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Abstrnct. Although sources in general nonlinear mixturm arc not separable iising only sta- 
tistical independence, a special and realistic case of nonlinear mixtnres, the post nonlinear 
(PNL) mixture is separable choosing a suited separating system. Then, a natural approach is 
based on the estimation of tho separating Bystem parameters by minimizing an indcpendence 
criterion, like estimated mwce mutual information. This class of methods requires higher 
(than 2) order statistics, and cannot separate Gaarsian sources. However, use of [weak) prior, 
like source temporal correlation or nonstationarity, leads to other source separation Jgw 
rithms, which are able to separate Gaussian sourra, and c a n  even, for a few of them, works 
with second-order statistics. Recently, modeling time correlated s011rces by Markov models, 
we propose vcry efficient algorithms hmed on minimization of the conditional mutual informa- 
tion. Currently, using the  prior of temporally correlated sources, we investigate the fesihility 
of inverting PNL mixtures with non-bijectiw non-liacarities, like quadratic functions. In this 
paper, we review the main ICA and BSS results for riunlinear mixtures, present PNL models 
and algorithms, and finish with advanced resutts using temporally correlated s n u ~ s m  

1 The nonlinear ICA and BSS problems 

1.1 Model and problem 

Consider N samples of t h e  m-diinension ohserved random vector x, modeled by 

x = .F(s) + n (1) 

where F is a n  unknown mixing mapping assumed invertible, s is an unknown n-dimensional source 
vector containing the source signals 8 1 , s ~ ~ .  . . ~ s,,, which arc arsumed tu be statistically independent, 
and n is a n  additive noise, independent of the sources. 

Such a model is usual in multidimenuionat signsl processing, where cach sensor receives an 
unknown superimposition of unknown soiirce signals a t  time instants t = 1,. . . , N. Then, the goal 
is to recover the rt unknown actual source signals q ( t )  which have given rise to the obsrrved 
mixtures. This i s  referrod to as the blind soiirce Separation (BSS) problem, blind since no  OF very 
little prior information about the sourccs is required. Since the only assirmpt.ion is the independence 
of s o u r m ,  the basic idea in blind source separation consists in estimating a mapping G, only from the 
observed data x, such that y = B(x) are statistically inticpendent. Thc method, based on s t a h t i c a l  
independence, c o n s t i t u h  a gericric approach called independcnt component analysis (ICA). 

In the following, we assume that  there are m many mixturps as sources (m = n) and that 
noise is zero. in  that  case (a8 mil as if m > n), it  is clear that estimating the inverw mapping G 
directly provides the sourcm On the cuntrary, if m C: n, identification of 4 and source estimation 
are unrelated tasks, and extra priors are required for separating the sources. 



1.2 Nonl incar  m i x t u r e s  

The general nonlinear ICA problem then consists in estimating a mapping 4 : 
yields components 

--t (H)" that 

Y = G(x) (2) 

which are statistically independent, only using the observations x. 
For general nonlinear mappingu, E o  F can lead to indepentlent s igna ls  y which are still mixtures 

of the independent wurces x. In other words, ICA and BSS are not. equivdent: one can easily design 
a nonlinear mapping which niixes the sources and provides statistically independent variables yi 

vi = hi(s) # h(so(L))  (3) 

where a(i) is a permutation over { 1 , 2 , .  . , ,ti} 
Moreover, if the separation would Iic achieved, each estimated output ya would only depend on 

a unique source ye = /A,(S,(P). Then, strong distortions coutd stilt occur, due to the mapping h,(.). 
One reason for this is that if U and er are two independent random variables, any of their functions 
I(.) and g(v) (where f and g are invertible functions) are independent too. 

In the nonlinear BSS probtem, one then expect to find signals 1, = hi(so<,l), i = 1 , .  . . n. Of 
course, it would be nice to restrict h, to identity functioIi: then, sources would be recovered up to 
weaker indeterminacies, e.g. scale and permutation indeterminacies as in linear mixtures. But is it 
possible? In other words, can priors on the sources and/or the mixing mapping be sufficient for this? 
Generally, rising IC.4 for solving the nonliriear BSS problem requires additional prior informations 
or suitable regularizing constraints. 

1.3 Outline 

This paper is organized as follows. After having presented the nonlinear ICA and BSS problems 
in strtion 1, we consider two ways for regularizing the problem of source weparation in nonlinear 
mixtures. The first way, based on structural constraints, is explained in Section 2. The second way, 
based on prior information on the sources, is presented in Section 3. Finally, new ideas for inverting 
nowbijective fiirictions are investigated in Seclion 4. 

2 Structural constraints 

2.1 Linear  mod& 

In the case of regular linear inodcls, the mapping 7 is linear and can be represented by x = As 
where A is a square invertible matrix. In this c a e  it suffices to constrain the  separating model 
G to lie in the subspace of invertible square tnatrices, and one has to estimate a matrix B such 
that y = B x  = Hs has independent components. First theoretical results on sepwability of linear 
mixtures have been proposed by Comon in 1994 [SI. 

2.2 PNL mixtures 

PNL mixing  and separa t ing  models In the post-nonlinear (PNL) model, the nonlinear obser- 
vations have the following specific forin (Figure 1): 

One can see that the PNL model consists of a linear mixture followed by a component-wise nonlin- 
earity .fi acting on emh output independently from the others. The nonlinear functions (distortions) 
f i  are assumed tu be invertible. 
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- Mixing System - Separating System -+ 

Fig. 1. The mixing-separating system for PNL mixturps 

Besidm its theomtical interest, this modcl betonging to the L-ZMNL3 fainily suits perfectly for 
a lot of real-world applications. For instancc, such mod& appear in sensors array processing [14], 
satellite and microwave communications [17], and in many biological systems [lo]. 

The simplest choice for t.he separating system F is the mirror structure of the mixing system F 
(see Figure I). In [22], it has been shown t.hat these mixtures are separable for distributions having 
at nioet one Gaussian source, with the same indet.erminacies as linear mixtures. 

PNL algorithms In [22], the mntual information 

between the components yl,. . . ,yn of the output vector is  used as the independence criterion in 
bot.h linear and non-linear stages. For the linear part, minimization of the miitual information leads 
to the same estimation equations as for linear mixtures [8,5] 

where components $, of the  vector are score functions of the coniponrnts y, of the vector y. 

Here p,(u) is the pdf of 11, and pi(.) its derivative. 
For the nonlinear stage, one can derive from the estimating equations the gradient rule [22] 

Here zc is the kth component of the observation vector, b,k is the eletncnt iC of tlir scparaling matrix 
B, and g; is the derivativp of the k-tli nonlinear function gr. The exact roniputation algorithm 
depends on the specific parametric form of the nonlinear mapping g ,+{Ok,zk) .  In [22], a inultilayer 
perceptron network is u s 4  for modeling the functions gC(Bb,q), k = 1,. . . , n. 

Contrary to BSS of linear mixtures, separation performance for nonlinear mixtures is strongly 
related to the estimation accuracy of the score functions (7) [22]. The score functions (7) must be 
estimated adaptively from the output vector y. Several alternative ways to do this are considered 
in [22]. The first approach is to estimate the pdf, and then compute using differentiation the score 
function. Pdf estimation based on the Cram-Charlier expansion [6,8] fails except for mild post- 
nonlinear distortions. For hard nonlinearities, a pdf estimation based on kernel methods is preferablc. 
The second method estimates the score funct,ions directly, and provides very good results for hard 

L stands for Linear and ZMNL stands for Zerc-Memory NonLinearity: it is a separable model with a 
linear stage fallowed by a nonlinear (static) distortion. 
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Fig. 2. A Wiener system consists of a filter follmed by a distortion (left). For inverting the Wiener system, 
une uses a HaIiinierstein system (right), which consists of a distortion fallowed by a linear filter. 

nonlinearities, toe. A well performing batch type method for estimating the score functions has been 
introduced in  a later paper [all. Several other authors have studied methods for blind separation of 
post-nonlinear mixtures starting from different viewpoints : other patameterizations of non-linear 
mappings [13,1,15,14, tcinporal decorrelatian of S O I I I C ~  [24], geometrical approaches [la, 31, ,md 
wnie tricks to improve tho dgoritms 1201. 

2.3 CPNL m i x t u r e s  

Separability of PNL mixtures can be generalized to convolutive PNL (CPNL) mixtures, in which the 
instantancuiirs mixture (~nat r ix  A) is replaced by linear filters (matrix of filters A(,?)), where each 
sourre is independent and identically distributed (iid) [21. In fact, denoting A(z) = Ck A ~ z - ~ ,  and 
definii igss (..., s T ( k - l ) , s T ( k ) , s T ( k + l )  , . . .  )Tandck ( . . . ,  e T ( k -  l),eT(k),eT(k+l),...)T, 
we have: 

e = f (As) 19) 

where f acts co~npunentwiue, and: 

The iid nature of the  source sattipleu, i .e .  the temporal independence of s , ( k ) ,  i = 1,. . . , n ,  
insures the spatial independence of s. Then, the CPNL mixture  can be viewed ;t9 a particular PNL 
mixtures. For FIR niixirig matrix A(r) ,  (9) correspoitds to a finite dimension PNL mixture and the  
separability holds. For more general filter (IIK) matrix, (9) is an infinite dimension PNL mixture, 
and the separability can be conjectured. 

Algorithms for separating sources in CPNL mixtures are based on randoin procesvev (instead of 
random r-driables)indel)~nndence, which leads to very t.ricky criteria. Practically, one can use simplified 
criterion like J = I ( y l ( n ) g j ( n  - k)), wliich demands high computation cost, but can still be 
simplified. 

2.4 Wiener systems 

With a siritahle parameterization, it can be easily shown that the problem of blind inversion of 
Wiener systcms (Fig. 2) is equivalent t o  the source separation problem in PNL mixtures [23]. Its 
output writL% as 

where s ( t )  is the independent and identically distributed (iid) input, e ( t )  is the observation, hjk) 
denotes the entries of the iinknown filter H ,  assumed invertible, and f is the unknown nonlinear 
mapping, assumed invertible and nietnotyless. 
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In this section we show that prior information on the sources can simplify the indeterminacics. 
Specifically, we exploit the temporal correlation of the sources. Each source si(t),  i = 1 , .  . . ,n is 
assumed to be temporally correlated, and is modeled by a q-order Markov model, i.e. : 

Time correlated sources in nonlinear mixtures 

P r i ( ~ , ( t ) l ~ i ( t -  I ) , . . .  , ~ i ( l ) )  =~s.(a,(t)lst(t- I),... , s i ( t - q ) )  (12) 

where pa, denotes the pdf of the random variable si. 
Since output independence leads to source scparation, a possible approach for separating source 

is to consider a criterion measuring the independence of the out.put y .  Following I16,7l, one can use 
the conditional mutual information of y, denoted by I : 

whichisalwaysnonnegative,andzeroifandonly if thevariableswi(t) = gi (%)lg i{ f - l ) , . . .  ,y i ( t -q)  
are statistically independent for i = 1,. 1 I sl, i.e. the signals y i ( t ) ,  i = 1 , .  . . , n are independent 
Markovian process. 

Considwing the separation structure (Fig. l), where y(t) = Bz(t) and z , ( t )  = gi(8; ,~, ( t ) ) ,~  the 
outputs can be estimated by minimizing: 

(14) 
In practice, under the ergodicity conditions, t.he mathematical expectation (14) can be estimated 

by a time averaging, denoted .?(B,@), which rrquires the estimation of the coitditional densities of 
the estimated murces. Asympt.otically, cxtmding the results for linear niixturcs rif Markovian sourcps 
[7], the equivalence of the mutual information minimization method with the Maximum Likelihood 
method still holds for PNL mixtures of Markovian sources. As for linear mixtures, this method based 
on Markov model is very efficient for post-nonlinear mixture. For an computation cost equal to Y ,  
where g is the order of the Markov niodel, the performance (in term of SNR) is increased and it 
becomes possible t.o separate Gaussiari wurces [ll]. 

4 Compensation of non-invertible nonlinearitiss 

For PNL mixing system with non-bijective functions, the previous algorithms cannot inverse the 
mixtures, because of the indeterminacy of the inverse functions. For exaimpie, when the unknown 
non-linear functions are f i ( . )  = (.)', the inversc is as +m. In this case, assuming the inverse is 
known, we have to solve the sign indeterminacy. We investigated if this is possible using the time 
corrclation of the signals. 

Assuming the non-linear inverse function i s  known and equal t o  fl, it remains to estimate 
its sign e and the linear part of the separating structure. Thun, a t  each t.ime 31,  thc output sample 
z,(n + 1) is predicted by linear predict.ion (LP) with the N prtwinns samples: 

N-1 

%(la + 1) = 1 cjzi(n - k), 
k=O 

and we select the sign t which minimizes thc square error ( i i ( s  + 1) - t d m ) ' ,  where t = 
+1 or e = -1. In fact, if lei1 is large, the prediction is easy. On the contrary, the sign determination 

' g i ( & , x * ( t ) )  is a parametric model of si(.), where e, can represent a set of parameters 
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Fig. 3. Minimum (drshcd circles), maximum (dashed diamonds) and average (plain) performance over 10 
experiments, versus a (left) and versus the number of samples, for a = 0.5 (right). 

is difficult when le,l is close t o  zero. For avoiding noisy estimation of the  sign, it is necessary to 
chose the LYC order N greater than 2 or 3. Practically, since sign changes occur when le,l is close 
to zero, for decreasing the computation cost, we can estimate the sign only for (et1 < 8. 

The linear part (the inatrix 8) is estimated according to estiniation equation (6). 

4.1 E x p e r i m e n t a l  results 

In the first experiment, we corisidcr two raidom colored sourcm mixed with a linear matrix 

A =  (2) 
with a E [0.2,0.8]. The non-linear mappings are f,(.) = (.) '~ The sources are generated by filtering 
a Gaussian noise (500 samples) with the AK filter l/AR(z), where AR(z )  = [l - 4.6~- '  +8.5~-~ - 

8 . 0 ~ - ~ + 3 . 8 2 - ~  -0.752-"]. E'igrrrc 3 plots the minimutn, the maximum and the average performance 
over 10 experiments, measured as the residual error in dB (E, = &[&?I), versus a. We see 
that the perfort~iarice does not depends on a,  i .e .  on the mixture hardness. 

It1 the second experiment, we studied how the performance varies with the sample number. 
In figurc 3, using the  same mixing system ay in the previous experiment, with a = 0.5, we plot 
the maximnm, minimum and average values of SNR, versus the sample number of samples. Each 
experiment is stilt repeated 10 times. Due t o  the strong correlation between successive samples, it 
is necessary to use a large nunilw of sampltu: for achieving a good estimation of the  linear part as 
well as a good decision on the sign of the non-linear  part^ 

Figure 4 is depicted one typical example of recovered source (plain line) and the  true source 
(dashed line). We can observe that sometimes the truc sign is lost (due to a wrong estimation) but 
it mainly occurs for lei1 close to zero, and the true sign is quickly recovered. 

Although this work is promising, the next step, which consists in blindly estimating the (un- 
known) non-linear mapping *gi and B, is much more tricky. However, this simple example shows 
how weak priors can be used for solving i l l - p o d  problems. 

5 Concluding remarks 

In this paper, we h a w  conside~ed ICA and BSS problems for nonlinear mixture models. It appears 
clearly BSS and ICA arc difficult arid ill-posed problems, and regularization is necessary for actually 
achieving ICA solutions which coincide to BSS. 
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-R A ,, & & .m A i o  4 m  d, I 
Fig.4. Recovered Paurce (plain) and the true source (dmhed) for one experiruent 

In this purpose, two main ways can be used. First., solving the nonlinear BSS problem appro- 
priately using only the independence assumption is lrossible only if mixtures as well as separation 
structure are structurally constrained: for example post-nonlinear mixtures. Second, prior informa- 
tion on sources, for example temporally correlated sourcez, can simplify the algorithms or reduce 
the indeterminacies in thc solutions. 

A lot of work remains to be dotie in studying the nonlinear ICA and USS protrlenis. Especially, 
the solution of more general n o n - h e a r  problems, adding a few priors: temporal correlation, more 
obsexvations than sources [ O ,  121. Finally, up to now, the research has addressed mainly theoretic& 
problems. The results will become more widely interesting only if they can be validated on realistic 
problems using real-world data [4]. 
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