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Abstract. In this paper we study the relative equilibria and their stability for
a system of three point particles moving under the action of a Lennard–Jones
potential. A central configuration is a special position of the particles where the
position and acceleration vectors of each particle are proportional, and the constant
of proportionality is the same for all particles. Since the Lennard–Jones potential
depends only on the mutual distances among the particles, it is invariant under
rotations. In a rotating frame the orbits coming from central configurations become
equilibrium points, the relative equilibria. Due to the form of the potential, the
relative equilibria depend on the size of the system, that is, depend strongly of the
momentum of inertia I. In this work we characterize the relative equilibria, we find
the bifurcation values of I for which the number of relative equilibria is changing,
we also analyze the stability of the relative equilibria.

Keywords: Central configurations, relative equilibria, spectral stability.

1. Introduction

In order to get an accurate model to study the action of the inter-
molecular and gravitational forces at the same time, many authors
from physics, astrophysics, astronomy and chemistry have introduced
new kinds of potentials, with a structure different from the classical
Newtonian’s and Coulombian’s potentials. In this way, one potential
that has been used very often in those branches of the science is the
Lennard-Jones potential, which is the topic studied in this paper. For
instance, it is used to model the nature and stability of small clusters of
interacting particles in crystal growth, random geometry of liquids and
in the theory of homogeneous nucleation, see (Hoare and Pal, 1971) and
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(Wales and Doye, 1997). This potential also appears in molecular dy-
namics to simulate many particle systems ranging from solids, liquids,
gases, and biomolecules on Earth. Also it appears in the study of the
motion of stars and galaxies in the Universe among others applications.

Most of the results about the Lennard–Jones potential are numeri-
cal, and from a static viewpoint. Here we are interested in the dynamics,
we study some particular circular periodic orbits, the relative equilibria
in the Lennard–Jones 2– and 3–body problems, our main contribution
is the analysis of these periodic orbits, the dynamics around them and
the relationship with the momentum of inertia I. These results can
be useful to study dynamical properties such as heat transport, or
relaxation of systems close to an equilibrium, until now as we know,
this has been studied only far from equilibrium.

The configuration of the N particles in a relative equilibrium solu-
tion remains invariant under a convenient rotation. This configuration
is central and we will see that this is equivalent to say that a con-
figuration is central if the position and acceleration vectors of each
particle are proportional with the same constant of proportionality. In
other words, to know relative equilibria is equivalent to know central
configurations for the Lennard–Jones N–body problem in the plane.

This work has a wide analytical part and a short numerical one.
Thus, in the analytical part for the Lennard–Jones 2– and 3–body
problems we find the equilibrium points, the equilateral collinear and
triangular central configurations. Moreover we study the relative equi-
libria associated to them and their stability. We also give sufficient
conditions for the existence of isosceles collinear and triangular central
configurations. In the numerical part we study the stability for the
relative equilibria associated to the isosceles central configurations.

2. Equations of motion and general aspects

We consider N particles with equal mass m, moving in the 2–dimen-
sional Euclidean space. The forces between two particles are given by
a Lennard–Jones potential energy. Let qi ∈ R

2 denote the position of
the particle i in an inertial coordinate system and let q = (q1, . . . ,qN ).
Choosing the units of mass, length and time conveniently we can think
that m = 1 and we can use the scaled Lennard–Jones pair potential:

U =
∑

16i<j6N

(
1

r12
ij

− 2

r6
ij

)
, (1)

where rij = |qi − qj | is the distance between the particles i and j.

articleclp.tex; 25/02/2004; 17:20; p.2



3

The Newton’s equations of motion associated to potential (1) are
given by

q̈ = −∇U(q) , (2)

or equivalently,

q̈i =
N∑

j=1,j 6=i

12(qi − qj)

(
1

r14
ij

− 1

r8
ij

)
, (i = 1, . . . , N) (3)

where the dot denotes derivative with respect to the time t. Equations
(3) are only defined on the configuration space 4 = {(q1, . . . ,qN ) ∈
R

2N : qi 6= qj , i 6= j}.
The center of mass of the N particles is

R =
1

N

N∑

i=1

qi .

Adding the N equations (3) we have that
∑N

i=1 q̈i = 0 . Integrating
twice this equation we get

∑N
i=1 qi = at+b , where a and b are constant

vectors. This means that the center of mass moves, with respect to the
inertial coordinate system of reference, in a straight line with constant
speed.

We take the constant vectors a and b equal to zero, or equivalently,
we assume that the center of mass of the particles is fixed at the origin.
Then, we have the four first integrals

N∑

i=1

qi = 0 ,
N∑

i=1

q̇i = 0 ,

which are known as the first integrals of the center of mass and linear
momentum, respectively.

The simplest solutions are the equilibrium points; that is, when the
N particles are at rest for all t ∈ R. Then, an equilibrium point is a
solution satisfying equation

∇U(q) = 0 .

Another simple type of solutions are the relative equilibrium; that is,
solutions of (2) that become equilibrium points in a uniformly rotating
coordinate system. These solutions are characterized as follows.

Let R(θ) denote the 2N × 2N block diagonal matrix with N blocks
of size 2 × 2 of the form

A(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (4)
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Let x ∈ (R2)N be a configuration of the N particles, and let q(t) =
R(ωt)x, where the constant ω is the angular velocity of the uniform
rotating coordinate system. In the coordinate system x the equation of
motion (2) becomes

ẍ + 2ωJ ẋ = −∇U(x) + ω2x , (5)

where J is the 2N × 2N block diagonal matrix with N blocks of size
2 × 2 of the form (

0 −1
1 0

)
.

A configuration x is central for system (2) if and only if x is an
equilibrium point of system (5). That is, if and only if

−∇U(x) + ω2x = 0 , (6)

for some ω. If x is a central configuration, then q(t) = R(ωt)x is a
relative equilibrium solution of system (2). Note that q(t) = R(ωt)x is
a periodic solution of system (2) with period T = 2π/|ω|.

We remark that equation (6) for a central configuration q = x, says
that a central configuration in the space q is a configuration of the
particles for which the particle q and the acceleration q̈ vectors of each
particle are proportional, with the same constant of proportionality ω2.

We say that two central configurations x and y of (R2)N are related
if there exist a rotation A(θ) ∈ SO(2) such that R(θ)x = y, see (4).
This relation is of equivalence and all the central configurations that
are related to x are the class of equivalence of x.

We note that in other planar problems, like for instance the planar
N–body problem (see for a definition (Meyer and Hall, 1991)), the set of
all central configurations is invariant under homotheties and rotations,
while in the Lennard–Jones N–body problem this set is only invariant
under rotations.

The study of central configurations can be seen as a problem of
Lagrange multipliers where we are looking for critical points of the
potential U on the sphere {x ∈ 4 : (1/2)xTx = I} where I > 0 is a
constant. Thus x is a central configuration if it is a solution of system

∇F (x) = 0 , i(x) − I = 0 (7)

where F (x) = −U(x)+ω2(i(x)−I) and i(x) = (1/2)xTx is the moment
of inertia.

In this paper we are also interested in the study of the stability of the
relative equilibria. We will give necessary conditions for the stability
or instability of the relative equilibria of the planar Lennard–Jones N–
body problem. These conditions are based on the definitions of stability
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for the planar Newtonian N–body problem (see for instance (Moeckel,
1995) and (Moeckel, 1994)).

Introducing the momenta p = q̇, the equations of motion (2) can be
written as the Hamiltonian system

q̇ =
∂H

∂p
= p , ṗ = −∂H

∂q
= −∇U(q) , (8)

with Hamiltonian H(q,p) = 1

2
pTp+U(q). Doing the symplectic change

of variables q(t) = R(ωt)x, y(t) = R−1(ωt)p system (8) becomes the
Hamiltonian system

ẋ =
∂H̃

∂y
= y − ωJx , ẏ = −∂H̃

∂x
= −∇U(x) − ωJy , (9)

with Hamiltonian H̃(x,y) = 1

2
yTy + ωxT Jy + U(x). Since an equilib-

rium point of (9) is given by y = ωJx and −∇U(x) + ω2x = 0, from
(6) it follows that the equilibrium points (x,y) of (9) correspond to the
central configurations x of (2).

We consider the linearization of system (9) at an equilibrium point
(x,y); i.e.

ż = A z , (10)

where

A =

( −ωJ Id
−D∇U(x) −ωJ

)
,

and Id is the N × N identity matrix.
An equilibrium point of (9) is called linearly stable if the origin of

the linearized equations (10) is a stable equilibrium point. Due to the
symmetries and integrals of system (9) this condition is never satisfied
for the linearized equations (10), so the classical definition of linear
stability does not work in the Hamiltonian case. The definition of a
linearly stable relative equilibrium for the Newtonian N–body problem
can be found, for instance, in (Moeckel, 1995) and (Moeckel, 1994).

In this work we will consider only the spectral stability, see (Moeckel,
1995) for the definition of spectral stability for the Newtonian N–
body problem. A relative equilibrium x is called spectrally stable if
the eigenvalues of A are zero or purely imaginary.

We note that the spectral stability is a necessary condition for the
stability of a relative equilibrium (see for instance (Arnold, 1978) for
the definition of stability and instability of a periodic orbit) but it is
not a sufficient condition. Nevertheless, if a relative equilibrium is not
spectrally stable, then we know that it is unstable.
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Let v = (v1,v2) be an eigenvector of A with eigenvalue λ. Then
equation Av = λv reduces to

v2 = (ωJ + λ Id)v1 , Bv1 = 0 ,

where
B = −D∇U(x) + (ω2 − λ2) Id − 2λωJ . (11)

Therefore, the characteristic polynomial of the matrix A can be reduced
to P (λ) = det(B).

3. Lennard-Jones 2–body problem

From (2) the equations of motion for the Lennard–Jones 2–body prob-
lem are

q̈ = −∇U(q) , (12)

where q = (q1,q2) with q1,q2 ∈ R
2 and U =

1

r12
− 2

r6
, with r =

|q1 − q2|.

3.1. Equilibrium points

An equilibrium point of (12) is a solution of ∇U(q) = 0. We note that
U depends on q through the distance r =

√
(q11 − q21)2 + (q12 − q22)2,

thus we can consider U = U(r). Let

A =
( ∂r

∂q11

,
∂r

∂q12

,
∂r

∂q21

,
∂r

∂q22

)T
.

Using Proposition 14 (see the Appendix) we have that if the rank(A) =
1, then

∇U(q) = 0 if and only if ∇U(r) = 0 .

In the configuration space 4, rank (A) = 1. On the other hand,

∇U(r) = −12

(
1

r13
− 1

r7

)
.

Since r ∈ R
+ = (0,∞), the unique solution of equation ∇U(r) = 0

is r = 1. Remember that we have assumed that the origin is fixed
at the center of mass of the particles (i.e. q2 = −q1). Therefore the
equilibrium points of (12) are

{(q1,q2) ∈ R
2 × R

2 : q2 = −q1, |q1 − q2| = 1} .
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In short we have infinitely many equilibrium points for the Lennard–
Jones 2–body problem, one for each pair of opposite positions on the
circle of radius 1/2 centered at the center of mass of the two particles.
In particular, Theorem 1 follows.

THEOREM 1. The equilibrium points of the Lennard–Jones 2–body
problem are given by the set {(q1,q2) ∈ R

2×R
2 : q2 = −q1, |q1−q2| =

1} .

As we will see below, the equilibrium points given by Theorem 1 are
minima of the potential energy U(q). This says, in some sense, that
these equilibrium points are stable although the classical definition of
stability of an equilibrium point cannot be applied in this case (see for
instance (Guckenheimer and Holmes, 1986) for the definition of stable
equilibrium point). This is due to the fact that we have non–isolated
equilibrium points, moreover as we will see later on there are infinitely
many periodic orbits as close as we want to the circle of equilibrium
points.

It is easy to see that r = 1 is a minimum of U =
1

r12
− 2

r6
, moreover

at r = 1 we have that U = −1. Consequently, the equilibrium points
{(q1,q2) ∈ R

2 × R
2 : q2 = −q1, |q1 − q2| = 1} are minima of the

potential energy, moreover at all these points the potential energy is
U = −1.

3.2. Central configurations

We define the new coordinate vector x = (x1,x2), with x1,x2 ∈ R
2,

by q(t) = R(ωt)x where ω is a constant (see Section 2 for details). We
recall that x is a central configuration if it satisfies equations (7) with

U =
1

r12
− 2

r6
and r = |x1 − x2|.

Since the center of mass is at the origin of coordinates, then i(x)
can we written as

i(x) =
1

4
r2 .

Therefore we can think that F in (7) depends on x through the dis-
tance r. Since we do not consider collision solutions, we can apply
Proposition 14, and we see that

∇F (x) = 0 if and only if
d F

d r
= 0 .

In short, equations (7) can be written as

12

(
1

r13
− 1

r7

)
+

1

2
rω2 = 0 ,

1

4
r2 = I . (13)
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Solving the second equation of (13) we have that r = 2
√

I. Substituting
r into the first equation of (13), and solving the resulting equation with
respect to ω, we obtain

ω = ±
√

3

16

√
− 1

8I7
+

8

I4
.

This is only possible when − 1

8I7 + 8

I4 > 0. The solutions of this inequal-

ity are I ∈
[

1

4
,∞
)
. If I = 1

4
, then ω = 0 and we obtain the equilibrium

point that we have found in Section 3.1. For each value of I ∈
(

1

4
,∞
)

we have a central configuration with r = 2
√

I. For I ∈
(
0, 1

4

)
we have

no central configurations. In short, we have proved the following result.

PROPOSITION 2. For each value of I ∈
(

1

4
,∞
)

we have the central

configurations {(x1,x2) ∈ R
2 × R

2 : x2 = −x1, |x1 − x2| = 2
√

I}.

THEOREM 3.

(a) Let (x1,x2) be a central configuration, for a fixed value of I ∈(
1

4
,∞
)
, given by Proposition 2. Then (x1,x2) provides a relative

equilibrium solution of the Lennard–Jones 2–body problem with
period T = 2π/|ω| which is given by

q1(t) =
√

I(cos(ωt), sin(ωt)) , q2(t) =
√

I(− cos(ωt),− sin(ωt)) ,

where

ω = ±
√

3

16

√
− 1

8I7
+

8

I4
.

(b) The period T as a function of I is plotted in Figure 1 and it
satisfies the following properties:

(i) lim
I→1/4

T (I) = ∞.

(ii) lim
I→∞

T (I) = ∞.

(iii) T (I) has a minimum at the point I0 = 1

4

(
7

4

)1/3

with T (I0) =

7π
6

(
7

32

)1/6

.

(iv) T (I) decreases in (1/4, I0) and increases in (I0,∞).
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Figure 1. Plot of T (I).

Proof: The proof of statement (a) follows immediately from the
definition of relative equilibrium solutions.

Statement (b) is obtained by analyzing the properties of the period
function T = 2π/|ω|. 2

3.3. Spectral stability of the central configurations

Now we analyze the spectral stability of the relative equilibria of the
Lennard–Jones 2–body problem given by Proposition 2.

Let x = (x1,x2), with x1 = (
√

I, 0) and x2 = (−
√

I, 0) and I ∈(
1

4
,∞
)
, be a representant of the class of central configurations given

in Proposition 2. The relative equilibrium associated to x is spectrally
stable if the λ’s satisfying

det(B) = det[−D∇U(x) + (ω2 − λ2) Id − 2λωJ ] = 0 , (14)

are zero or purely imaginary (see Section 2 for details). Here U(x) =
1

r12
− 2

r6
, r = |x1 − x2|, Id is the 4 × 4 identity matrix, and ω =

±
√

3

16

√
− 1

8I7
+

8

I4
.

After some computations we see that the solutions of equation (14)
are

λ = 0 , with multiplicity 2,

λ = ±ω i , with multiplicity 2,

λ = ±
√

3
√
−5 + 128 I3

32 I7/2
.
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Analyzing the sign of f(I) = −5 + 128 I3 for I ∈
(

1

4
,∞
)
, we see that

f(I) < 0 if I ∈
(

1

4
, 1

4

(
5

2

)1/3
)

, f(I) = 0 if I = 1

4

(
5

2

)1/3

and f(I) > 0 if

I ∈
(

1

4

(
5

2

)1/3

,∞
)

. In short we have proved the following result.

PROPOSITION 4. The relative equilibria of the Lennard–Jones 2–

body problem (given by Theorem 3) are unstable for I > 1

4

(
5

2

)1/3

and

spectrally stable for I ∈
(

1

4
, 1

4

(
5

2

)1/3
]
.

4. Lennard–Jones 3–body problem

From (2) the equations of motion for the Lennard–Jones 3–body prob-
lem are

q̈ = −∇U(q) , (15)

where q = (q1,q2,q3), qi ∈ R
2,

U(q) =
1

r12
12

− 2

r6
12

+
1

r12
13

− 2

r6
13

+
1

r12
23

− 2

r6
23

, (16)

and rij = |qi − qj |.

4.1. Equilibrium points

An equilibrium point of system (15) is a solution of

∇U(q) = 0 . (17)

We note that U depends on q by means of the mutual distances
rij , thus we can consider U = U(r12, r13, r23) where (r12, r13, r23) =
(r12(q11, q12, q21, q22), r13(q11, q12, q31, q32), r23(q21, q22, q31, q32)). Using
Proposition 14, we have that if rank (A) = 3, with A given by




∂r12

∂q11

∂r13

∂q11

∂r23

∂q11

∂r12

∂q12

∂r13

∂q12

∂r23

∂q12

∂r12

∂q21

∂r13

∂q21

∂r23

∂q21

∂r12

∂q22

∂r13

∂q22

∂r23

∂q22

∂r12

∂q31

∂r13

∂q31

∂r23

∂q31

∂r12

∂q32

∂r13

∂q32

∂r23

∂q32




=




q11 − q21

r12

q11 − q31

r13

0

q12 − q22

r12

q12 − q32

r13

0

−q11 − q21

r12

0
q21 − q31

r23

−q12 − q22

r12

0
q22 − q32

r23

0 −q11 − q31

r13

−q21 − q31

r23

0 −q12 − q32

r13

−q22 − q32

r23




,
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then

∇U(q) = 0 if and only if ∇U(r12, r13, r23) = 0 .

After some computations we see that rank (A) = 3 if and only if

det




q11 q12 1
q21 q22 1
q31 q32 1


 6= 0 .

This determinant equals twice the area of the triangle formed by the 3
bodies. In short, we have proved:

LEMMA 5. If q1, q2 and q3 are not collinear, then ∇U(r12, r13, r23) =
0 if and only if ∇U(q) = 0.

In order to find the equilibrium points of the Lennard–Jones 3–body
problem we will distinguish two problems, the collinear and the planar
Lennard–Jones 3–body problem. In the first case the three particles
move on a straight line, so we cannot find the equilibrium points by
solving directly ∇U = 0 through the mutual distances. In this case we
will find the equilibrium points by using the position variables q. We
note that we could use the mutual distances if we found the critical
points of the function U(r12, r13, r23) on the curve r13 = r12 + r23 by
means of Lagrange multipliers (this fact can be proved using similar
arguments to the ones given in Proposition 14).

In particular we will prove the following result.

THEOREM 6.

(a) The collinear equilibrium points of the Lennard–Jones 3–body
problem are given by the sets

{(q1,q2,q3) ∈ R
6 : q2 = 0, |q1 − q3| = a, q3 = −q1 − q2},

{(q1,q2,q3) ∈ R
6 : q1 = 0, |q2 − q3| = a, q3 = −q1 − q2},

{(q1,q2,q3) ∈ R
6 : q3 = 0, |q1 − q2| = a, q3 = −q1 − q2},

where a =
(

2731

43

)1/6

.

(b) The planar non–collinear equilibrium points of the Lennard–
Jones 3–body problem are given by the set
{
(q1,q2,q3) ∈ R

6 : |q1 − q2| = |q1 − q3| = |q2 − q3| = 1,

q3 = −q1 − q2.}
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The proof of statement (a) (respectively (b)) of Theorem 6 is given
in Subsection 4.1.1 (respectively 4.1.2).

4.1.1. Collinear equilibrium points
Now we consider the collinear Lennard–Jones 3–body problem. Here,
q1 = q1,q2 = q2,q3 = q3 ∈ R. Since the origin is taken at the center of
mass of the particles, we have that q3 = −q1 − q2. Then, the equations
of motion (15) can be written as

q̈1 = 12

(
1

(q1 − q2)13
− 1

(q1 − q2)7
+

1

(2q1 + q2)13
− 1

(2q1 + q2)7

)
,

(18)

q̈2 = 12

(
− 1

(q1 − q2)13
+

1

(q1 − q2)7
+

1

(q1 + 2q2)13
− 1

(q1 + 2q2)7

)
.

We note that the third equation of (15) has been omitted because it is
a linear combination of the first two equations.

Let a12 = q1−q2, a13 = q1−q3 = 2q1+q2 and a23 = q2−q3 = q1+2q2.
Then, an equilibrium point of (18) is a solution of system

1

a13
12

− 1

a7
12

+
1

a13
13

− 1

a7
13

= 0 , − 1

a13
12

+
1

a7
12

+
1

a13
23

− 1

a7
23

= 0 . (19)

Without loss of generality we can choose the order of the particles
in such a way that a12 > 0, a13 > 0 and a23 > 0. Then, it is easy to see
that a12, a13 and a23 must satisfy

a13 = a12 + a23 . (20)

In short we must solve the system

1

a13
12

− 1

a7
12

+
1

(a12 + a23)13
− 1

(a12 + a23)7
= 0 ,

− 1

a13
12

+
1

a7
12

+
1

a13
23

− 1

a7
23

= 0 .
(21)

After factorizing the two equations of (21), we see that system (21) is
equivalent to the system

(2a12 + a23) f1(a12, a23) = 0 , (a12 − a23) f2(a12, a23) = 0 , (22)

where f1(a12, a23) is

−a12

12
+ a18

12
− 6a11

12
a23 + 9a17

12
a23 − 36a10

12
a2

23
+ 42a16

12
a2

23
− 125a9

12
a3

23
+

132a15

12
a3

23
− 295a8

12
a4

23
+ 299a14

12
a4

23
− 496a7

12
a5

23
+ 497a13

12
a5

23
− 610a6

12
a6

23
+

610a12

12
a6

23
− 553a5

12
a7

23
+ 553a11

12
a7

23
− 367a4

12
a8

23
+ 367a10

12
a8

23
− 174a3

12
a9

23
+

174a9

12
a9

23
− 56a2

12
a10

23
+ 56a8

12
a10

23
− 11a12a

11

23
+ 11a7

12
a11

23
− a12

23
+ a6

12
a12

23
,
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and f2(a12, a23) is

−a12

12
− a11

12
a23 − a10

12
a2

23
− a9

12
a3

23
− a8

12
a4

23
− a7

12
a5

23
− a6

12
a6

23
+ a12

12
a6

23
−

a5

12
a7

23
+ a11

12
a7

23
− a4

12
a8

23
+ a10

12
a8

23
− a3

12
a9

23
+ a9

12
a9

23
− a2

12
a10

23
+

a8

12
a10

23
− a12 a11

23
+ a7

12
a11

23
− a12

23
+ a6

12
a12

23
.

Then, the solutions of (22) must satisfy one of the following four sets
of conditions

a12 = −a23/2 , a12 = a23 , (23)

a12 = −a23/2 , f2(a12, a23) = 0 , (24)

a12 = a23 , f1(a12, a23) = 0 , (25)

f1(a12, a23) = 0 , f2(a12, a23) = 0 . (26)

Since we have assumed that aij > 0, conditions (23) and (24) are
not satisfied. Solving f1(a12, a23) = 0 with a12 = a23, we obtain the
solution

a12 = a23 =
1

2

(
2731

43

)1/6

, a13 =

(
2731

43

)1/6

.

In order to solve system (26), we have computed the resultant of f1(a12,
a23) and f2(a12, a23) with respect to a12 (respectively, a23) obtaining
a polynomial P (a23) (respectively, Q(a12)). The different combinations
of a root of Q(a12) with a root of P (a23) give us the possible solutions
of system (26). We note that we are only interested in positive real
solutions. After some computations we see that there is no combination
of a positive real root of Q(a12) with a positive real root of P (a23)
satisfying (26). Therefore condition (26) never is satisfied.

We have just seen that if we choose the order of the particles in such
a way that q1 − q2 > 0, q1 − q3 > 0 and q2 − q3 > 0 (this means that
the order of the particles on the straight line is m1, m2 and m3 from
right to left), then there is a unique equilibrium point of the collinear
Lennard–Jones 3–body problem which is given by

{
(q1, q2, q3) ∈ R

3 : q1 − q2 = q2 − q3 = a/2, q1 − q3 = a,

q3 = −q1 − q2} ,

or equivalently, (q1, q2, q3) = (−a/2, 0, a/2) where a =
(

2731

43

)1/6

.

We are interested in equilibrium points of the Lennard–Jones 3–
body problem (15). It is easy to see that the equilibrium point of the
collinear Lennard–Jones 3–body problem (q1, q2, q3) = (−a/2, 0, a/2)
gives infinitely many equilibrium points of (15), one for each straight
line passing through the origin. For all these equilibrium points the
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particle m2 is placed at the origin and the other two particles are placed
at the ends of a diameter of the circle of radius a/2 centered at the
origin. In short the equilibrium point of the collinear Lennard–Jones
3–body problem (q1, q2, q3) = (−a/2, 0, a/2) provides infinitely many
equilibrium points of the Lennard Jones 3–body problem which are
given by the set

{(q1,q2,q3) ∈ R
6 : q2 = 0, |q1 − q3| = a, q3 = −q1 − q2}, (27)

or equivalently,

(q1,q2,q3) = (a/2 cos θ, a/2 sin θ, 0, 0,−a/2 cos θ,−a/2 sin θ) ,

with θ ∈ [0, 2π). Notice that we have a continuum of equilibrium points
parameterized by θ.

We can chose five other possible orders for the particles in the
collinear Lennard–Jones 3-body problem. Analyzing these other pos-
sible choices we obtain exactly two other different sets of equilibrium
points of the Lennard Jones 3–body problem. They are given by

{(q1,q2,q3) ∈ R
6 : q1 = 0, |q2 − q3| = a, q3 = −q1 − q2}, (28)

and

{(q1,q2,q3) ∈ R
6 : q3 = 0, |q1 − q2| = a, q3 = −q1 − q2}. (29)

In short we have proved statement (a) of Theorem 6.

Let M(q1,q2,q3) be the Hessian matrix of the potential energy
U(q) given by (16). It is not difficult to see that the eigenvalues of M
at the collinear equilibrium points of the Lennard–Jones 3–body given
by (27), (28) and (29) are

λ1 = 0 , with multiplicity 3 λ2 =
6601761792

7458361

(
43

2731

)1/3

,

λ3 =
798768

2731

(
43

2731

)1/3

, λ4 = −8322048

7458361

(
43

2731

)1/3

.

Since M has positive and negative eigenvalues, the collinear equilibrium
points of the Lennard–Jones 3–body problem are unstable.

articleclp.tex; 25/02/2004; 17:20; p.14



15

4.1.2. Planar equilibrium points
In order to find planar equilibrium points of the Lennard–Jones 3–body
problem which are not collinear, it is sufficient to solve equation

∇U(r12, r13, r23) = −12




r−13
12 − r−7

12

r−13
13 − r−7

13

r−13
23 − r−7

23


 =




0

0

0


 .

We solve the equation
1

r13
− 1

r7
= 0 obtaining a unique positive real

root r = 1. So, ∇U(r12, r13, r23) = 0 if and only if r12 = r13 = r23 = 1.
Therefore we have infinitely many planar equilibrium points of the
Lennard–Jones 3–body problem which are characterized by the set

{
(q1,q2,q3) ∈ R

6 : |q1 − q2| = |q1 − q3| = |q2 − q3| = 1,

q3 = −q1 − q2} (30)

which proves statement (b) of Theorem 6.
We note that for the planar equilibrium points of the Lennard–Jones

3–body problem, the three particles form an equilateral triangle of side
1 whose barycenter is the center of mass. In particular, it is not difficult
to see that the planar equilibrium points are

(q1,q2,q3) = (1/
√

3)(cos θ, sin θ, cos θ1, sin θ1, cos θ2, sin θ2) ,

and

(q1,q2,q3) = (1/
√

3)(cos θ, sin θ, cos θ2, sin θ2, cos θ1, sin θ1) ,

where θ1 = θ + 2π
3

, θ2 = θ + 4π
3

and θ ∈ [0, 2π).

Now we shall see that the planar equilibrium points (30) are minima
of the potential energy U(q) (which is given in (16)).

We consider the potential energy as a function of the mutual dis-
tances rij ; i.e. U = U(r12, r13, r23). We have just seen that r12 = r13 =
r23 = 1 is a critical point of U(r12, r13, r23). Let M(r12, r13, r23) be the
Hessian matrix of U(r12, r13, r23). After some computations we see that
the eigenvalues of M at r12 = r13 = r23 = 1 are λ = 72 with multiplicity
3. Therefore r12 = r13 = r23 = 1 is a minimum of U(r12, r13, r23),
moreover U(1, 1, 1) = −3. Since the potential energy U(q) depends on
q through the mutual distances rij = |qi−qj |, it follows that the points
of the set (30) are minima of the potential U(q). Moreover on the set
(30) the potential energy equals −3.
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4.2. Central configurations

We define the new coordinate vector x = (x1,x2,x3) with x1,x2,x3 ∈
R

2 by q(t) = R(ωt)x where ω is a constant (see Section 2 for details).
We recall that x is a central configuration if it satisfies system (7) with

U(x) =
1

r12
12

− 2

r6
12

+
1

r12
13

− 2

r6
13

+
1

r12
23

− 2

r6
23

, (31)

where rij = |xi − xj |.
We note that U depends on x by means of the mutual distances rij .

Since we have chosen the origin of the coordinates at the center of mass
of m1, m2 and m3, then i(x) can we written as

i(x) = (1/6)(r2
12 + r2

13 + r2
23) . (32)

Therefore we can think that F depends on x through the mutual
distances rij .

Working as in Subsection 4.1 we can see that if x1, x2 and x3 are
not collinear, then ∇F (r12, r13, r23) = 0 if and only if ∇F (q) = 0.
Thus in order to find the central configurations of the Lennard–Jones
3–body problem we also will distinguish two problems, the collinear
and the planar Lennard–Jones 3–body problem. In particular we will
prove the following result which is a summary of the future Lemmas 9
and 10. In the next result we only provide the geometry of the central
configurations for the planar Lennard–Jones 3–body problem.

THEOREM 7. The planar Lennard–Jones 3–body problem has the fol-
lowing geometrical central configurations (see Figure 2).

(a) For I ∈ (0, I1] with I1 = 1/2 there are no central configurations.

(b) For any I > I1 there is a unique equilateral triangle central
configuration (i.e. the three particles are at the vertices of an equi-
lateral triangle).

(c) When I = I2 with I2 = 0.595186 . . . an isosceles triangle central
configuration appears which bifurcates for I > I2 in two different
isosceles triangle central configurations (denoted by T1 and T2).

(i) The isosceles triangle central configuration T1 has the two
equal sides smaller than the third one for all I2 6 I < I5

with I5 = 1.001285 . . .. When I = I5, T1 degenerates to
a segment; i.e. it becomes a collinear central configuration
which coincides with the collinear central configuration given
in statement(d). Finally, there is no isosceles triangle central
configuration T1 when I > I5.
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I1 I2I3 I4 I5 I6

k1k2j2 i2

I

Figure 2. The different central configurations depending on the moment of inertia
I.

(ii) The isosceles triangle central configuration T2 has the two
equal sides smaller than the third one for I ∈ (I2, I3) with

I3 = 1

2

(
7

4

)1/3

= 0.602535 . . .. At I = I3 it coincides with the

equilateral triangle central configuration given in statement
(b). Finally, when I > I3, T2 is an isosceles triangle where
the two equal sides are larger than the third one.

(d) For I > I4 with I4 = 1

4

(
2731

43

)1/3

= 0.99745 . . . there is an ad-

ditionally equilateral collinear central configuration (i.e. the three
particles are on a straight line and one of the particles is located
exactly at the middle point of the segment formed by the other two).

(e) When I > I6 with I6 = 1

4

(
36409

313

)1/3

= 1.22038 . . . we have two

isosceles collinear central configurations (i.e. the three particles are
on a straight line and one of the particles is located inside the seg-
ment formed by the other two but not exactly at the middle point)
that bifurcate form the equilateral collinear central configuration
for I = I6.

Taking into account all the different distributions of the particles
in the geometrical central configurations described in Theorem 7 we
obtain the following corollary.

COROLLARY 8. The number of classes of central configurations of
the planar Lennard–Jones 3–body problem for the different values of
the moment of inertia I are summarized in Table I.
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Table I. Number of central configurations for the planar Lennard–Jones 3–body
problem.

I #

(0, I1] 0

(I1, I2) 2

I2 8

I #

(I2, I3) 14

I3 8

(I3, I4] 14

I #

(I4, I5) 17

[I5, I6] 11

(I6,∞) 17

4.2.1. Collinear central configurations
In order to find the collinear central configurations for the Lennard–
Jones 3–body problem we cannot solve directly ∇F = 0 through the
mutual distances rij (see Lemma 5), thus in this case we will solve
directly system (7) with U given by (31). Similarly to the collinear
equilibrium points, if we use the mutual distances in order to find the
collinear central configurations, then we find the critical points of the
function U(r12, r13, r23) on {(r12, r13, r23) ∈ R

+ × R
+ × R

+ : 1

6
(r2

12 +
r2
13 + r2

23) = I, r13 = r12 + r23} by means of the Lagrange multipliers.
Suppose that x1 = x1, x2 = x2, x3 = x3 ∈ R. Since we have taken

the origin at the center of mass of the particles (i.e. x3 = −x1 − x2),
we can write the moment of inertia as in (32). Therefore, (7) becomes

∇F (x) = 0 , i(x) − I = 0 (33)

where F (x) = −U(x) + ω2(i(x)− I), i(x) =
1

6
(r2

12 + r2
13 + r2

23), U(x) is

given by (31) and rij = |xi − xj |.
Let a12 = x1 − x2, a13 = x1 − x3 = 2x1 + x2 and a23 = x2 − x3 =

x1 +2x2. As in Subsection 4.1.1, we can choose the order of the masses
in such a way that a12 > 0, a13 > 0 and a23 > 0. Then, system (33)
becomes

12

(
1

a13
12

− 1

a7
12

)
+ 12

(
1

a13
13

− 1

a7
13

)
+

1

3
ω2(a12 + a13) = 0 ,

−12

(
1

a13
12

− 1

a7
12

)
+ 12

(
1

a13
23

− 1

a7
23

)
+

1

3
ω2(−a12 + a23) = 0 ,

−12

(
1

a13
13

− 1

a7
13

)
− 12

(
1

a13
23

− 1

a7
23

)
+

1

3
ω2(−a13 − a23) = 0 ,

1

6
(a2

12 + a2
13 + a2

23) = I .

(34)

It is easy to see that the second equation of (34) is a linear combi-
nation of the first and the third equations, so we eliminate it. Since we
have assumed that aij > 0, then from the first and the third equations
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of (34) we have

ω2 = − 36

a12 + a13

(
1

a13
12

− 1

a7
12

+
1

a13
13

− 1

a7
13

)

= − 36

a13 + a23

(
1

a13
13

− 1

a7
13

+
1

a13
23

− 1

a7
23

)
.

(35)

Therefore, we shall solve system

1

a12 + a13

(
1

a13

12

− 1

a7

12

+
1

a13

13

− 1

a7

13

)
=

1

a13 + a23

(
1

a13

13

− 1

a7

13

+
1

a13

23

− 1

a7

23

)
,

a2
12 + a2

13 + a2
23 = 6I , (36)

a13 = a12 + a23 .

Factorizing the first equation of (36), after the substitution a13 =
a12 + a23, we have that it is equivalent to the equation

(−a12 + a23)f(a12, a23) = 0 .

where f(a12, a23) is

−a12
24 − 12 a12

23 a23 − 68 a12
22 a23

2 − 242 a12
21 a23

3 − 609 a12
20 a23

4 −
1162 a12

19 a23
5 − 1772 a12

18 a23
6 + a12

24 a23
6 − 2268 a12

17 a23
7 +

12 a12
23 a23

7 − 2563 a12
16 a23

8 + 68 a12
22 a23

8 − 2688 a12
15 a23

9 +

242 a12
21 a23

9 − 2724 a12
14 a23

10 + 609 a12
20 a23

10 − 2730 a12
13 a23

11 +

1162 a12
19 a23

11 − 2731 a12
12 a23

12 + 1772 a12
18 a23

12 − 2730 a12
11 a23

13 +

2268 a12
17 a23

13 − 2724 a12
10 a23

14 + 2558 a12
16 a23

14 − 2688 a12
9 a23

15 +

2648 a12
15 a23

15 − 2563 a12
8 a23

16 + 2558 a12
14 a23

16 − 2268 a12
7 a23

17 +

2268 a12
13 a23

17 − 1772 a12
6 a23

18 + 1772 a12
12 a23

18 − 1162 a12
5 a23

19 +

1162 a12
11 a23

19 − 609 a12
4 a23

20 + 609 a12
10 a23

20 − 242 a12
3 a23

21 +

242 a12
9 a23

21 − 68 a12
2 a23

22 + 68 a12
8 a23

22 − 12 a12 a23
23 +

12 a12
7 a23

23 − a23
24 + a12

6 a23
24 .

Then, the first equation of (36) is satisfied if either a12 = a23 or
f(a12, a23) = 0.

If a12 = a23, then the second equation of system (36) has a unique
positive solution a23 =

√
I. Therefore, a12 =

√
I, and consequently,

a13 = 2
√

I. So, (a12, a13, a23) = (
√

I, 2
√

I,
√

I) is a solution of (36).
This solution must satisfy that ω2 > 0. Substituting it into (35), we see

that this is only possible when I ∈ (I4,∞) where I4 =
1

4

(
2731

43

)1/3

=

0.99745 . . .
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Now we must analyze the solutions of system

f(a12, a23) = 0 ,
a2

12 + (a12 + a23)
2 + a2

23 = 6I .
(37)

Solving the second equation of (37) we have that a12 = 1

2
(−a23 ±

√
3
√

4I − a2
23

)
. Since a12 > 0 and a23 > 0, we only are interested in

the solution

a12 =
1

2

(
−a23 +

√
3
√

4I − a2
23

)
with a23 ∈

(
0,
√

3I
)

. (38)

If we take a12 and a23 satisfying (38), then the first equation of (37)
is equivalent to equation

f1(a23, I) = 0 , (39)

with f1(a23, I) equal to

−a23
24 + a23

30 + 24 a23
22 I − 30 a23

28 I − 252 a23
20 I2 + 405 a23

26 I2 +

2052 a23
18 I3 − 3348 a23

24 I3 − 15390 a23
16 I4 + 19602 a23

22 I4 +

86508 a23
14 I5 − 88452 a23

20 I5 − 332424 a23
12 I6 + 317115 a23

18 I6 +

918540 a23
10 I7 − 887922 a23

16 I7 − 1896129 a23
8 I8 + 1863324 a23

14 I8 +

2794986 a23
6 I9 − 2794986 a23

12 I9 − 2834352 a23
4 I10 +

2834352 a23
10 I10 + 1771470 a23

2 I11 − 1771470 a23
8 I11 −

531441 I12 + 531441 a23
6 I12 .

Now we analyze the solution of (39) depending on the values of I. First
we find the bifurcation values for the solutions of (39). These values are
given by the solutions of system

f1(a23, I) = 0 , f2(a23, I) = 0 , (40)

where

f2(a23, I) =
∂f1

∂a23

(a23, I) = 6 a23

(
a23

2 − 3 I
) (

a23
2 − I

)
g(a23, I) ,

with g(a23, I) equal to

−4 a23
18 + 5 a23

24 + 72 a23
16 I − 120 a23

22 I − 540 a23
14 I2 +

1260 a23
20 I2 + 3780 a23

12 I3 − 7992 a23
18 I3 − 24300 a23

10 I4 +

36126 a23
16 I4 + 93312 a23

8 I5 − 126360 a23
14 I5 − 218700 a23

6 I6 +

337527 a23
12 I6 + 376164 a23

4 I7 − 638604 a23
10 I7 − 367416 a23

2 I8 +

780759 a23
8 I8 + 196830 I9 − 551124 a23

6 I9 + 177147 a23
4 I10 .

articleclp.tex; 25/02/2004; 17:20; p.20



21

Remember that we only are interested in the positive values of a23 and
I.

Substituting the solution a23 =
√

I of the second equation of (40)
into the first equation of (40) we get the equation

I12(−36409 + 20032 I3) = 0 .

So I = 0 and I = c1 =
1

4

(
36409

313

)1/3

= 1.22038 . . . are the bifurcation

values. In a similar way, substituting the solution a23 =
√

3I of the
second equation of (40) into the first equation of (40), we have that
I = 0 is the unique bifurcation value. Finally, we solve the system

f1(a23, I) = 0 , g(a23, I) = 0 ,

and we obtain another bifurcation value I = c0 = 0.0813699 . . .. This
system has been solved by computing the resultant of f1(a23, I) and
g(a23, I) with respect to I and with respect to a23, and then solving
the corresponding polynomials (this method has already been used in
Subsection 4.1.1 in a similar case).

Solving equation (39) for different values of I, we see that when
I = 0 equation (39) has three real roots: a23 = −1 and a23 = 1 with
multiplicity one, and a23 = 0 with multiplicity 24. For I ∈ (0, c0) we
have four positive real roots that bifurcate from a23 = 0, and another
real root that comes from the root a23 = 1 (we do not consider negative
real roots). When I = c0 one of the four real roots that bifurcate from
a23 = 0 joins with the root that comes from a23 = 1 giving a double
root and we still have the other three roots that come from a23 = 0.
The double root disappears when I > c0 whereas the other three roots
persist. When I = c1 appears a new double root, from which emerges
two roots for I > c1 (see for more details Figure 3).

Now we see which of these solutions of (39) really give solutions
of (37). First, we need that a23 ∈ (0,

√
3I). We see that a23 = 0 and

a23 =
√

3I are solutions of f1(a23, I) only when I = 0. Therefore, if a
branch solution a23(I) of (39) satisfies a23 ∈ (0,

√
3I) for a fixed value

of I > 0, then it satisfies this condition for all I > 0. In particular, we
can see that the only two branches that satisfy condition a23 ∈ (0,

√
3I)

are the ones that come from the double root that appears when I = c1.
In short, when I < c1 we have no solutions of (37). When I = c1 we

have a unique solution which is given by

a23 =
√

I , a12 =
√

I .

Finally when I > c1 we have two solutions of (39) that we denote by
α(I) and α(I). It is not difficult to see that these two solutions provide
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c0 c1 I

a23(I)

Figure 3. The bifurcation values c0 and c1 of f1(a23, I) = 0 with respect to the
parameter I. The upper dashed line corresponds to the curve a23(I) =

√
3I and the

lower dashed line corresponds to the curve a23(I) =
√

I (on this line we can find the
equilateral collinear central configurations).

two solutions of (37) which are

{a23 = α(I), a12 = α(I)} and {a23 = α(I), a12 = α(I)} .

On the other hand, the solutions of (37) that we have found will
provide solutions of (34) only if they satisfy ω2 > 0 where ω2 is given
by (35). If we take a12 and a23 as in (38), then ω2 becomes

ω2 =
2415919104 h(a23, I)

(
−a23 +

√
3
√
−a23

2 + 4 I
)13 (

a23 +
√

3
√
−a23

2 + 4 I
)13

, (41)

with h(a23, I) equal to

−a23
12 + a23

18 + 24 a23
10 I − 30 a23

16 I − 162 a23
8 I2 + 378 a23

14 I2 +
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162 a23
6 I3 − 2619 a23

12 I3 + 1620 a23
4 I4 + 10854 a23

10 I4 −
3645 a23

2 I5 − 26973 a23
8 I5 − 729 I6 + 36450 a23

6 I6 − 15309 a23
4 I7 −

19683 a23
2 I8 + 19683 I9 .

Since a23 ∈ (0,
√

3I), the denominator of (41) is positive. It only
remains to prove that h(a23, I) is positive on the solutions of (39). To
do that we solve system

f1(a23, I) = 0 , h(a23, I) = 0 , (42)

by computing the resultant of f1(a23, I) and h(a23, I) with respect to
a23 and with respect to I, and finding the roots of the resulting polyno-
mials. We see that there are no real positive solutions of (42). Therefore,
ω2 is either always positive or always negative on the solutions of (39),
in particular we see that it is always positive.

Remember that a12 = x1 − x2, a13 = 2x1 + x2, a23 = x1 + 2x2, and
x3 = −x1 − x2. Thus, we get

x1 =
1

3
(2a12 + a23) , x2 =

1

3
(−a12 + a23) , x3 =

1

3
(−a12 − 2a23) .

In short, we have proved the following result.

LEMMA 9. If we choose the order of the particles in such a way that
x1 − x2 > 0, x1 − x3 > 0 and x2 − x3 > 0 (this means that the order of
the particles on the straight line is m1, m2 and m3 from right to left),
then we have the following central configurations.

(a) If I > I4 with I4 = 1

4

(
2731

43

)1/3

= 0.99745 . . ., then we have

a unique collinear equilateral central configuration (i.e. the three
particles are on a straight line and the separation between m1 and
m2 is the same as that between m2 and m3) given by

a12 = a23 =
√

I , a13 = 2
√

I , (43)

or equivalently,

(x1, x2, x3) = (
√

I, 0,−
√

I) . (44)

(b) If I > I6 with I6 = c1 = 1

4

(
36409

313

)1/3

= 1.22038 . . ., then we

have two collinear isosceles central configurations (i.e. the three
particles are on a straight line and the separation between m1 and
m2 is different from that between m2 and m3) satisfying

a23 = α(I) , a12 = α(I) , a13 = α(I) + α(I) ,
a23 = α(I) , a12 = α(I) , a13 = α(I) + α(I) ,

(45)
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or equivalently,

(x1, x2, x3) = 1

3
(2α(I) + α(I),−α(I) + α(I),−α(I) − 2α(I)) ,

(x1, x2, x3) = 1

3
(2α(I) + α(I),−α(I) + α(I),−α(I) − 2α(I)) .

Statements (d) and (e) of Theorem 7 follow from Lemma 9.
As in Subsection 4.1.1, we can choose five other possible orders for

the particles in the collinear Lennard–Jones 3-body problem. Analyzing
these choices we obtain different central configurations. In particular,
(43) provides only two additional classes of central configurations for
I > I4, they are

(x1, x2, x3) = (0,
√

I,−
√

I) , (x1, x2, x3) = (
√

I,−
√

I, 0) .

On the other hand, (45) provides four additional classes of central
configurations for I > I6, which are given by

(x1, x2, x3) = (1/3) (2α(I) + α(I),−α(I) − 2α(I),−α(I) + α(I)) ,

(x1, x2, x3) = (1/3) (2α(I) + α(I),−α(I) − 2α(I),−α(I) + α(I)) ,

(x1, x2, x3) = (1/3) (−α(I) + α(I),−α(I) − 2α(I), 2α(I) + α(I)) ,

(x1, x2, x3) = (1/3) (−α(I) + α(I),−α(I) − 2α(I), 2α(I) + α(I)) .

We remark that the three equilateral collinear central configurations
for I > I4 bifurcate at I = I4 from the three circles of collinear equi-
librium points of the Lennard–Jones 3–body problem that are given in
Theorem 6(a).

4.2.2. Planar central configurations

In order to find the central configurations of the planar Lennard–Jones
3–body problem which are not collinear we solve system (7) with U
given by (31) in terms of the mutual distances rij ; that is, we solve the
system

12

(
1

r13
12

− 1

r7
12

)
+

1

3
r12ω

2 = 0 ,

12

(
1

r13
13

− 1

r7
13

)
+

1

3
r13ω

2 = 0 ,

12

(
1

r13
23

− 1

r7
23

)
+

1

3
r23ω

2 = 0 ,

1

6
(r2

12 + r2
13 + r2

23) = I .

(46)
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Figure 4. Plot of f(a).

Using the first three equations of (46) we have that ω2 is given by

−36

(
1

r14
12

− 1

r8
12

)
= −36

(
1

r14
13

− 1

r8
13

)
= −36

(
1

r14
23

− 1

r8
23

)
. (47)

We will solve system

1

r14
12

− 1

r8
12

=
1

r14
13

− 1

r8
13

,

1

r14
12

− 1

r8
12

=
1

r14
23

− 1

r8
23

,

r2
12 + r2

13 + r2
23 = 6I .

(48)

First, we analyze the first two equations of (48). Let f(a) =
1

a14
− 1

a8
.

We note that lim
a→0+

f(a) = ∞, lim
a→∞

f(a) = 0 and f(a) has a minimum

at the point a = a∗ =

(
7

4

)1/6

= 1.09776 . . . with β = f(a∗) =

−12

49

(
4

7

)1/3

= −0.203223 . . . (see Figure 4).

We note that the first two equations of (48) can be written as

f(r12) = f(r13) = f(r23) . (49)

Since ω2 > 0 (we do not consider the case ω = 0 because it corresponds
to an equilibrium point of the collinear Lennard–Jones 3–body prob-
lem), we are only interested in values of rij such that f(rij) < 0 (see
(47)).
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Table II. Different types of solutions of (49).

(i) r12 = r13 = r23 = a1 ,

(ii) r12 = r13 = r23 = a2 ,

(iii)

{
r12 = r13 = a1 , r23 = a2

r12 = r23 = a1 , r13 = a2 ,

r13 = r23 = a1 , r12 = a2 ,

(iv)

{
r12 = r13 = a2 , r23 = a1 ,

r12 = r23 = a2 , r13 = a1 ,

r13 = r23 = a2 , r12 = a1 ,

(v) r12 = r13 = r23 = a∗ .

Fixed a value of c ∈ (β, 0), we can find two different values a1 ∈
(1, a∗) and a2 ∈ (a∗,∞) satisfying f(ai) = c (see Figure 4). From these
two values, we obtain eight different solutions of (49), which are detailed
in types (i)–(iv) of Table II. If c = β, then there is a unique value a∗

such that f(a∗) = c. Thus, in this case we have a unique solution of
(49), which corresponds to type (v) in Table II.

On the other hand, rij must verify the third equation of (48). Thus,
for the solutions of types (i), (ii) and (v) we have that r12 = r13 = r23 =√

2I. In particular, if we have a solution of type (i), then I ∈ (I1, I3)
with I1 = 1/2 and I3 = (a∗)2/2. If we have a solution of type (ii), then
I ∈ (I3,∞); and if we have a solution of type (v), then I = I3.

For β < c < 0, we have computed numerically the values of a1 and
a2 satisfying f(ai) = c. Then, we have computed the values of the
moment of inertia I of the solutions associated to types (iii) and (iv)
for these values of ai and we have plotted it in Figure 5. We see that
the solutions of types (iv) always have I ∈ (I3,∞). For the solutions
of types (iii), I has a minimum at the point c = ξ = −0.18830 . . . with
I = I2 = 0.595186 . . ..

We note that if 2a1 = a2, then the solutions of type (iii) are in
fact collinear. After doing some computations, we see that 2a1 = a2

only when I = I5 = 1.001285 . . . (or equivalently, when c = η =
−0.0038257 . . .). Therefore, for I = I5, we obtain a collinear central
configuration which correspond to the one obtained in Lemma 9(a).
Moreover if 2a1 < a2, then there is no possible configurations for the
three particles in the plane satisfying the conditions of type (iii). We
can see that if I > I5, then 2a1 < a2. Therefore we have no solutions
of type (iii) for I > I5.

Solutions of types (i), (ii) and (v) correspond to equilateral triangles
and solutions (iii) and (iv) correspond to isosceles triangles.

In short, we have proved the following result.

articleclp.tex; 25/02/2004; 17:20; p.26



27

−0.25  −0.15  −0.05 0

 

0.7

 

0.9

 

1.1

I

η c

I3

β

I5

ξ

I2

Figure 5. Plot of the moment inertia I as a function of the value c ∈ (β, 0). The plot
with a dashed line corresponds to solutions of types (iv). The plot with continuous
line correspond to solutions of types (iii).

LEMMA 10. Depending on the values of the moment of inertia I we
have the following planar non–collinear central configurations of the
Lennard–Jones 3–body problem.

(a) If I ∈ (0, I1], then we have no central configurations.

(b) If I ∈ (I1, I2), then we have an equilateral triangle of type (i).

(c) If I = I2, then we have an equilateral triangle of type (i) and
an isosceles triangle of type (iii).

(d) If I ∈ (I2, I3), then we have an equilateral triangle of type (i)
and two isosceles triangles of type (iii).

(e) If I = I3, then we have an equilateral triangle of type (v) and
an isosceles triangle of type (iii).
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(f) If I ∈ (I3, I5), then we have an equilateral triangle of type (ii),
and two isosceles triangles of types (iii) and (iv) respectively.

(g) If I = I5, then we have an equilateral triangle of type (ii), an
isosceles triangle of type (iv) and a collinear equilateral central
configuration.

(h) If I ∈ (I5,∞), then we have an equilateral triangle of type (ii)
and an isosceles triangle of type (iv).

Statements (a), (b) and (c) of Theorem 7 follow easily from Lemma 10.
Analyzing the different distributions of the particles on the central

configurations described in Lemma 10, we see that each equilateral
triangle gives two different classes of central configurations and an
isosceles triangle gives six different classes of central configurations.

We remark that the equilateral triangle central configurations for
I > 1/2 bifurcate for I = 1/2 from the circle of equilibrium points of
the Lennard–Jones 3–body problem that we give in Theorem 6(b).

4.3. Spectral stability of the central configurations

Now we analyze the spectral stability of the relative equilibria associ-
ated to the central configurations given in Theorem 7.

Let x = (x1,x2,x3) be a central configuration of the Lennard–Jones
3–body problem. The relative equilibrium associated to x is spectrally
stable if the λ’s satisfying

det(B) = det[−D∇U(x) + (ω2 − λ2) Id − 2λωJ ] = 0 , (50)

are zero or purely imaginary (see Section 2 for details). Here

U(x) =
1

r12
12

− 2

r6
12

+
1

r12
13

− 2

r6
13

+
1

r12
23

− 2

r6
23

,

with rij = |xi − xj |, Id is the 6 × 6 identity matrix, and ω is given by
(35) or (47) in the collinear or in the planar case, respectively.

In particular, we obtain the following result. Statements (a) and
(c) are proved analytically. These two statements give the regions of
spectral stability or instability of the relative equilibria associated to
symmetrical central configurations, which are the more interesting from
a physical point of view. We also give some numerical evidences of
statements (b∗), (d∗) and (e∗).

THEOREM 11. The relative equilibria associated to central configura-
tions of the planar Lennard–Jones 3–body problem given by Theorem 7
satisfy the following.
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(a) The relative equilibrium associated to a collinear equilateral cen-
tral configuration is spectrally stable for I ∈ [i2, I6], with i2 =

1

4

(
5461

85

)1/3

= 1.00129 . . ., and unstable for I ∈ (I4, i2) ∪ (I6,∞).

(b∗) The relative equilibrium associated to a collinear isosceles cen-
tral configuration is unstable for I ∈ (I6,∞).

(c) The relative equilibrium associated to an equilateral triangle
central configuration is spectrally stable for I ∈ (I1, j2], with j2 =
1/(22/3) = 0.629961 . . ., and unstable for I > j2.

(d∗) The relative equilibrium associated to the isosceles triangle
central configuration T1 is unstable for I ∈ (I2, I5).

(e∗) The relative equilibrium associated to the isosceles triangle cen-
tral configuration T2 is spectrally stable for I ∈ [k1, k2]=[0.6115 . . . ,
0.6185 . . .] and unstable for I ∈ (I2, k1) ∪ (k2,∞).

Theorem 11 is shown in Subsections 4.3.1 and 4.3.2.
In Figure 2 we have represented the regions of spectral stability

for the relative equilibria associated to central configurations of the
Lennard–Jones 3–body problem with a bold line.

4.3.1. Collinear central configurations

Collinear equilateral central configurations
We choose a representant x of the collinear equilateral central config-
urations (see Lemma 9(a)) as follows. Set x = (x1,x2,x3) with x1 =

(
√

I, 0), x2 = (0, 0) and x3 = (−
√

I, 0) and I > I4 = 1

4

(
2731

43

)1/3

=

0.99745 . . .. For this central configuration we have that a12 = a23 =
√

I
and a13 = 2

√
I (see Lemma 9(a) again). Thus, from (35) we have that

ω = ± 3

32
√

2

√
−2731 + 2752 I3

I7
.

Then, solving (50) with respect to λ we obtain the following solutions

λ1 = 0 , with multiplicity 2,

λ2 = ±ω i , with multiplicity 2,

λ3 = ± 3

32

√
−13655 + 5504 I3

I7
,

λ4 = ±
√

−417789

2048 I7
+

3069

32 I4
− 9

√
83966 − 89983 I3 + 24512 I6

8
√

2 I7
,
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λ5 = ±
√

−417789

2048 I7
+

3069

32 I4
+

9
√

83966 − 89983 I3 + 24512 I6

8
√

2 I7
.

Now, we analyze if λi is purely imaginary or real for I ∈ (I4,∞) and
for i = 3, 4, 5.

Let f3(I) = −13655+5504 I3, then f3(I) = 0 if I = i1 = 1

4

(
13655

86

)1/3

= 1.35375 . . ., f3(I) < 0 if I ∈ (I4, i1), and f3(I) > 0 if I ∈ (i1,∞).
It is easy to see that 83966 − 89983 I3 + 24512 I6 > 0 for all I. Let

f4(I) =
−417789

2048 I7
+

3069

32 I4
− 9

√
83966 − 89983 I3 + 24512 I6

8
√

2 I7
,

and

f5(I) =
−417789

2048 I7
+

3069

32 I4
+

9
√

83966 − 89983 I3 + 24512 I6

8
√

2 I7
.

We see that f4(I) < 0 for I ∈ (I4,∞). Moreover f5(I) = 0 for I = i2 =

1

4

(
5461

85

)1/3

= 1.00129 . . . and I = i3 = 1

4

(
36409

313

)1/3

= I6; f5(I) > 0

for I ∈ (I4, i2), f5(I) < 0 for I ∈ (i2, i3), and finally f5(I) > 0 for
I ∈ (i3,∞).

In short, we have proved the following result, which corresponds to
statement (a) of Theorem 11.

LEMMA 12. The relative equilibrium solution associated to a collinear
equilateral central configuration of the Lennard–Jones 3–body problem
is spectrally stable for I ∈ [i2, I6], and unstable for I ∈ (I4, i2)∪(I6,∞).

Collinear isosceles central configurations
We do not have an analytic expression for the collinear isosceles central
configurations, so we cannot study their stability analytically. Never-
theless, we have numerical evidence that they are unstable because
equation (50) has one solutions with positive real part and another one
with negative real part. This shows statement (b∗) of Theorem 11. In
Figure 6 we have plotted the two solutions of (50) with non–zero real
part.

4.3.2. Planar central configurations
As usual, for a planar central configuration we understand a non–
collinear central configuration.

Planar equilateral central configurations
We choose a representant x of the planar equilateral central configura-
tions (see Subsection 4.2.2) as follows. Set x = (x1,x2,x3), with x1 =
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Figure 6. Real part of a solution of (50) for I ∈ (I6, 10) on the family of collinear
isosceles central configurations.

(
√

2I
3

, 0), x2 = (−
√

I√
6
,
√

I√
2
) and x3 = (−

√
I√
6
,−

√
I√
2
) and I > I1 = 1/2. For

this central configuration we have that r12 = r13 = r23 =
√

2I. Thus,
from (47), we have that

ω = ±3

4

√
−1

2 I7
+

4

I4
.

Then, solving (50) with respect to λ, we obtain the following solutions

λ1 = 0 , with multiplicity 2,

λ2 = ±ω i , with multiplicity 2,

λ3 = ±3
√
−5 + 16 I3

4 I7/2
,

λ4 = ±
√

−45

32 I7
+

9

2 I4
− 9

√
3
√
−I14 + 12 I17 − 32 I20

8
√

2 I14
,
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λ5 = ±
√

−45

32 I7
+

9

2 I4
+

9
√

3
√
−I14 + 12 I17 − 32 I20

8
√

2 I14
.

Now, we analyze if λi is purely imaginary or real for I ∈ (I1,∞) and
for i = 3, 4, 5.

Let g3(I) = −5 + 16 I3, then g3(I) = 0 if I = j1 = 1

2

(
5

2

)1/3

=

0.678604 . . ., g3(I) < 0 if I ∈ (I1, j1), and g3(I) > 0 if I ∈ (j1,∞).
Let g(I) = −I14 + 12 I17 − 32 I20,

g4(I) =

√
−45

32 I7
+

9

2 I4
− 9

√
3
√

g(I)

8
√

2 I14
,

and

g5(I) =

√
−45

32 I7
+

9

2 I4
+

9
√

3
√

g(I)

8
√

2 I14
.

We see that g(I) = 0 when I = 0, I = I1 and I = j2 = 1/(22/3) =
0.629961 . . ., moreover g(I) > 0 in I ∈ (I1, j2), and g(I) < 0 in I ∈
(j2,∞). On the other hand, g4(I) < 0 for I ∈ (I1, j2], g4(I) is complex

for I ∈ (j2,∞), g5(I) = 0 for I = j3 = 71/3

2 22/3 = 0.602536 . . ., g5(I) < 0
for I ∈ (I1, j3) ∪ (j3, j2] and g5(I) is complex for I ∈ (j2,∞).

In short, we have proved the following result, which corresponds to
statement (c) of Theorem 11.

LEMMA 13. The relative equilibrium solution associated to an equilat-
eral triangle central configuration of the Lennard–Jones 3–body problem
is spectrally stable for I ∈ (I1, j2] and unstable for I > j2.

Planar isosceles central configurations
Similarly to the collinear isosceles central configurations, we do not have
an analytic expression for the planar isosceles central configurations, so
we have studied their stability numerically.

The planar isosceles triangle central configurations of type (iii) are
unstable because (50) has one solution with positive real part and
another one with negative real part. This shows statement (d∗) of
Theorem 11. In Figure 7 we have plotted a solution of (50) with non–
zero real parts. We note that for our convenience, in Figure 7, we have
plotted a solution of (50) on the family of isosceles triangle central
configurations of type (iii) as a function of c instead I, where c and I
are related by the continuous line in Figure 5.

The planar isosceles triangle central configurations of type (iv) in
general are unstable, but there is a small region in which they are
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Figure 7. Real part of a solution of (50) on the family of isosceles triangle central
configurations of type (iii).

spectrally stable. This shows statement (e∗) of Theorem 11. In Fig-
ure 8 we have plotted the solutions of (50) with non–zero real parts
as a function of c, where c and I are related by the dashed line in
Figure 5. The region of spectral stability corresponds to c ∈ [γ1, γ2] =
[−0.1996 . . . ,−0.1942 . . .], or equivalently, to I ∈ [k1, k2] = [0.6115 . . . ,
0.6185 . . .].
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Figure 8. Real part of a solution of (50) on the family of isosceles triangle central
configurations of type (iv).

Appendix

The goal of this appendix is to prove the next result.

PROPOSITION 14. Let u = f(x) with x = (x1, x2, . . . , xn) and let
x1 = g1(y), x2 = g2(y),. . ., xn = gn(y) with y = (y1, y2, . . . , ym) and
m > n. If rank (A) = n, with

A =




∂x1

∂y1

. . .
∂xn

∂y1
...

. . .
...

∂x1

∂ym
. . .

∂xn

∂ym




,

then ∇f(x) = 0 if and only if ∇u(y) = 0.

articleclp.tex; 25/02/2004; 17:20; p.34



35

Proof: We know that

∂u

∂yi
=

∂f

∂x1

∂x1

∂yi
+ . . . +

∂f

∂xn

∂xn

∂yi
, i = 1, . . . , m,

then
∇u(y) = A ∇f(x) . (51)

We consider (51) like a system of linear equations. It is clear, from (51),
that if ∇f(x) = 0, then ∇u(y) = 0. The converse is only true when
the rank (A) equals the number of unknowns; that is, if rank (A) = n
which proves the result. 2

We note that if m = n, then Proposition 14 can be applied only when
x1 = g1(y), x2 = g2(y),. . ., xn = gn(y) defines a change of variables.
Finally, if m > n, Proposition 14 can be applied when rank (A) = n,
although x1 = g1(y), x2 = g2(y),. . ., xn = gn(y) does not define a
change of variables.
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