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Abstract

We consider 2n masses located at the vertices of two nested regular polyhedra
with the same number of vertices. Assuming that the masses in each polyhedron
are equal, we prove that for each ratio of the masses of the inner and the outer
polyhedron there exists a unique ratio of the length of the edges of the inner and
the outer polyhedron such that the configuration is central.
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1 Introduction

We consider the N–body problem in the ℓ–dimensional space with ℓ = 2, 3,

mi q̈i = −
N
∑

j=1, j 6=i

Gmimj
qi − qj

|qi − qj|3
, i = 1, . . . , N ,

where qi ∈ R
ℓ is the position vector of the punctual mass mi in an inertial

coordinate system and G is the gravitational constant which can be taken
equal to one by choosing conveniently the unit of time. We fix the center of
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mass
∑N

i=1mi qi/
∑N

i=1mi of the system at the origin of RℓN . The configuration
space of the N–body problem in R

ℓ is

E = {(q1, . . . ,qN) ∈ R
ℓN :

N
∑

i=1

mi qi = 0, qi 6= qj , for i 6= j} .

Given m1, . . . , mN , a configuration (q1, . . . ,qN) ∈ E is central if there exists
a positive constant λ such that

q̈i = −λqi , i = 1, . . . , N . (1)

That is if the acceleration q̈i of each point mass mi is proportional to its
position qi relative to the center of mass of the system and is directed towards
the center of mass.

The central configurations of the N–body problem are important because they
allow to compute all the homographic solutions; every motion starting and
ending in a total collision is asymptotic to a central configuration, and every
parabolic motion of the N bodies (i.e. the N bodies tend to infinity as the
time tends to infinity with zero radial velocity) is asymptotic to a central con-
figuration (see [9,2]); there is a relation between central configurations and the
bifurcations of the hypersurfaces of constant energy and angular momentum
(see [10]);...

Two central configurations in R
ℓ are in the same class if there exists a rotation

and a homothecy of Rℓ which transform one into the other.

The first known central configurations are the three classes of collinear central
configurations for the 3–body problem found in 1767 by Euler [3]. In 1772
Lagrange [6] prove that when N = 3, for each values of the masses m1, m2

and m3, there are two classes of central configurations with the masses located
at the vertices of an equilateral triangle. Those five classes are all the classes of
central configurations of the 3–body problem. Only partial results on central
configurations are known for N > 3.

A central configuration of Rℓ is called planar if the configuration of the N
bodies is contained in a plane, and it is called spatial if does not exist a plane
containing the configuration of the N bodies.

The simplest known planar central configuration of the N–body problem for
N > 2 is obtained by taking N equal masses at the vertices of a regular N–
gon. We cannot find in the literature who was the first in knowing such planar
central configurations. If we take N equal masses at the vertices of a regular
polyhedron with N vertices, then we obtain a spatial central configuration of
the N–body problem (see [1]).
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A homographic solution is a solution of the N–body problem such that at
every time the configuration of the N bodies is central. If the central con-
figuration is planar, then there exist three types of homographic solutions,
the homothetic, the relative equilibrium and the composition of both. Let
(q1, . . .qN ) ∈ R

2N be a planar central configuration. A homothetic solution is
of the form (̺(t)q1, . . . , ̺(t)qN), and a relative equilibrium solution is of the

form (A(t)q1, . . . , A(t)qN) where A(t) =







cosωt sinωt

− sinωt cosωt





. For the spa-

tial central configurations the unique possible homographic solutions are the
homothetic ones. For more details on homographic motions see Witner [11].

It is also known the existence of planar central configurations for the 2n–body
problem where the masses are at the vertices of two nested regular n–gons with
a common center. In such configurations all the masses on the same n–gon
are equal but masses on different n–gons could be different. It seems that the
first in studying these nested planar central configurations was Longley [8] in
1907, later on in 1927 and 1929 Bilimovithc (see [4]) and in 1967 Klemplerer
[5] also studied them. More recently they have been also studied in [12,13].

We say that two regular polyhedra are nested if they have the same number
of vertices n, the same center and the positions of the vertices of the inner
polyhedron ri and the ones of the outer polyhedron Ri satisfy the relation
Ri = ρ ri for some scale factor ρ > 1 and for all i = 1, . . . , n.

In this paper we shall prove that for convenient masses at the vertices of two
nested regular polyhedra (see Fig. 1) we get spatial central configurations for
the 2n–body problem in R

3. As in the planar case all the masses located at
the vertices of the same polyhedron must be equal, but masses on different
polyhedra could be different. There are five regular polyhedra: the tetrahedron,
the octahedron, the cube, the icosahedron and the dodecahedron with 4, 6,
8, 12 and 20 vertices, respectively. Some preliminary results in this direction
restricted to the tetrahedron and octahedron can be found in [14,7]. Here we
give an unified analytic proof for all five regular polyhedra.

The nested regular tetrahedra (octahedra, cube, icosahedra and dodecahedra)
central configurations are characterized in Section 2 (3, 4, 5 and 6, respec-
tively). The main results of these sections are summarized in the following
theorem.

Theorem 1 We consider 2n masses at the vertices of two nested regular poly-
hedra of n vertices, where n can be either 4, 6, 8, 12 or 20. Assume that the
masses of the inner polyhedron are equal to m1 and the masses of the outer
polyhedron are equal to m2. Then given two arbitrary positive values of m1 and
m2 there exists a unique value of the scale factor ρ of the nested polyhedra for
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(a) Nested regular tetrahedra (b) Nested regular octahedra

(c) Nested regular cube (d) Nested regular icosahedra

(e) Nested regular dodecahedra

Fig. 1. Nested regular polyhedra
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which this configuration is central.

Assume that qi = (xi, yi, zi) ∈ R
3, then the equations of the spatial central

configurations given by (1) can be written as

exi =
N
∑

j=1, j 6=i

mj (xi − xj)

((xi − xj)2 + (yi − yj)2 + (zi − zj)2)3/2
− λ xi = 0 ,

eyi =
N
∑

j=1, j 6=i

mj (yi − yj)

((xi − xj)2 + (yi − yj)2 + (zi − zj)2)3/2
− λ yi = 0 , (2)

ezi =
N
∑

j=1, j 6=i

mj (zi − zj)

((xi − xj)2 + (yi − yj)2 + (zi − zj)2)3/2
− λ zi = 0 ,

for i = 1, . . . , N .

2 Nested tetrahedra

In this section we study the spatial central configurations of the 8–body prob-
lem when the masses are located at the vertices of two nested tetrahedra.
Taking conveniently the unit of masses we can assume that all the masses of
the inner tetrahedron are equal to one. We also choose the unit of length in
such a way that the edges of the inner tetrahedron have length 2. Recall that
the set of central configurations is invariant under homothecies.

Proposition 2 Consider four equal masses m1 = m2 = m3 = m4 = 1 lo-
cated at the vertices of a regular tetrahedron with edge length 2 having posi-
tions (x1, y1, z1) = (−1,−1/

√
3,−1/

√
6), (x2, y2, z2) = (1,−1/

√
3,−1/

√
6),

(x3, y3, z3) = (0, 2/
√
3,−1/

√
6), and (x4, y4, z4) = (0, 0,

√

3/2). Consider four
additional equal masses m5 = m6 = m7 = m8 = m at the vertices of a second
nested regular tetrahedron having positions (xi+4, yi+4, zi+4) = ρ (xi, yi, zi) for
i = 1, . . . , 4 and ρ > 1 (see Fig. 1(a)). Then the following statements hold.

(a) Such configuration is central for the spatial 8–body problem when

m = f8(ρ) =

(2/3)3/2

(ρ− 1)2
− ρ

2
+

2
√
2 (3ρ+ 1)

(3ρ2 + 2ρ+ 3)3/2

−1/2

ρ2
− (2/3)3/2ρ

(ρ− 1)2
+

2
√
2 ρ (ρ+ 3)

(3ρ2 + 2ρ+ 3)3/2

,

and ρ > α = 1.8899915758445007 . . ., where α is the unique real solution of
f8(ρ) = 0 for ρ > 1.
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(b) Fixed a value of m > 0 there exists a unique ρ > α for which the nested
regular tetrahedra is a central configuration.

PROOF. It is easy to check that in the statement of Proposition 2 the posi-
tions and the values of the masses have been taken so that the center of mass
of the configuration is located at the origin.

We substitute the positions and the values of the masses into (2). After some
computations we obtain that ex3 = ex4 = ex7 = ex8 = ey4 = ey8 = 0,
ex1 = −ex2, ex5 = −ex6, ey1 = ey2 = −ex2/

√
3, ey3 = 2ex2/

√
3, ey5 = ey6 =

−ex6/
√
3, ey7 = 2ex6/

√
3, ez1 = ez2 = ez3 = −ex2/

√
6, ez4 =

√

3/2 ex2,

ez5 = ez6 = ez7 = −ex6/
√
6 and ez8 =

√

3/2 ex6. Therefore system (2) is
equivalent to system

ex2 =−λ +
1

2
− (2/3)3/2m

(ρ− 1)2
+

2
√
2m (ρ+ 3)

(3ρ2 + 2ρ+ 3)3/2
= 0 ,

(3)

ex6 =−λρ+
m

2ρ2
+

(2/3)3/2

(ρ− 1)2
+

2
√
2 (3ρ+ 1)

(3ρ2 + 2ρ+ 3)3/2
= 0 .

Solving system (3) with respect to the variables λ and m we get λ = a(ρ)/f(ρ)
and m = b(ρ)/f(ρ) where

a(ρ) =− 8/27

(ρ− 1)4
− 1/4

ρ2
+

8(3ρ2 + 10ρ+ 3)

(3ρ2 + 2ρ+ 3)3
− 16/(3

√
3)

(ρ− 1)(3ρ2 + 2ρ+ 3)3/2
,

b(ρ) =
(2/3)3/2

(ρ− 1)2
− ρ

2
+

2
√
2 (3ρ+ 1)

(3ρ2 + 2ρ+ 3)3/2
,

f(ρ) =−1/2

ρ2
− (2/3)3/2ρ

(ρ− 1)2
+

2
√
2 ρ (ρ+ 3)

(3ρ2 + 2ρ+ 3)3/2
.

Since ρ > 1 and equation 3ρ2 + 2ρ + 3 = 0 has no real solutions, a(ρ), b(ρ)
and f(ρ) are well defined for ρ > 1. The function f(ρ) has no real zeros when
ρ > 1. Indeed f(ρ) can we written as

36
√
2(ρ− 1)2ρ3(ρ+ 3)− (3ρ2 + 2ρ+ 3)

3/2
(

4
√
6ρ3 + 9ρ2 − 18ρ+ 9

)

18(ρ− 1)2ρ2 (3ρ2 + 2ρ+ 3)3/2
.

So f(ρ) = 0 if and only if

36
√
2(ρ− 1)2ρ3(ρ+ 3) =

(

3ρ2 + 2ρ+ 3
)3/2 (

4
√
6ρ3 + 9ρ2 − 18ρ+ 9

)

.
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We transform this equation into a polynomial one by squaring both sides of
the equality. Solving numerically the resulting polynomial equation we see
that there are no real solutions of f(ρ) = 0 with ρ > 1, in particular f(ρ) < 0
for ρ > 1. Therefore λ and m are well defined for ρ > 1.

The solution of (3) gives a central configuration of the 8–body problem if and
only if λ > 0 and m > 0. Next we analyze the sign of λ and m for ρ > 1. The
function a(ρ) can be written as

a(ρ) = − a1(ρ) + a2(ρ)

108(ρ− 1)4ρ2 (3ρ2 + 2ρ+ 3)9/2
,

where

a1(ρ) = 192
√
3(ρ− 1)3ρ2

(

3ρ2 + 2ρ+ 3
)3

,

a2(ρ) =
(

3ρ2 + 2ρ+ 3
)3/2 (

729ρ10 − 1458ρ9 − 27ρ8 − 216ρ7 + 24642ρ6−
30956ρ5 + 24642ρ4 − 216ρ3 − 27ρ2 − 1458ρ+ 729

)

.

We solve numerically the polynomial equation (a1(ρ))
2 = (−a2(ρ))

2 and we
see that it has no real solutions. Therefore λ is always different from zero. In
particular it is positive for ρ > 1.

Finally b(ρ) can be written as

36
√
2(ρ− 1)2(3ρ+ 1)− (3ρ2 + 2ρ+ 3)

3/2
(

9ρ3 − 18ρ2 + 9ρ− 4
√
6
)

18(ρ− 1)2 (3ρ2 + 2ρ+ 3)3/2
.

Solving numerically the equation

(

36
√
2(ρ− 1)2(3ρ+ 1)

)2

=
(

3ρ2 + 2ρ+ 3
)3 (

9ρ3 − 18ρ2 + 9ρ− 4
√
6
)2

,

we see that it has only two real solutions with ρ > 1, these solutions are
ρ = 1.6903479049860676 . . . and ρ = α = 1.8899915758445007 . . ., but ρ = α
is the unique one that satisfies equation b(ρ) = 0. Furthermore, b(ρ) > 0 for
1 < ρ < α and b(ρ) < 0 for ρ > α, so m < 0 for 1 < ρ < α, and m > 0 for
ρ > α. This proves statement (a).

In order to prove statement (b) it is sufficient to prove that m is an increasing
function of ρ for ρ > α. The derivative of m with respect to ρ is

dm

dρ
=

1

f(ρ)2

(

db

dρ
(ρ) f(ρ)− b(ρ)

df

dρ
(ρ)

)

, (4)

where
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db

dρ
(ρ) =−12

√
2 (3ρ2 + 2ρ− 1)

(3ρ2 + 2ρ+ 3)5/2
− 2(2/3)3/2

(ρ− 1)3
− 1

2
,

df

dρ
(ρ) =

(2/3)3/2(ρ+ 1)

(ρ− 1)3
− 2

√
2 (3ρ3 + 17ρ2 − 3ρ− 9)

(3ρ2 + 2ρ+ 3)5/2
+

1

ρ3
.

We have seen that f(ρ) < 0 and b(ρ) < 0 for ρ > α. Since 3ρ2+2ρ− 1 > 0 for
ρ > 1, db/dρ is negative for ρ > 1. Finally, we solve equation df/dρ(ρ) = 0 by
proceeding in a similar way than for the resolution of equation f(ρ) = 0 and we
see that this equation has no real zeros for ρ > 1. In particular, df/dρ(ρ) > 0
for ρ > 1. Therefore dm/dρ > 0 for ρ > α. This proves statement (b).

3 Nested octahedra

In this section we study the spatial central configurations of the 12–body
problem when the masses are located at the vertices of two nested octahedra.
Taking conveniently the unit of masses we can assume that all the masses of
the inner octahedron are equal to one. We also choose the unit of length in
such a way that the edges of the inner octahedron have length 2.

Proposition 3 Consider six equal masses mi = 1 for i = 1, . . . , 6 at the ver-
tices of a regular octahedron with edge length 2 having positions (x1, y1, z1) =
(1, 0, 0), (x2, y2, z2) = (−1, 0, 0), (x3, y3, z3) = (0, 1, 0), (x4, y4, z4) = (0,−1, 0),
(x5, y5, z5) = (0, 0, 1), (x6, y6, z6) = (0, 0,−1). Consider six additional equal
masses mi = m for i = 7, . . . , 12 at the vertices of a second nested regular oc-
tahedron having positions (xi+6, yi+6, zi+6) = ρ (xi, yi, zi) for i = 1, . . . , 6 and
ρ > 1 (see Fig. 1(b)). Then the following statements hold.

(a) Such configuration is central for the spatial 12–body problem when

m = f12(ρ) =

4ρ

(ρ2 + 1)3/2
−
(

1 + 4
√
2
)

ρ

4
+

2 (ρ2 + 1)

(ρ2 − 1)2

− 4ρ2

(ρ2 − 1)2
+

4ρ

(ρ2 + 1)3/2
− 1 + 4

√
2

4ρ2

,

and ρ > α = 1.7298565115043054 . . ., where α is the unique real solution of
f12(ρ) = 0 for ρ > 1.

(b) Fixed a value of m > 0 there exists a unique ρ > α for which the nested
regular octahedra is a central configuration.

PROOF. It is easy to check that the center of mass of the configuration
defined in Proposition 3 is at the origin. We substitute the positions and the
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values of the masses into (2). After some computations we get that ex3 =
ex4 = ex5 = ex6 = ex9 = ex10 = ex11 = ex12 = ey1 = ey2 = ey5 = ey6 =
ey7 = ey8 = ey11 = ey12 = ez1 = ez2 = ez3 = ez4 = ez7 = ez8 = ez9 =
ez10 = 0, ey3 = ez5 = ex1, ex2 = ey4 = ez6 = −ex1, ey9 = ez11 = ex7, and
ex8 = ey10 = ez12 = −ex7. Therefore system (2) is equivalent to system

ex1 =
4m

(ρ2 + 1)3/2
− 4ρm

(ρ2 − 1)2
− λ+

√
2 +

1

4
= 0 ,

(5)

ex7 =

(

1/4 +
√
2
)

m

ρ2
− λρ+

2 (ρ2 + 1)

(ρ2 − 1)2
+

4ρ

(ρ2 + 1)3/2
= 0 .

Solving system (5) with respect to the variables λ and m we get λ = a(ρ)/f(ρ)
and m = b(ρ)/f(ρ) where

a(ρ) =
16ρ

(ρ2 + 1)3
− 8 (ρ3 + ρ)

(ρ2 − 1)4
− 8

(ρ2 − 1) (ρ2 + 1)3/2
− 33 + 8

√
2

16ρ2
,

b(ρ) =
4ρ

(ρ2 + 1)3/2
−
(

1 + 4
√
2
)

ρ

4
+

2 (ρ2 + 1)

(ρ2 − 1)2
,

f(ρ) =− 4ρ2

(ρ2 − 1)2
+

4ρ

(ρ2 + 1)3/2
− 1 + 4

√
2

4ρ2
.

Since ρ > 1, a(ρ), b(ρ) and f(ρ) are well defined for ρ > 1. The function f(ρ)
can we written as

f(ρ) =
f1(ρ)− f2(ρ)

4(ρ− 1)2ρ2(ρ+ 1)2 (ρ2 + 1)3/2
,

where

f1(ρ)= 16ρ3
(

ρ2 − 1
)2

,

f2(ρ)=
(

ρ2 + 1
)3/2 ((

17 + 4
√
2
)

ρ4 − 2
(

1 + 4
√
2
)

ρ2 + 1 + 4
√
2
)

.

Solving numerically the polynomial equation (f1(ρ))
2 = (f2(ρ))

2 we see that
f(ρ) = 0 has no real solutions when ρ > 1, in particular f(ρ) < 0 for ρ > 1.
Therefore λ and m are well defined for ρ > 1.

We can write

a(ρ) = − a1(ρ) + a2(ρ)

16(ρ− 1)4ρ2(ρ+ 1)4 (ρ2 + 1)9/2
,
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where

a1(ρ) = 128ρ2
(

ρ4 − 1
)3

,

a2(ρ) =
(

ρ2 + 1
)3/2 ((

33 + 8
√
2
)

ρ14 −
(

33 + 8
√
2
)

ρ12 − 128ρ11−
3
(

33 + 8
√
2
)

ρ10 + 1536ρ9 + 3
(

33 + 8
√
2
)

ρ8 − 768ρ7 +

3
(

33 + 8
√
2
)

ρ6 + 1536ρ5 − 3
(

33 + 8
√
2
)

ρ4 − 128ρ3 −
(

33 + 8
√
2
)

ρ2 + 33 + 8
√
2
)

.

Solving numerically the polynomial equation (a1(ρ))
2 = (−a2(ρ))

2 we see that
a(ρ) has no real solutions for ρ > 1. Therefore λ is different from zero for
ρ > 1. In particular it is positive for ρ > 1.

Finally we have

b(ρ) =
b1(ρ)− b2(ρ)

4(ρ− 1)2(ρ+ 1)2 (ρ2 + 1)3/2
.

where

b1(ρ) = 16ρ
(

ρ2 − 1
)2

,

b2(ρ) =
(

ρ2 + 1
)3/2 ((

1 + 4
√
2
)

ρ5 − 2
(

1 + 4
√
2
)

ρ3 − 8ρ2+

4
√
2ρ+ ρ− 8

)

.

We solve numerically equation (b1(ρ))
2 = (b2(ρ))

2 and we see that it has
only two real roots with ρ > 1, they are ρ = 1.5419308914910530 . . . and
ρ = α = 1.7298565115043054 . . ., but ρ = α is the unique one that satisfies
equation b(ρ) = 0. Furthermore, b(ρ) > 0 for 1 < ρ < α and b(ρ) < 0 for
ρ > α, so m < 0 for 1 < ρ < α, and m > 0 for ρ > α. This proves statement
(a).

In order to prove statement (b) we proceed as in Section 2. The derivative
dm/dρ is given by (4) where

db

dρ
(ρ) =−4ρ (ρ2 + 3)

(ρ2 − 1)3
− 8ρ2 − 4

(ρ2 + 1)5/2
−

√
2− 1

4
,

df

dρ
(ρ) =

4− 8ρ2

(ρ2 + 1)5/2
+

8 (ρ3 + ρ)

(ρ2 − 1)3
+

1 + 4
√
2

2ρ3
.

As above f(ρ) < 0 and b(ρ) < 0 for ρ > α. Since 8ρ2 − 4 > 0 for ρ > 1,
db/dρ is negative for ρ > 1. We solve equation df/dρ(ρ) = 0 by proceeding in
a similar way than for the resolution of equation f(ρ) = 0 and we get that it
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has no real solutions for ρ > 1, in particular df/dρ(ρ) > 0 for ρ > 1. Therefore
m is increasing for ρ > α. This proves statement (b).

4 Nested cube

In this section we study the spatial central configurations of the 16–body
problem when the masses are located at the vertices of two nested cubes.
Taking conveniently the unit of masses we can assume that all the masses of
the inner cube are equal to one. We also choose the unit of length in such a
way that the edges of the inner cube have length 2.

Proposition 4 Consider eight equal masses mi = 1 for i = 1, . . . , 8 at the
vertices of a regular cube with edge length 2 having positions (x1, y1, z1) =
(1, 1, 1), (x2, y2, z2)=(1, 1,−1), (x3, y3, z3)=(1,−1, 1), (x4, y4, z4)=(−1, 1, 1),
(x5, y5, z5) = (1,−1,−1), (x6, y6, z6) = (−1, 1,−1), (x7, y7, z7) = (−1,−1, 1),
and (x8, y8, z8) = (−1,−1,−1). Consider eight additional equal masses mi =
m for i = 9, . . . , 16 at the vertices of a second nested regular cube having posi-
tions (xi+8, yi+8, zi+8) = ρ (xi, yi, zi) for i = 1, . . . , 8 and ρ > 1 (see Fig. 1(c)).
Then the following statements hold.

(a) Such configuration is central for the spatial 16–body problem when m =
b(ρ)/f(ρ) where

b(ρ) =− 1

72

(

18 + 9
√
2 + 2

√
3
)

ρ+
2 (ρ2 + 1)

3
√
3 (ρ2 − 1)2

+

3ρ− 1

(3ρ2 − 2ρ+ 3)3/2
+

3ρ+ 1

(3ρ2 + 2ρ+ 3)3/2
,

f(ρ)=−18 + 9
√
2 + 2

√
3

72ρ2
− 4ρ2

3
√
3 (ρ2 − 1)2

−

(ρ− 3)ρ

(3ρ2 − 2ρ+ 3)3/2
+

(ρ+ 3)ρ

(3ρ2 + 2ρ+ 3)3/2
.

and ρ > α = 1.643646762940176 . . . where α is the unique real solution of
b(ρ) = 0 for ρ > 1.

(b) Fixed a value of m > 0 there exists a unique ρ > α for which the nested
regular cube is a central configuration.

PROOF. It is easy to check that the center of mass of the configuration
defined in Proposition 4 is at the origin. We substitute the positions and
the values of the masses into (2). After some computations we obtain that
ex2 = ex3 = ex5 = ey1 = ey2 = ey4 = ey6 = ez1 = ez3 = ez4 = ez7 = ex1,
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ex4 = ex6 = ex7 = ex8 = ey3 = ey5 = ey7 = ey8 = ez2 = ez5 = ez6 =
ez8 = −ex1, ex10 = ex11 = ex13 = ey9 = ey10 = ey12 = ey14 = ez9 = ez11 =
ez12 = ez15 = ex9, and ex12 = ex14 = ex15 = ex16 = ey11 = ey13 = ey15 =
ey16 = ez10 = ez13 = ez14 = ez16 = −ex9. Therefore system (2) is equivalent
to system

ex1 =
1

72

(

18 + 9
√
2 + 2

√
3
)

− λ− 4mρ

3
√
3 (ρ2 − 1)2

−

m(ρ− 3)

(3ρ2 − 2ρ+ 3)3/2
+

m(ρ+ 3)

(3ρ2 + 2ρ+ 3)3/2
= 0 ,

(6)

ex9 =

(

18 + 9
√
2 + 2

√
3
)

m

72ρ2
− λρ+

2 (ρ2 + 1)

3
√
3 (ρ2 − 1)2

+

3ρ− 1

(3ρ2 − 2ρ+ 3)3/2
+

3ρ+ 1

(3ρ2 + 2ρ+ 3)3/2
= 0 .

Solving system (6) with respect to the variables λ and m we get λ = a(ρ)/f(ρ)
and m = b(ρ)/f(ρ) where

a(ρ) =−83 + 54
√
2 + 12

√
3 + 6

√
6

864ρ2
− 8 (ρ3 + ρ)

27 (ρ2 − 1)4
+

3ρ2 + 10ρ+ 3

(3ρ2 + 2ρ+ 3)3
− 3ρ2 − 10ρ+ 3

(3ρ2 − 2ρ+ 3)3
−

2(ρ+ 3)

3
√
3 (ρ2 − 1) (3ρ2 − 2ρ+ 3)3/2

+
2(ρ− 3)

3
√
3 (ρ2 − 1) (3ρ2 + 2ρ+ 3)3/2

+

16ρ

(3ρ2 − 2ρ+ 3)3/2 (3ρ2 + 2ρ+ 3)3/2
.

Since ρ > 1 and equations 3ρ2 + 2ρ+3 = 0 and 3ρ2 − 2ρ+3 = 0 have no real
solutions, a(ρ), b(ρ) and f(ρ) are well defined for ρ > 1. Next we find the real
zeros of f(ρ) when ρ > 1. The function f(ρ) can be written as

f1(ρ)/
(

72(ρ− 1)2ρ2(ρ+ 1)2
(

3ρ2 − 2ρ+ 3
)3/2 (

3ρ2 + 2ρ+ 3
)3/2

)

where f1(ρ) is given by

72
(

ρ2 − 1
)2

ρ3
[

(ρ+ 3)
(

3ρ2 − 2ρ+ 3
)3/2 − (ρ− 3)

(

3ρ2 + 2ρ+ 3
)3/2

]

−
(

3ρ2 − 2ρ+ 3
)3/2 (

3ρ2 + 2ρ+ 3
)3/2

((

18 + 9
√
2 + 34

√
3
)

ρ4 − 2
(

18 + 9
√
2 + 2

√
3
)

ρ2 + 18 + 9
√
2 + 2

√
3
)

.
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Then f(ρ) = 0 if and only f1(ρ) = 0. Notice that equation f1(ρ) = 0 can be
written as

g1(ρ)
√

G1(ρ) + g2(ρ)
√

G2(ρ) = g3(ρ)
√

G1(ρ)G2(ρ) .

Squaring both sides of this equation we get

g1(ρ)
2G1(ρ)+g2(ρ)

2 G2(ρ)−g3(ρ)
2 G1(ρ)G2(ρ) = −2 g1(ρ) g2(ρ)

√

G1(ρ)G2(ρ) .

Squaring again both sides of the last equation we get a polynomial equa-
tion. We solve it numerically and we see that it has a unique real solution
ρ = 4.26968682884071 . . . with ρ > 1 which is not a solution of the initial
equation f1(ρ) = 0. Therefore f(ρ) = 0 has no real solutions with ρ > 1 and
consequently λ and m are well defined for ρ > 1. Moreover f(ρ) < 0 for ρ > 1.

Repeating the same arguments for b(ρ) we see that b(ρ) has a unique real zero
when ρ > 1 which is given by ρ = α = 1.643646762940176 . . .. Furthermore,
b(ρ) > 0 for 1 < ρ < α and b(ρ) < 0 for ρ > α, so m < 0 for 1 < ρ < α, and
m > 0 for ρ > α.

Let a1(ρ) be the numerator of a(ρ). It is easy to check that a1(ρ) = 0 can be
written as

g1(ρ)
√

G1(ρ) + g2(ρ)
√

G2(ρ) = g3(ρ)
√

G1(ρ)G2(ρ) + g4(ρ) .

Squaring both sides of this equation we get

g1(ρ)
2 G1(ρ) + g2(ρ)

2 G2(ρ)− g3(ρ)
2G1(ρ)G2(ρ)− g4(ρ)

2

= −(2 g1(ρ) g2(ρ) + 2 g3(ρ) g4(ρ))
√

G1(ρ)G2(ρ) .

Squaring again both sides of the last equation we get a polynomial equation.
We solve it numerically and we see that it has no real solutions with ρ > 1.
Therefore a(ρ) is different from zero for ρ > 1. This proves statement (a).

Now we prove statement (b). The derivative dm/dρ is given by (4) where

db

dρ
(ρ) =− 4ρ (ρ2 + 3)

3
√
3 (ρ2 − 1)3

− 18ρ2 − 12ρ− 6

(3ρ2 − 2ρ+ 3)5/2
− 6 (3ρ2 + 2ρ− 1)

(3ρ2 + 2ρ+ 3)5/2
−

1

72

(

18 + 9
√
2 + 2

√
3
)

,

df

dρ
(ρ) =

8ρ (ρ2 + 1)

3
√
3 (ρ2 − 1)3

− 3ρ3 + 17ρ2 − 3ρ− 9

(3ρ2 + 2ρ+ 3)5/2
+

3ρ3 − 17ρ2 − 3ρ+ 9

(3ρ2 − 2ρ+ 3)5/2
+

18 + 9
√
2 + 2

√
3

36ρ3
.

13



We have seen that f(ρ) < 0 and b(ρ) < 0 for ρ > α. Since 18ρ2 − 12ρ− 6 > 0
and 3ρ2 + 2ρ− 1 > 0 for ρ > 1, db/dρ is negative for ρ > 1. Finally, we solve
equation df/dρ(ρ) = 0 by proceeding in a similar way than for the resolution of
equation f(ρ) = 0 and we get that it has no real zeros for ρ > 1, in particular
df/dρ(ρ) > 0 for ρ > 1. Therefore dm/dρ > 0 for ρ > α. This proves statement
(b).

5 Nested icosahedra

In this section we study the spatial central configurations of the 24–body
problem when the masses are located at the vertices of two nested icosahedra.
Taking conveniently the unit of masses we can assume that all the masses of
the inner icosahedron are equal to one. We also choose the unit of length in
such a way that the edges of the inner icosahedron have length 2.

Proposition 5 Consider twelve equal masses mi = 1 for i = 1, . . . , 12 lo-
cated at the vertices of a regular icosahedron with edge length 2 having posi-
tions (x1, y1, z1) = (0, 1, φ), (x2, y2, z2) = (0, 1,−φ), (x3, y3, z3) = (0,−1, φ),
(x4, y4, z4) = (0,−1,−φ), (x5, y5, z5) = (1, φ, 0), (x6, y6, z6) = (1,−φ, 0), (x7,
y7, z7) = (−1, φ, 0), (x8, y8, z8) = (−1,−φ, 0), (x9, y9, z9) = (φ, 0, 1), (x10, y10,
z10) = (φ, 0,−1), (x11, y11, z11) = (−φ, 0, 1), and (x12, y12, z12) = (−φ, 0,−1),
where φ = (1 +

√
5)/2 is the golden ratio. Consider twelve additional equal

masses mi = m for i = 12, . . . , 24 at the vertices of a second nested regular
icosahedron having positions (xi+12, yi+12, zi+12) = ρ (xi, yi, zi) for i = 1, . . . , 12
and ρ > 1 (see Fig. 1(d)). Then the following statements hold.

(a) Such configuration is central for the spatial 24–body problem when m =
b(ρ)/f(ρ) where

b(ρ) =
2
√

5− 2
√
5 (ρ2 + 1)

5 (ρ2 − 1)2
−

2
√
2
(√

5− 5ρ
)

(ϕρ2 − 4φ ρ+ ϕ)3/2
+

2
√
2
(

5ρ+
√
5
)

(ϕρ2 + 4φ ρ+ ϕ)3/2
− 1

20

(

5
√
5 +

√

5− 2
√
5
)

ρ ,

f(ρ)=−4
√

5− 2
√
5ρ2

5 (ρ2 − 1)2
−

2
√
2
(√

5ρ− 5
)

ρ

(ϕρ2 − 4φ ρ+ ϕ)3/2
+

2
√
2
(√

5ρ+ 5
)

ρ

(ϕρ2 + 4φ ρ+ ϕ)3/2
− 5

√
5 +

√

5− 2
√
5

20ρ2
,

ϕ = 5 +
√
5 and ρ > α = 1.549351115672993 . . . where α is the unique real

solution of b(ρ) = 0.
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(b) Fixed a value of m > 0 there exists a unique ρ > α for which the nested
regular icosahedra is a central configuration.

PROOF. It is easy to check that the center of mass of the configuration
defined in Proposition 5 is at the origin. We substitute the positions and the
values of the masses into (2). After some computations we get that ex1 = ex2 =
ex3 = ex4 = ex13 = ex14 = ex15 = ex16 = ey9 = ey10 = ey11 = ey12 = ey21 =
ey22 = ey23 = ey24 = ez5 = ez6 = ez7 = ez8 = ez17 = ez18 = ez19 = ez20 = 0,
ex6 = ey1 = ey2 = ez9 = ez11 = ex5, ex7 = ex8 = ey3 = ey4 = ez10 = ez12 =
−ex5, ex9 = ex10 = ey5 = ey7 = ez1 = ez3 = φ ex5, ex11 = ex12 = ey6 = ey8 =
ez2 = ez4 = −φ ex5, ex18 = ey13 = ey14 = ez21 = ez23 = ex17, ex19 = ex20 =
ey15 = ey16 = ez22 = ez24 = −ex17, ex21 = ex22 = ey17 = ey19 = ez13 = ez15 =
φ ex17, and ex23 = ex24 = ey18 = ey20 = ez14 = ez16 = −φ ex17. Therefore
system (2) is equivalent to system

ex5 =−λ−
2
√
2m

(√
5ρ− 5

)

(ϕρ2 − 4φ ρ+ ϕ)3/2
+

2
√
2m

(√
5ρ+ 5

)

(ϕρ2 + 4φ ρ+ ϕ)3/2
−

4
√

5− 2
√
5mρ

5 (ρ2 − 1)2
+

1

20

(

5
√
5 +

√

5− 2
√
5
)

, (7)

ex17 =

(

5
√
5 +

√

5− 2
√
5
)

m

20ρ2
− λρ+

2
√

5− 2
√
5 (ρ2 + 1)

5 (ρ2 − 1)2
−

2
√
2
(√

5− 5ρ
)

(ϕρ2 − 4φ ρ+ ϕ)3/2
+

2
√
2
(

5ρ+
√
5
)

(ϕρ2 + 4φ ρ+ ϕ)3/2
.

Solving system (7) with respect to the variables λ and m we get λ = a(ρ)/f(ρ)
and m = b(ρ)/f(ρ) where a(ρ) is given by

8
(

2
√
5− 5

)

(ρ2 + 1) ρ

25 (ρ2 − 1)4
−

65−
√
5 + 5

√

5
(

5− 2
√
5
)

200ρ2
−

4
√

10− 4
√
5
(√

5ρ+ 5
)

5 (ρ2 − 1) (ϕρ2 − 4φ ρ+ ϕ)3/2
+

4
√

10− 4
√
5
(√

5ρ− 5
)

5 (ρ2 − 1) (ϕρ2 + 4φ ρ+ ϕ)3/2
−

40
(√

5ρ2 − 6ρ+
√
5
)

(ϕρ2 − 4φ ρ+ ϕ)3
+

40
(√

5ρ2 + 6ρ+
√
5
)

(ϕρ2 + 4φ ρ+ ϕ)3
+

320ρ

(ϕρ2 − 4φ ρ+ ϕ)3/2 (ϕρ2 + 4φ ρ+ ϕ)3/2
.
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Since ρ > 1 and equations ϕρ2+4φ ρ+ϕ = 0, and ϕρ2−4φ ρ+ϕ = 0 = 0 have
no real solutions, a(ρ), b(ρ) and f(ρ) are well defined for ρ > 1. We proceed
as in Section 4 and after doing a lot of tedious computations we prove that
f(ρ) < 0 for ρ > 1, so λ and m are well defined for ρ > 1. We also prove
that a(ρ) has no real zeros when ρ > 1 and that b(ρ) has a unique real zero
when ρ > 1 which is given by ρ = α = 1.549351115672993 . . .. Furthermore,
b(ρ) > 0 for 1 < ρ < α and b(ρ) < 0 for ρ > α, so m < 0 for 1 < ρ < α, and
m > 0 for ρ > α. This proves statement (a).

Now we prove statement (b). The derivative dm/dρ is given by (4) where

db

dρ
(ρ) =−4

√

5− 2
√
5ρ (ρ2 + 3)

5 (ρ2 − 1)3
− 4

√
2 (5ϕρ2 − 20φρ− ϕ)

(ϕρ2 − 4φρ+ ϕ)5/2
−

4
√
2 (5ϕρ2 + 20φρ− ϕ)

(ϕρ2 + 4φρ+ ϕ)5/2
− 1

20

(

5
√
5 +

√

5− 2
√
5
)

,

df

dρ
(ρ) =

8
√

5− 2
√
5ρ (ρ2 + 1)

5 (ρ2 − 1)3
+

2
√
2 (10φρ3 − 9ϕρ2 − 10φρ+ 5ϕ)

(ϕρ2 − 4φρ+ ϕ)5/2
−

2
√
2 (10φρ3 + 9ϕρ2 − 10φρ− 5ϕ)

(ϕρ2 + 4φρ+ ϕ)5/2
+

5
√
5 +

√

5− 2
√
5

10ρ3
.

We have seen that f(ρ) < 0 and b(ρ) < 0 for ρ > α. We solve equations
db/dρ(ρ) = 0 and df/dρ(ρ) = 0 by proceeding in a similar way than for the
resolution of equation f(ρ) = 0 and we get that they have no real solutions
with ρ > 1. In particular, db/dρ(ρ) < 0 and df/dρ(ρ) > 0 for ρ > 1. Therefore
dm/dρ > 0 for ρ > α. This proves statement (b).

6 Nested dodecahedra

In this section we study the spatial central configurations of the 40–body prob-
lem when the masses are located at the vertices of two nested dodecahedra.
Taking conveniently the unit of masses we can assume that all the masses of
the inner dodecahedron are equal to one. We also choose the unit of length in
such a way that the edges of the inner dodecahedron have length 2.

Proposition 6 Consider twenty equal masses mi = 1 for i = 1, . . . , 20 lo-
cated at the vertices of a regular dodecahedron with edge length 2 having po-
sitions (x1, y1, z1) = (1, 1, 1), (x2, y2, z2) = (−1, 1, 1), (x3, y3, z3) = (1,−1, 1),
(x4, y4, z4) = (1, 1,−1), (x5, y5, z5) = (−1,−1, 1), (x6, y6, z6) = (−1, 1,−1),
(x7, y7, z7) = (1,−1,−1), (x8, y8, z8) = (−1,−1,−1), (x9, y9, z9) = (0, 1/φ, φ),
(x10, y10, z10) = (0,−1/φ, φ), (x11, y11, z11) = (0, 1/φ,−φ), (x12, y12, z12) =
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(0,−1/φ,−φ), (x13, y13, z13) = (1/φ, φ, 0), (x14, y14, z14) = (−1/φ, φ, 0), (x15,
y15, z15) = (1/φ,−φ, 0), (x16, y16, z16) = (−1/φ,−φ, 0), (x17, y17, z17) = (φ, 0,
1/φ), (x18, y18, z18) = (−φ, 0, 1/φ), (x19, y19, z19) = (φ, 0,−1/φ), and (x20, y20,
z20) = (−φ, 0,−1/φ), where φ = (1 +

√
5)/2 is the golden ratio. Consider

twenty additional equal masses mi = m for i = 21, . . . , 40 at the vertices of
a second nested regular dodecahedron having positions (xi+20, yi+20, zi+20) =
ρ (xi, yi, zi) for i = 1, . . . , 20 and ρ > 1 (see Fig. 1(e)). Then the following
statements hold.

(a) Such configuration is central for the spatial 40–body problem when m =
b(ρ)/f(ρ) where

b(ρ) =− 1

36

(

18 + 9
√
2 +

√
3 + 9

√
5
)

ρ+
2 (ρ2 + 1)

3
√
3 (ρ2 − 1)2

+

6ρ− 2

(3ρ2 − 2ρ+ 3)3/2
+

6ρ+ 2

(3ρ2 + 2ρ+ 3)3/2
+

6φρ−
√
5− 5

2φ
(

3ρ2 − 2
√
5ρ+ 3

)3/2
+

3ρ+
√
5

(

3ρ2 + 2
√
5ρ+ 3

)3/2
,

f(ρ)=− 4ρ2

3
√
3 (ρ2 − 1)2

− 2(ρ− 3)ρ

(3ρ2 − 2ρ+ 3)3/2
+

2(ρ+ 3)ρ

(3ρ2 + 2ρ+ 3)3/2
−

((

5 +
√
5
)

ρ− 6φ
)

ρ

2φ
(

3ρ2 − 2
√
5ρ+ 3

)3/2
+

((

5 +
√
5
)

ρ+ 6φ
)

ρ

2φ
(

3ρ2 + 2
√
5ρ+ 3

)3/2
−

18 + 9
√
2 +

√
3 + 9

√
5

36ρ2

and ρ > α = 1.462226054217616 . . . where α is the unique real solution of
b(ρ) = 0.

(b) Fixed a value of m > 0 there exists a unique ρ > α for which the nested
regular dodecahedra is a central configuration.

PROOF. It is easy to check that the center of mass of the configuration
defined in Proposition 6 is at the origin. We substitute the positions and
the values of the masses into (2). After some computations we obtain that
ex9 = ex10 = ex11 = ex12 = ex29 = ex30 = ex31 = ex32 = ey17 = ey18 = ey19 =
ey20 = ey37 = ey38 = ey39 = ey40 = ez13 = ez14 = ez15 = ez16 = ez33 = ez34 =
ez35 = ez36 = 0, ex3 = ex4 = ex7 = ey1 = ey2 = ey4 = ey6 = ez1 = ez2 =
ez3 = ez5 = ex1, ex2 = ex5 = ex6 = ex8 = ey3 = ey5 = ey7 = ey8 = ez4 =
ez6 = ez7 = ez8 = −ex1, ex13 = ex15 = ey9 = ey11 = ez17 = ez18 = ex1/φ,
ex14 = ex16 = ey10 = ey12 = ez19 = ez20 = −ex1/φ, ex17 = ex19 = ey13 =
ey14 = ez9 = ez10 = φ ex1, ex18 = ex20 = ey15 = ey16 = ez11 = ez12 = −φ ex1,
ex23 = ex24 = ex27 = ey21 = ey22 = ey24 = ey26 = ez21 = ez22 = ez23 = ez25 =
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ex21, ex22 = ex25 = ex26 = ex28 = ey23 = ey25 = ey27 = ey28 = ez24 = ez26 =
ez27 = ez28 = −ex21, ex33 = ex35 = ey29 = ey31 = ez37 = ez38 = ex21/φ,
ex34 = ex36 = ey30 = ey32 = ez39 = ez40 = −ex21/φ, ex37 = ex39 = ey33 =
ey34 = ez29 = ez30 = φ ex21 and ex38 = ex40 = ey35 = ey36 = ez31 = ez32 =
−φ ex21. Therefore system (2) is equivalent to system

ex1 =−λ−
m
((

5 +
√
5
)

ρ− 6φ
)

2φ
(

3ρ2 − 2
√
5ρ+ 3

)3/2
+

m
((

5 +
√
5
)

ρ+ 6φ
)

2φ
(

3ρ2 + 2
√
5ρ+ 3

)3/2
−

2m(ρ− 3)

(3ρ2 − 2ρ+ 3)3/2
+

2m(ρ+ 3)

(3ρ2 + 2ρ+ 3)3/2
− 4mρ

3
√
3 (ρ2 − 1)2

+

1

36

(

18 + 9
√
2 +

√
3 + 9

√
5
)

, (8)

ex21 =−λρ+
2 (ρ2 + 1)

3
√
3 (ρ2 − 1)2

+
6φ ρ−

√
5− 5

2φ
(

3ρ2 − 2
√
5ρ+ 3

)3/2
+

3ρ+
√
5

(

3ρ2 + 2
√
5ρ+ 3

)3/2
+

6ρ− 2

(3ρ2 − 2ρ+ 3)3/2
+

6ρ+ 2

(3ρ2 + 2ρ+ 3)3/2
+

(

18 + 9
√
2 +

√
3 + 9

√
5
)

m

36ρ2
.

Solving system (8) with respect to the variables λ and m we get λ = a(ρ)/f(ρ)
and m = b(ρ)/f(ρ) where

a(ρ) =
4(ρ− 3)

3
√
3 (ρ2 − 1) (3ρ2 + 2ρ+ 3)3/2

+
4 (3ρ2 + 10ρ+ 3)

(3ρ2 + 2ρ+ 3)3
−

4
(

3ρ2 − 2
(

1 + 2
√
5
)

ρ+ 3
)

φ (3ρ2 + 2ρ+ 3)3/2
(

3ρ2 − 2
√
5ρ+ 3

)3/2
+

4
(

3ρ2 +
(

2 + 4
√
5
)

ρ+ 3
)

φ (3ρ2 − 2ρ+ 3)3/2
(

3ρ2 + 2
√
5ρ+ 3

)3/2
−

2
(

3
(

3 +
√
5
)

ρ2 − 2
(

7 + 5
√
5
)

ρ+ 3
(

3 +
√
5
))

φ (3ρ2 − 2ρ+ 3)3/2
(

3ρ2 − 2
√
5ρ+ 3

)3/2
+

2
(

3
(

3 +
√
5
)

ρ2 + 2
(

7 + 5
√
5
)

ρ+ 3
(

3 +
√
5
))

φ (3ρ2 + 2ρ+ 3)3/2
(

3ρ2 + 2
√
5ρ+ 3

)3/2
+

3
(

5 +
√
5
)

ρ2 + 28φ ρ+ 3
(

5 +
√
5
)

2φ
(

3ρ2 + 2
√
5ρ+ 3

)3
−

18



3
(

5 + 3
√
5
)

ρ2 − 14
(

3 +
√
5
)

ρ+ 9
√
5 + 15

(

3 +
√
5
) (

3ρ2 − 2
√
5ρ+ 3

)3
−

8 (ρ3 + ρ)

27 (ρ2 − 1)4
− 4(ρ+ 3)

3
√
3 (ρ2 − 1) (3ρ2 − 2ρ+ 3)3/2

−
(

5 +
√
5
)

ρ+ 6φ

3
√
3φ (ρ2 − 1)

(

3ρ2 − 2
√
5ρ+ 3

)3/2
+

(

5 +
√
5
)

ρ− 6φ

3
√
3φ (ρ2 − 1)

(

3ρ2 + 2
√
5ρ+ 3

)3/2
+

8ρ
(

3ρ2 − 2
√
5ρ+ 3

)3/2 (

3ρ2 + 2
√
5ρ+ 3

)3/2
+

64ρ

(3ρ2 − 2ρ+ 3)3/2 (3ρ2 + 2ρ+ 3)3/2
−

149 + 54
√
2 + 6

√
3 + 54

√
5 + 3

√
6 + 27

√
10 + 3

√
15

216ρ2
−

4 (3ρ2 − 10ρ+ 3)

(3ρ2 − 2ρ+ 3)3
.

Since ρ > 1 and equations 3ρ2 + 2
√
5ρ + 3 = 0, 3ρ2 − 2

√
5ρ + 3 = 0, 3ρ2 +

2ρ + 3 = 0, and 3ρ2 − 2ρ + 3 = 0 have no real solutions, a(ρ), b(ρ) and
f(ρ) are well defined for ρ > 1. We solve equations a(ρ) = 0, b(ρ) = 0 and
f(ρ) = 0 in a similar way than in the previous sections (see the Appendix)
and we see that f(ρ) and a(ρ) are negative for ρ > 1, and that there exists
α = 1.462226054217616 . . . such that b(ρ) is negative for ρ > α, and positive
for 1 < ρ < α. Therefore λ > 0 for ρ > 1, m < 0 for 1 < ρ < α, and m > 0
for ρ > α. This proves statement (a).

Now we prove statement (b). The derivative dm/dρ is given by (4) where

db

dρ
(ρ) =− 4ρ (ρ2 + 3)

3
√
3 (ρ2 − 1)3

− 36ρ2 − 24ρ− 12

(3ρ2 − 2ρ+ 3)5/2
− 12 (3ρ2 + 2ρ− 1)

(3ρ2 + 2ρ+ 3)5/2
−

3
(

6φρ2 − 2
(

5 +
√
5
)

ρ+ 2φ
)

φ
(

3ρ2 − 2
√
5ρ+ 3

)5/2
−

6
(

3ρ2 + 2
√
5ρ+ 1

)

(

3ρ2 + 2
√
5ρ+ 3

)5/2
−

1

36

(

18 + 9
√
2 +

√
3 + 9

√
5
)

,

df

dρ
(ρ) =

8ρ (ρ2 + 1)

3
√
3 (ρ2 − 1)3

− 2 (3ρ3 + 17ρ2 − 3ρ− 9)

(3ρ2 + 2ρ+ 3)5/2
+
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2 (3ρ3 − 17ρ2 − 3ρ+ 9)

(3ρ2 − 2ρ+ 3)5/2
+

18 + 9
√
2 +

√
3 + 9

√
5

18ρ3
−

3
(

5 +
√
5
)

ρ3 + 26φρ2 − 3
(

5 +
√
5
)

ρ− 18φ

2φ
(

3ρ2 + 2
√
5ρ+ 3

)5/2
+

3
(

5 +
√
5
)

ρ3 − 26φρ2 − 3
(

5 +
√
5
)

ρ+ 18φ

2φ
(

3ρ2 − 2
√
5ρ+ 3

)5/2
.

We have seen that f(ρ) < 0 and b(ρ) < 0 for ρ > α. We solve numerically
equations db/dρ(ρ) = 0 and df/dρ(ρ) = 0 (see the Appendix) and we get
that they have no real solutions with ρ > 1. In particular, db/dρ(ρ) < 0 and
df/dρ(ρ) > 0 for ρ > 1. Therefore dm/dρ > 0 for ρ > α. This proves statement
(b).

Appendix

In this appendix we analyze the resolution of equations of the form F (ρ) = 0
when F is a rational function containing radicals. These type of equations are
solved by following the next steps.

(1) We eliminate the fractions by multiplying equation F (ρ) = 0 by the least
common denominator of F (ρ).

(2) We eliminate the radicals of the resulting equation by isolating in a con-
venient way one or more radicals on one side of the equation and squaring
both sides of the equation. If the resulting equation still contains radi-
cals, then we repeat the process again. At the end we obtain a polynomial
equation.

(3) We find numerically all the solutions of the polynomial equation obtained
in steep (2).

(4) We cheek which of these solutions are really solutions of the initial equa-
tion F (ρ) = 0.

Next we detail how to group the radicals in steep (2) for each type of equations
that appear in this work.

(a) Equations with one radical: α1

√
a + α2 = 0. We eliminate the radicals by

applying steep (2) in the following way

(α1

√
a)2 = (−α2)

2 .

(b) Equations of the form: α1

√
a+ α2

√
b+ α3

√
a
√
b = 0. Applying steep (2) in
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the following way

(α1

√
a+ α2

√
b)2 = (−α3

√
a
√
b)2 ,

we obtain an equation with one radical of the form β1

√
a
√
b+ β2 = 0.

(c) Equations of the form α1

√
a + α2

√
b + α3

√
a
√
b + α4 = 0 can be reduced

directly to an equation with one radical by applying steep (2) in the following
way

(α1

√
a+ α2

√
b)2 = (−α3

√
a
√
b− α4)

2 .

(d) Equations of the form α1

√
b
√
c
√
d+α2

√
a
√
c
√
d+α3

√
a
√
b
√
d+α4

√
a
√
b
√
c+

α5

√
a
√
b
√
c
√
d = 0. Applying steep (2) by grouping the terms in the follow-

ing way

(α1

√
b
√
c
√
d+α2

√
a
√
c
√
d)2=(−α3

√
a
√
b
√
d−α4

√
a
√
b
√
c−α5

√
a
√
b
√
c
√
d)2,

we obtain an equation of the form β1

√
c+β2

√
d+β3

√
a
√
b+β4

√
c
√
d+β5 = 0.

Applying steep (2) to this equation in the following way

(β1

√
c+ β2

√
d+ β4

√
c
√
d+ β5)

2 = (−β3

√
a
√
b)2 ,

we obtain an equation with three radicals of the form γ1
√
c + γ2

√
d +

γ3
√
c
√
d+ γ4 = 0. This type of equations have been analyzed in item (c).

(f) Equations of the form α1

√
a
√
b
√
c
√
d + α2

√
b
√
c
√
d + α3

√
a
√
c
√
d +

α4

√
a
√
b
√
d + α5

√
a
√
b
√
c + α6

√
c
√
d + α7

√
b
√
d + α8

√
b
√
c + α9

√
a
√
d +

α10

√
a
√
c+α11

√
a
√
b = 0. We apply steep (2) by grouping the terms in the

following way

(α2

√
b
√
c
√
d+ α3

√
a
√
c
√
d+ α4

√
a
√
b
√
d+ α5

√
a
√
b
√
c)2 =

(−α6

√
c
√
d− α7

√
b
√
d− α8

√
b
√
c− α9

√
a
√
d− α10

√
a
√
c−

α11

√
a
√
b− α1

√
a
√
b
√
c
√
d)2 .

The resulting equation is of the form β1

√
a
√
b + β2

√
a
√
c + β3

√
a
√
d +

β4

√
b
√
c + β5

√
b
√
d + β6

√
c
√
d + β7

√
a
√
b
√
c
√
d + β8 = 0. We apply steep

(2) by grouping the terms in the following way

(β1

√
a
√
b+ β2

√
a
√
c+ β3

√
a
√
d+ β7

√
a
√
b
√
c
√
d)2 =

(−β4

√
b
√
c− β5

√
b
√
d− β6

√
c
√
d− β8)

2 .

We obtain an equation of the form γ1
√
b
√
c+ γ2

√
b
√
d+ γ3

√
c
√
d+ γ4 = 0.

Finally, we apply steep (2) by grouping the terms in the following way

(γ1
√
b
√
c+ γ3

√
c
√
d)2 = (−γ2

√
b
√
d+ γ4)

2 .

and we obtain an equation of the form δ1
√
b
√
d+ δ2 = 0.
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