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Abstract. Although sources in general nonlinear mixtures are not separable nsing only sta-
tistical independence, a special and realistic case of nonlinear mixtures, the post nonlinear
(PNL) mixture is separable choosing a suited separating system. Then, a natural approach s
based on the estimation of the separating system parameters by minimizing an independence
criterion, like estimated source mutual information. This class of methods requires higher
(than 2) order statistics, and cannot separate Ganssian sources. However, use of {weak) prior,
like source temporal correlation or monstationarity, leads to other source separation algo-
rithms, which are able to separate Gaussian sources, and can even, for a few of them, works
with second-order statistics. Recently, modeling time correlated sources by Markov models,
we propose very efficient algorithms based on minimization of the conditional mutual informa-
tion. Currently, using the prior of temporally correlated sources, we investigate the feasibility
of inverting PNL mixtures with non-bijective non-linearities, like quadratic fiznctions. In this
paper, we review the main ICA and BSS results for nonlinear mixtures, present PNL models
and algorithms, and finish with advanced results using temporally correlated sources,

1 The nonlinear ICA and BSS problems

1.1 Model and problem

Consider N samples of the m-dimension observed randotmn vector x, modeled by
x=F(8)+n {1)

where F is an unknown mixing mapping assumed invertible, s is an unknown n-dimensional source
vector containing the source signals s, 83, . . ., 35, which are assumed to be statistically independent,
and n is an additive noise, independent of the sources.

Such a model is usual in multidimensional signal processing, where cach sensor receives an
unknown superimposition of unknown source signals at time instants t = 1,...,N. Then, the geal
is to recover the n unknown actual source signals s;(f) which have given rise to the obscrved
mixtures. This is referred to as the blind source separation (BSS) problem, blind since no or very
little prior information about the sources is required. Since the only assumption is the independence
of sources, the basic idea in blind source separation consists in estimating a mapping G, only from the
observed data x, such that y = §(x) are statistically independent. The method, based on statistical
independence, constitutes a generic approach called independent component analysis (ICA).

In the following, we assume that there are as many mixtures as sources {m = n) and that
noise is zero. In that case (as well ag if m > n), it is clear that estimating the inverse mapping G
directly provides the sources. On the cuntrary, if m < n, identification of & and source estimation
are unrelated tasks, and extra priors are required for separating the sources.
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1.2 Nonlincar mixtures

The general nonlincar ICA problem then consists in estimating a mapping G : (B)" — (R)" that
yields components
y =G(x) (2)

which are statistically independent, only using the observations x.

For general nonlinear mappings, G o F can lead to independent, signals y which are still mixtures
of the independent sources x. In other words, ICA and BSS are not equivalent: one can easily design
a nonlinear mapping which mixes the sources and provides statistically independent variables y;

i = hils) # hi(5a0:)) )]

where (i) is a permutation over {1,2,...,n}

Moreover, if the separation would be achieved, each estimated output y; would only depend on
a unique source y; = hi(4,¢;)). Then, strong distortions could still occur, due to the mapping hi(.).
One reason for this is that if « and v are two independent random variables, any of their functions
f(u) and g(v) (where f and g are invertible functions) are independent too.

In the nonlinear BSS problem, one then expect to find signals y; = hi(s,¢y), 4 = 1,...n. Of
course, it would be nice to restrict Ay to identity function: then, sources would be recovered up to
weaker indeterminacies, e.g. scale and permutation indeterminacies as in linear mixtures, But is it
possible? In other words, can priors on the sources and/for the mixing mapping be sufficient for this?
Generally, using 1CA for solving the nonlinear BSS problem requires additional prior informations
or suitable regularizing constraints,

1.3 Outline

This paper is organized as follows. After having presented the nonlinear ICA and BSS problems
in section 1, we consider two ways for regularizing the problem of source separation in nonlinear
mixtures. The first way, based on structural constraints, is explained in Section 2. The second way,
based on prior information on the sources, is presented in Section 3. Finally, new ideas for inverting
non-bijective functions are investigated in Section 4.

2 Siructural constraints

2.1 Linear models

In the case of regular linear models, the mapping F is linear and can be represented by x = As
where A is a square invertible matrix. In this case it suffices to copstrain the separating model
G to lie in the subgpace of invertible square matrices, and one has to estimate a matrix B such
that y = Bx = Hs has independent components. First theoretical results on separability of linear
mixtures have been prapased by Comon in 1994 [6].

2.2 PNL mixtures

PNL mixing and separating models In the post-nonlinear (PNL) model, the nonlinear obser-
vations have the following specific formn (Figure 1):

zi(t) =fi(zaqj3j(t)), i=1,....,n {(4)

i=t

One can see that the PNL model consists of a linear mixture followed by a component-wise nonlin-
earity f; acting on each output independently from the others. The nonlinear functions {distortions)
[: are assumed to be invertible.
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+—  Mixing System —+— Separating System -—

Fig. 1. The mixing-separating system for PNL mixtures.

Besides its theoretical interest, this model belonging to the L-ZMNL? family suits perfectly for
a lot of real-world applications. For instance, such models appear in sensors array processing [14],
satellite and microwave communications [17}, and in many biological systems [10].

The simplest choice for the separating system G is the mirror structure of the mixing system
(see Figure 1). In [22], it has been shown that these mixtures are separable for distributions having
at most one Gaussian source, with the same indeterminacies as linear mixtures.

PNL aigorithms In [22], the mutual information

1) = [ (it los g poly() (5)

i=1 -plh (?h t))

between the components g1,...,¥n of the output vector is used as the independence criterion in
both linear and non-linear stages. For the linear part, minimization of the mutual information leads
to the same estimation equations as for linear mixtures [8, 5]

aily) _

o = “E{yxT} - (BT) Q)

where components ¥ of the vector ¥ are score functions of the components y; of the vector y:

pilu) @

Bifu) = — 103:3‘( )=
Here p;(u) is the pdf of y; and p)(x) its derivative.
For the nonlinear stage, one can derive from the estimating equations the gradient rule [22]

8I(y) _ .. fOlog! g (8, xa}| 3Qk(9k,1'k
b el B {Zw. (wb } ®

Here x4, is the kth component, of the observation vector, by, is the elentent ik of the scparating matrix
B, and g} is the derivative of the k-th nonlinear function g¢. The exact computation algorithm
depends on the specific parametric form of the nonlinear mapping gx{@%,z;). In [22], a multilayer
perceptron network is used for modeling the functions gp(Be, x4 ), k=1,...,n

Contrary to BS5 of linear mixtures, separation performance for nonlinear mixtures is strongly
related to the estimation accuracy of the score functions (7) [22). The score functions {7) must be
estimated adaptively from the output vector y. Several alternative ways to do this are considered
in [22]. The first approach is to estimate the pdf, and then compute using differentiation the score
function. Pdf estimation based on the Gram-Chatlier expansion [6,8] fails except for mild post-
noniinear distortions. For hard nonlinearities, a pdf estimation based on kernel methods is preferable.
The second method estimates the score functions directly, and provides very good results for hard

3 L stands for Linear and ZMNL stands for Zero-Memory NonLinearity: it is a separable model with a
linear stage followed by a nonlinear {static) distortion.
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Fig. 2. A Wiener system consists of a filter followed by a distortion (left). For inverting the Wiener system,
one uses a Hammerstein system (right), which consists of a distortion followed by a linear filter.

nonlinearities, too. A well performing batch type method for estimating the score functions has been
introduced in a later paper [21]. Several other authors have studied methods for blind separation of
post-nonlinear mixtures starting from different viewpoints : other parameterizations of non-linear
mappings [13,1,15,19], temporal decorrelation of sources [24], geometrical approaches (18, 3], and
some tricks to improve the algoritms [20].

2.3 CPNL mixtures

Separability of PNL mixtures can be generalized to convolutive PNL {CPNL) mixtures, in which the
instantaneous mixture (matrix A) is replaced by linear filters (matrix of filters A{z)), where each
source ig independent and identically distributed (iid) [2]. In fact, denoting A(z} = 3, Asz7*, and
definings £ (-..,sT(k - 1),s7(k),sT(k +1),. .. }T ande 2 (..., eT(k - 1),eT(k),eT(k +1),. .‘)r,
we have:

e=f (As) (9)

where f acts componentwise, and:

i e Appr Ap Agg oo
A 10
- Aprr Arn Ag 0o

The iid nature of the source samples, i.e. the temporal independence of ss(k), i = 1,...,n,
insures the gpatial independence of s. Then, the CPNL mixtures can be viewed as a particular PNL
mixtures. For FIR mixing matrix A(z), {9) corresponds to a finite dimension PNL mixture and the
separability holds. For more general filter (IIR) matrix, (9) is an infinite dimension PNL mixture,
and the separability can be conjectured.

Algorithms for separating sources in CPNL mixtures are based on random processes {instead of
random variables)independence, which leads to very tricky criteria. Practically, one can use simplified
criterion like J = 37, |, I{yi{r}y;(n — k)), which demands high computation cost, but can still be
simplified.

2.4 Wiener systems
With a suitable parameterization, it can be easily shown that the problem of blind inversion of

Wiener systems (Fig. 2) is equivalent to the source separation problem in PNL mixtures [23]. Its
output writes as

e(t) = £ hlk)s(t — k) (11)
k

where #(t) is the independent and identically distributed (iid) input, e(#) is the observation, h{k)
denotes the entries of the unknown filter H, assumed invertible, and f is the unknown nonlinear
mapping, assumed invertible and memoryless.
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3 Time correlated sources in nonlinear mixtures

In this section we show that prior information on the sources can simplify the indeterminacies.

Specifically, we exploit the temporal correlation of the sources, Each source s;(t), i = 1,...,n is
assumed to be temporally correlated, and is modeled by a g-order Markov model, i.e. :
Po(8clthlsilt — 1}, 8:(1)) = pe(slt)8s(t — 1).- -~ 84t — q)) (12)

where p,, denotes the pdf of the random variable s;.

Since output independence leads to source separation, a possible approach for separating source
is to consider a criterion measuring the independence of the output y. Following {16, 7], one can use
the conditional mutual information of y, denoted by f :

_ e it pylyly(t - 1), ,¥{t —q))
1= [t s - on P LEREE Iy
which is always nonnegative, and zero if and only if the variables wy{t) = wi()|p:{t~ 1}, - 1t —4q)
are statistically independent for i = 1,-++ |n, i.e. the signals y;(t), i = 1, - ,n are independent
Markovian process.
Considering the separation structure (Fig. 1), where y(#) = Bz(1) and 2;{t) = gi(f;, z:(t)),* the
outputs can be estimated by minimizing:

i (85, 2:(8)) ”

11,6 = - 3  [log| G| - og | dt(B)] — 3 o (Ot~ 1. e~ o)
i=l *

=1
(14)
In practice, under the ergodicity conditions, the mathematical expectation (14) can be estimated
by a time averaging, denoted .f(B,Q), which requires the estimation of the conditional densities of
the estimated sources. Asymptotically, extending the results for linear mixtures of Markovian sources
[7}, the equivalence of the mutual information minimization method with the Maximum Likelihood
method still halds for PNL mixtures of Markovian sources. As for linear mixtures, this method based
on Markov model is very efficient for post-nonlinear mixture. For an computation cost equal ta 39,
where ¢ is the order of the Markov model, the performance {in term of SNR) is increased and it
becomes possible to separate Gaussian sources [11].

4 Compensation of non-invertible nonlinearities

For PNL mixing system with non-bijective functions, the previous algorithms cannot inverse the
mixtures, because of the indeterminacy of the inverse functions. For exampie, when the unknown
non-linear functions are f;(.} = (.}?, the inversc is as :!:m, In this case, assuming the inverse is
known, we have to solve the sign indeterminacy. We investigated if this is possible using the time
carrelation of the signals.

Assuming the non-linear inverse function is known and equal to m, it remains to estimate
its sign ¢ and the linear part of the separating structure. Thus, at each time n, the output sample
zi(n + 1) is predicted by linear prediction (LP) with the N provious samples:

N-1
#n+1) =) ezin-k), (15)
k=0

2
and we select the sign € which minimizes the square error (2,- {4+ 1) —ey/eiln + 1)) ,where e =
+1or e = —1. In fact, if |e;| is large, the prediction is easy. On the contrary, the sign determination

* gi(8;, z;(¢)) is a parametric model of g;(.), where 8; can represent a set of parameters
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Fig. 3. Minimum (dashed circles), maximum (dashed diamonds) and average (plain) performance aver 10
experiments, versns a {left) and versus the number of samples, for e = 0.5 {right).

is difficult when |e;| is close to zero. For avoiding noisy estimation of the sign, it is necessary to
chose the LPC order ¥V greater than 2 or 3. Practically, since sign changes occur when |e;| is close
to zero, for decreasing the computation cost, we can estimate the sign only for je| < 8.

The linear part (the inatrix B) is estimated according to estimation equation (6).

4.1 Experimental results ]

In the first experiment, we consider two random colored sources mixed with a lincar matrix

A= (;‘;) (16)

with a € [0.2,0.8]. The non-linear mappings are f;(.) = (.)2. The sources are generated by filtering
a Gaussian noise (500 samples) with the AR filter 1/AR{z), where AR{z) = [1 — 4.6z +8527° —
8.0:=%+3.8271-0.75277). Figure 3 plots the minimum, the maximum and the average performance

over 10 experiments, measured as the residual error in dB (E; = Eﬁ;ﬂ'f—‘%q[dB]), versus o. We see
that the performance does not depends on , i.e. on the mixture hardness.

In the second experiment, we studied how the performance varies with the sample number.
In figure 3, using the same mixing system as in the previous experiment, with a = 0.5, we plot
the maximum, minimum and average values of SNR, versus the sample number of samples. Fach
experiment is stilt repeated 10 times. Due to the strong correlation between successive samples, it
is necessary to use a large number of samples for achieving a good estimation of the linear part as
well as a good decision on the sign of the non-linear part.

Figure 4 is depicted one typical exampte of recovered source (piain line) and the true source
(dashed line). We can observe that sometimes the true sign is lost (due to a wrong estimation) but
it mainly cccurs for |¢;| close to zere, and the true sign is quickly recovered.

Although this work is promising, the next step, which consists in blindly estimating the (un-
known) non-linear mapping +g; and B, is much more tricky. However, this simple example shows
how weak priors can be used for solving ill-posed problems,

5 Concluding remarks
In this paper, we have considered ICA and BSS problems for nonlinear mixture models. It appears

clearly BSS and ICA are difficult and ill-pesed problems, and regularization is necessary for actually
achieving ICA solutions which coincide to BSS.
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Fig. 4. Recovered source (plain} and the true source (dashed) for cne experiment

In this purpose, two main ways can be used. First, solving the nonlinear BSS problem appro-
priately using oply the independence assumption is possible only if mixtures as well as separation
structure are structurally constrained: for example post-nonlinear mixtures. Second, prior informa-
tion on sources, for example temporally correlated sources, can simplify the algorithms or reduce
the indeterminacies in the solutions.

A lot of work remains to be done in studying the nonlinear ICA and BSS problems. Especially,
the solution of more general non-linear problems, adding a few priors: temporal correlation, more
observations than sources [9,12]. Finally, up to now, the research has addressed mainly theoreticat
problems. The results will become more widely interesting only if they can be validaied on realistic
problems using real-world data [4].
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