conditions to those for v = 
0.04 and Jw = 0.0 (i.e. , subcritical flow near to linear 
instability); obviously, numerous other possibilities exist 
for varying v and Jw-

[ss] The smaller eddy viscosity results in a range of 
smaller decay rates in general (compare Figure 7). Note 
the richer array of dispersion lines than for v = 0.04 and 
Jw = 0.0. This seems somewhat counterintuitive because 
viscosity introduces viscous modes, but it may be that more 
dispersion lines are present but with decay rates so large 
(because of increased viscosity) that they no longer appear 
as one of the 30 least stable modes. This can be seen to 
happen in Figure 18 (see caption), but we do not pursue this 
point. 

[s9] Once again, numerous candidate triads can be found. 
We choose one such triad, referred to here as Triad G (see 
Table 1 ). This triad is illustrated in Figure 19. 

[6o] In much the same way as for Triad A, we can 
manually establish a threshold between stability and insta­
bility. We show this in Figure 20. It can be seen that this 
explosion takes place at 94 ndtu, or 1.96 hours. This is put 
more into context when we show values for t exp resulting 
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Figure 19. Dispersion diagram (nondimensional) for V 
profile (equation (19)) for 0 = 0.001 andj 11 • = 0.13 showing 
Triad G. The triad is indicated by the arrows. 

0.1,----------, 

0.05 

-0.05 

-0.1 L__-~--~-__J 

0.1 ,--....,--------, 

0.05 

-0.05 

-0.1 L--'--~------' 
0 200 400 600 

t (non-dim) 

0 

-2 

- 1 oL---2~00,----4~0.,...0 ---'600 

t (non-dim) 

Figure 20. Amplitudes and log amplitudes of modes for 
Triad G at the explosive threshold il(O) = (0.0624, 0.0624, 
0) for (top) (a 1(0) = 0.0624, a2(0) = 0.0624, a 3(0) = 0) and 
(bottom) (a 1(0) = 0.06241 , az(O) = 0.0624 1, a3(0) = 0). 

from further small increases in the initial amplitude. We do 
this in Table 4, in which we take the value identified in 
Figure 20 (a 1 = 0.06241) as the critical amplitude ac, and 
refer to increases in proportions of ac, 

factor x ac 

It can be seen that a 9% increase in a 1(0) approx imately 
halves fexp· A doubling of the initial amplitude reduces fexp 

to just 9 min. Clearly, these times are significantly shorter 
than those observed so far, and this can be seen too in 
Figure 21, where we show the results of random 
simulations for F = 2. Note that the final panel in this 
figure is for a further set of simulations for F = 5 (which 
again indicate that there is no actual threshold for a3 ), 

which appears to show several simulations violating the 
stability bound. However, note that in this figure the a1 

mode is only counted once. Counting it twice reveals no 
such violation. 

[61] It seems therefore that this triad is significantly more 
"explosive" than either A or B . However, this is not 
apparently due to the values of v and f.v as such, because 
Triad D exhibits similar behavior (not shown). More 
significant are the linear decay rates for Triads D and G. 
Triad D possesses two very slowly decaying modes (1 and 2) 
equivalent to those same modes in Triads A and B, respec­
tively. All modes in Triad G have small decay rates. It is this 
that appears to dictate how explosive a triad is. For reasons 
already discussed, it is likely that considering both eddy 
viscosity and bottom friction as stabilizing mechanisms will 
favor such modes (and therefore such triads). If, for instance, 
we increase 0 in Figure 18 to 0 = 0.005, we note a significant 
decay in all growth rates except the main inviscid mode; see 
Figure 22. 

6. Coupling of Triads 

[62] So far we have seen that explosive triads can exist in 
physically plausible alongshore flows . The addition of 
viscosity (and bottom friction) results in a rich array of 
dispersion curves that can potentially allow many resonant 
triads to exist. Unlike the example discussed by Shrira eta/. 
[ 1997] (that of Bowen and Holman [ 1989]), these modes are 
all decaying for large enough dissipation . It has also been 
seen that some of the triads are explosive and others are not. 
Therefore the possibility exists for coupling between triads. 
In thi s section we investigate the effect of coupling between 
two triads. It is not difficult to find triads sharing common 
modes (see Triads A, B, and D; also Triads A and F). In 
particular, we consider the coupling between one explosive 

Table 4. Table of lexp for Different Initial Amplitudes for Triad G" 

ac factor Lex n ndtu l ex , hours 

0.06241 1.0 94 1.96 
0.063 1.01 49 1.02 
0.07 1.12 23 0.48 
0.08 1.28 15 0.31 
0.10 1.60 10 0.21 
0.12482 2.0 7 0.15 (~9 min) 

"The va lue factor represents the factor by which we multiply ac to arrive 
at the initial amplitude. 
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Figure 21. Plot of the dependence of l exp (hours) on initial 
amplitudes for 10,000 random simulations based on 
equation (31) for F = 2 for Triad G. Circles indicate the 
value of t exp for a given initial amplitude for a simulation 
run until an explosion is encountered, or until 1000 ndtu 
(;::::j21 hours). (top left) Total amplitude lia(O) II; also shown 
is the analytical threshold B2 (dashed line), and the 
manually established threshold amplitude lia(O) II = 
0.06241 (dotted line); (top right) ja 1(0) j; also shown is 
the manually established threshold amplitude component 
a 1 (0) = 0.06241 (dotted line); (bottom left) ja3(0) I; (bottom 
right) total amplitude lia(O)I I for F = 5; also shown is the 
analytical threshold B2 (dashed line), and the manually 
established threshold amplitude lia(O) II = 0.103 (dotted 
line). Note that these values of lia(O) II imply that a 1(0) is 
counted just once. 

and one non-explosive triad to examine the effect on the 
explosive triad. 

[63] The model we consider is that of the explosive triad 
sharing one wavelength with the non-explosive one, so that 

(43) 

(44) 

the common mode being k1• This type of coupling has been 
examined before [see Craik, 1985, pp. 157- 159] m 

different contexts. Straightforwardly, this leads to a system 
of five amplitude equations, 

(45 ) 

(46) 

(47) 

(48) 

(49) 

where, again, interactions between nonresonant modes are 
neglected. It can be seen that energy must initially be 
present in either the a4 or a5 modes for these to feedback 
onto the development of the first triad. 

[64] We investigate the effect of this coupling by exam­
ining results from Triad A coupled with Triad F. In Figure 23 
we show the results of 10,000 random simulations similar to 
the previous ones. Here, however, we take a(O) = (0.103, 
0.103, 0) = (ac, ac, 0) for Triad A, and 

ii(O)= ac(l ,F4 (r + ir), Fs(r + ir)) (50) 

for Triad F, where each r is an independent random number 
between ± 1, as before. Thus we can add varying amounts of 

0.1 

0 

-0.1 "\ 

k 

Figure 22. Growth rate diagrams (nondimensional) for V 
profile (equation (19)) for v = 0.005 and ]w = 0.13. Note 
that numerical modes have not been removed in this plot, 
and are evident as the set of almost parallel set of curves. 
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modes 4 and 5 to the simulation at the critical threshold 
of Triad A to examine the effect. The top left panel of 
Figure 23 shows the effect for F4 = F s = 0.01 ; in effect, we 
are adding background "noise." There is essentially no 
effect on the stability threshold . The value of lexp for Triad 
A is 429.7 ndtu (or 8.95 hours), and it can be seen that 
adding this noise results in as many relative destabilizations 
(decreases in l exp) as there are relative stabi I izations. 
However, if we put F4 = 1 while keeping F s = 0.01 , in 
other words, introduce a significant amount of energy of the 
a4 mode, while keeping as as noise, we see a clear 
stabilization of the coupled triad system, with now 98.5% 
being stabilizations, either relative or absolute (see top right 
panel). Further decreasing Fs (while keeping F4 = 1.0) 
accentuates this picture (middle panel, left). 

[65] Conversely, if we reverse the roles of F4 and Fs we 
see a similar picture (remaining three plots in Figure 23). 
The main difference is that a larger differential between the 
modes is required when as is the prominent mode. 

[66] In both cases, there is a clear stabilization of the 
previously explosive triad in the presence of a coupled 
stable triad, as long as only one of the additional modes is 
primarily present. Otherwise, there is little effect. 

7. Conclusions 

[67] We have investigated a smooth, realistic longshore 
cuiTent profile, including the effects of eddy viscosity, on 
constant depth. Developing the weakly nonlinear resonant 
triad amplitude equations, and numerically integrating this 
system, we find some " explosive" triads and some non­
explosive (stable) ones. The explosive triads exhibit this 
behavior as long as the total initial amplitude Cll a(O) II ) 
exceeds a certain threshold. The time it takes for the triad 
to explode initially varies significantly close to this thresh­
old, but as ll a(O) II is increased further, the dependence is 
weak. However, these explosion times Ctexp ) can vary 
significantly between triads, depending, at least in part, on 
the linear decay rates of each mode of the triad. Triads with 
at least two modes with small decay rates seem to exhibit 
smaller values for lexp , such that for physically plausible 
perturbations, we see values of lexp r-v I 0 min. Triads with 
one small decay rate appear to give fexp r-v I hour. On the 
basis of the triads examined, small decay rates are values 
such that io-11 < 0.0 I s- 1

, but, clearly, these values are just 
rough indications. The stability bounds B 1 and B2 show an 
inverse dependence on 1-LJ, and it is notable that Triad G (one 
of those very unstable modes) has a particularly large value 
for I1-L 1,2 I. However, the similarly explosive Triad D shows 
no such value. The dependence on 1-LJ would appear signif­
icant, but also is likely to include their phases. 

[68] To achieve an explosion, it is apparent that the 
cuiTent requires a significant perturbation (see Figures 15 
and 16), but these perturbations are not inconsistent with 
naturally occulTing ones, and can be significantly smaller 
than the mean cuiTent, so that there is a reasonable chance 
that the weakly nonlinear theory is applicable in such cases. 

[69] There are aspects of the present study that are 
unrealistic. Most notable is the constant depth. Others 
include the constant eddy viscosity and bottom friction 
coefficients. However, the flow examined includes the main 
dissipative mechanisms that would be expected to be 
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Figure 23. Plot of the dependence of fexp (hours) on initial 
normalized amplitudes of a4 and as modes ( { la4(0) I + 
las(O)I }/Ia 1 (0)1) for I 0,000 random simulations based on 
equation (50) for the coupled triads A and F. Circles indicate 
the value of texp for a given initial amplitude for a simulation 
run until an explosion is encountered, or until 1000 ndtu 
(~21 hours). (top left) F4 = Fs = 0.0 I. (top right) F4 = 1.0, 
F5 = 0.01. (middle left) F4 = 1.0, Fs = 0.00 I . (middle right) 
F4 = 0.01 , Fs = 1.0. (bottom left) F4 = 0.00 I , Fs = 1.0. 
(bottom right) F4 = 0.0001 , F5 = 1.0. 

present, and , consistent with earlier linear and weakly 
nonlinear studies [see Dodd et al. , 2000] , we do not expect 
the introduction of a varying depth to make qualitative 
differences. In fact , linear theory shows us that it is possible 
that it will not even make quantitative ones. Either way, the 
next step is to verifY these results from weakly nonlinear 
theory in a fully nonlinear model. This is important because 
the weakly nonlinear theory must be shown to be robust 
enough to describe the essential dynamics. If not, it is likely 
to be of little physical use. Reproducing the same conditions 
as in the weakly nonlinear study should be easy enough, but 
controlling the subsequent developments is likely to be more 
problematical. It has been shown (see section 6) that it is 
possible for an explosive triad to become coupled with a non­
explosive one and the resulting five wave system rendered 
stable. Numerical dissipation must also be controlled. 

[10] Linear investigations (see section 3.1) have revealed 
a destabilization due to the introduction of (constant) 
viscosity. These findings coiToborate the work of Putrevu 
et al. [1998]. The effect of the eddy viscosity and bottom 
friction is likely to be important not least because it seems 
that flows stabilized by both, in the sense that both effects 
are significantly damping instabilities, are more likely to 
have an aiTay of modes that are decaying slowly, and 
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therefore it is more likely that very explosive triads may be 
found in such circumstances. 

Appendix A: Amplitude Equations 

Al. Weakly Nonlinear Development 
[7! ] We introduce the two timescales (t and T) into the 

nonlinear equation ( 11 ), 

(AI ) 

and substitute equation (22) into the resulting equation. 
Then we collect harmonics Xi· This leads to a coupled 
system of three equations, up to 0( ~:2) , which, moving back 
to one time variable, is 

AI (t) .C<IJ\ 1) =-a;tl ( <IJ\ 1)"- kf<IJ\ 1)) +A~A3e(a,+a,- al ) I GI (x), 
(A2) 

Az(t).C<jJ;I) = - O~z ( <IJ;l)" - f0<1J;I)) + AjA3e(a J+a,-a,)t G2 (x), 

(A3) 

A3 ( t ) .C <jJ~ I ) = -
0;/ ( <jJ~ I )" - kj<IJ~ l ) ) + A IA 2e(a1+a,-a,)t G3 (x ), 

(A4) 

where an asterisk denotes a complex conjugate, and where 
the coefficients G1 are given below, and .C is the linear 
operator from equation (16). Note that the right side each 
of equation (A2)- (A4) has a (linear) term originating 
from the introduction of the two timescales, and another 
(nonlinear) one stemming from the resonance conditions 
(equation (25)) . 

[n ] The left side of equations (A2) - (A4) is just the linear 
problem, so in order for equations (A2) - (A4) to have 
solutions, a nonsecularity condition must be satisfied 
[see, e.g. , Nayf eh, 1981]. This leads immediately to 
equations (26)- (28), where the complex constants 1-1 1,2,3 are 

( oo GJ~(I)dx 
- Jo J 

~j- 100 ( <llY)"- kf<~JY ) ) ~Y)dx 
j = 1, 2, 3, (AS ) 

and where we have rewritten the amplitudes A 1 ,2 ,3 as a 1 ,2,3 = 
A 1 ,2,3ecrl.2.' f and where the coefficients G1 (j = 1, 2, 3) 
appearing in equations (A2) - (A4) are 

G1 =- i<jJ~Jk2 ( <jJ~ l )"'- kj<jJ~ I ) ' ) + i<jJ~ 1 ) k3 ( <IJ~f'- f0<1J~n 
- ik3<jJ~r ( <ll~ l ) "- ki<ll~l ) ) + ikz<IJ~l ) ' ( <ll~r- t0<~J~J ) , 

(A6) 

Gz = - i<IJ~/ kl ( <IJ~ 1 )
111

- kj<IJ~ 1 ) ') + i<jJ~ 1 ) k3 ( <ll~t'- kf<ll~l') 
'k ,~..( 1 ) 1 ( ,~..( 1 ) 11 

_ kz,~.. ( l ) ) + 'k ,~..( 1 ) 1 (,~..( 1 ) 11 
_ kz,~.. ( l ) ) 

- l 3'1'- 1 '1'3 3'1'3 l 1'1'3 '1'- 1 I '1'-1 > 

(A7) 

[73] In the two triad equations (46)- (50) the quantities (11 
(j = 1, 4, 5) are given by 

(AIO) 

where 

cl} = - i<iJ~lk4 ( <ll~ 1 )
111

- k~<IJ~ I ) ' ) + i<IJ~I) k5 ( <ll~l"'- kl<iJ~l') 
- ik ,~..(1) 1 ( ,~..( 1 ) 11 - f2,t.. (l)) + ik ,~..( 1 ) 1 ( ,~..( 1 ) 11 - k2,~.. ( 1 ) ) 5'1'-4 '1'5 5 '1'5 4'1'5 '1'-4 4 '1'-4 ' 

(A ll ) 

a4 = - i<IJ~i k1 ( <jJ~ 1 )
111 

- k~<IJ~l )' ) + i<IJ~ l ) k5 ( <ll~t' - kf<ll~l') 
- ik ,~..(1) 1 ( ,~.. ( 1 ) 11 

- f2,t.. (l)) + ik ,~..( 1 ) 1 ( ,~..(1) 11 
- k2,~.. ( 1 ) ) 5'1'-1 '1'5 5'1'5 1'1'5 '1'-1 I '1'- 1 > 

(A12) 

(;5 = ik4<1Jil) ( <IJ\ l)m - kf<IJ\ 1)') + ikl <IJ\ 1) (<!Jill"' -~<!Jil l ') 

(A 13) 

A2. Stable Nodes of System of Equations (25)-(27) 
[74] If ai < 0, for all i , this system has a stable node at 

a 1 = a2 = a3 = 0. Other critical points can be found by 

Putting da; = 0 so that 
dt ' 

(A IS) 

(A I6) 

(A1 7) 

Substituting equation (A17) into equations (A15) and (Al6) 
gives us 

la2 l2= a1a3. 

~ 1 ~3 

(A1 8) 

(A1 9) 
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'I h ' II , lo lind lh · 'Orr · s pulldi11 ~:; vulu · lut ct, , w · rnullrpl y wlrr ·lr wu utnr r-uwrrlu us 
equation (Al 7) by aT a~ and then use the complex 
conjugate of equation (Al7) to give us <P(iv) + a<P" + ~<P = 0, (82) 

(A20) 

However, this =;. 1-Lzi-LJ is real, etc., and, in fact, that 1-L; is real, 
which is not true in generaL So, it appears that in general, 
there are no critical points apart from a 1 = a2 = a3 = 0. In 
fact, this conclusion was also arrived at by Wang [1972], 
who examined the same system, but rewritten as 

(A21) 

(A22) 

(A23) 

A3. Eigenfunction Normalization 
[ 75 ] Here we use a normalization of the linear eigenfunc­

tions such that 

max I <~>J' l I = 1 

Im{ <P)' l} = 0, 
(A24) 

when l¢)'ll = 1, which yield the system of equations (25)­
(27). Alternative normalizations ¢)2l = a1¢)'l give rise to a 
system such that 

(A25) 

(A26) 

(A27) 

Then, if the first system has an explosion at a= (af, a~, af), 
then the second will have one at a= (aflar, a~la2 , a'j,!a 3 ) . 

Appendix B: Far-Field Behavior 

[76] As X---4 oo, the Orr-Sommerfeld equation asymptotes 
to 

where 

iw 2 a=- - 2k v 

This has solutions of the form e>..f< where 

>--r ,z = ±k 

(83) 

(84) 

(85) 

(86) 

(87) 

Only two of these four solutions are physically admissible. 
They both have controlling exponentially decaying behavior 
as x ---4 oo but, crucially, the second mode also has 
oscillatory behavior as well. 
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