
On Cumulant Techniques in Speech Processing

Vladimir Zaiats and Jordi Solé-Casals
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Abstract. This paper analyzes applications of cumulant analysis in
speech processing. A special focus is made on different second-order
statistics. A dominant role is played by an integral representation for
cumulants by means of integrals involving cyclic products of kernels.
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1 Introduction

Different methods in speech recognition use linear and non-linear procedures
derived from the speech signal by matching the autocorrelation or the power
spectrum, [4, 6, 5]. Many of these methods perform well for clean speech, while
their performance decreases strongly if noise conditions mismatch for training
and testing.

We obtain a representation for cumulants of second-order statistics contain-
ing a special type of integrals that involve cyclic products of kernels. Our tech-
niques are based on [1–3, 7].

2 Integrals Involving Cyclic Products of Kernels

For m ∈ N, define Nm := {1, . . . , m}. Assume that (V,FV) is a measurable space
and µ1, . . . , µm are σ-finite (real- or complex-valued) measures on (V,FV). For
m ∈ N, m ≥ 2, consider the following integral:

x

I (K1, . . . , Km; ϕ) (1)

:=

∫

· · ·

∫

Vm

[

m
∏

p=1

Kp(vp, vp+1)

]

ϕ(v1, . . . , vm)µ1(dv1) . . . µm(dvm)

where vm+1 := v1. Integral (1) will be called an integral involving a cyclic product
of kernels (IICPK).

We will denote:
x
∏

p∈Nm

Kp(vp, vp+1) :=

m
∏

p=1

Kp(vp, vp+1)

with vm+1 := v1. This function will be called a cyclic product of kernels K1, . . . , Km.



3 Cumulants of General Bilinear Forms of Gaussian

Random Vectors

Suppose that m ∈ N; nj,1, nj,2 ∈ N, j ∈ Nm, and write

Xj,1 := (Xj,1(k), k ∈ Nnj,1
), Xj,2 := (Xj,2(k), k ∈ Nnj,2

), j ∈ Nm.

Assume that Xj,1 and Xj,2, j ∈ Nm, are real-valued zero-mean random vectors
and consider the following bilinear forms:

Uj :=

nj,1,nj,2
∑

k,l=1

aj(k, l)Xj,1(k)Xj,2(l), j ∈ Nm,

where
nj,1,nj,2

∑

k,l=1

:=

nj,1
∑

k=1

nj,2
∑

l=1

.

If we put

(aj(k, l)) :=







aj(1, 1) . . . aj(1, nj,2)
... . . .

...
aj(nj,1, 1) . . . aj(nj,1, nj,2)






, j ∈ Nm,

then for any j ∈ Nm

Uj = Xj,1 (aj(k, l))X⊤
j,1

= (Xj,1(1), . . . , Xj,1(nj,1))







aj(1, 1) . . . aj(1, nj,2)
... . . .

...
aj(nj,1, 1) . . . aj(nj,1, nj,2)













Xj,2(1)
...

Xj,2(nj,2)






.

Consider the joint simple cumulant cum (U1, . . . , Um) of the random variables
U1, . . . , Um assuming that this cumulant exists. By general properties of the
cumulants, we obtain

cum (U1, . . . , Um)

=

n1,1,n1,2
∑

k1,1,k1,2=1

· · ·

nm,1,nm,2
∑

km,1,km,2=1









m
∏

j=1

aj(kj,1, kj,2)





× cum (Xj,1(kj,1)Xj,2(kj,2), j ∈ Nm)



 .

Since any general bilinear form can be represented as a sum of diagonal bilinear
forms, the following result holds.



Theorem 1. Let m ∈ N; nj,1 = nj,2 = nj ∈ N, j ∈ Nm. Assume that (Xj,1,

Xj,2, j ∈ Nm) is a jointly Gaussian family of zero-mean random variables and
suppose that for any j, ̃ ∈ Nm and any α, α̃ ∈ {1, 2} there exists a complex-valued

measure M
α,α̃
j,̃ such that

EXj,α(k)X̃,α̃(k̃) =

∫

D

ei(k−k̃)λM
α,α̃
j,̃ (dλ).

Then

cum (U1, . . . , Um)

=
∑

l∈Lm(nj ,j∈Nm)

∑

(,α)∈{P,2}m−1

∫

· · ·

∫

Dm





x
∏

p∈Nm

K(,α,l)
p (vp − vp+1)





× µ
(,α,l)
1 (dv1) . . . µ(,α,l)

m (dvm),

that is cum (U1, . . . , Um) is represented as a finite sum of integrals involving
cyclic products of kernels. Here,  := (j1, j2, . . . , jm), α := (α1, α2, . . . , αm),
jm+1 = j1 = 1, αm+1 = α1 = 2, and the sum

∑

(,α) is extended to all

((j2, . . . , jm), (α2, . . . , αm)) ∈ Perm{2, . . . , m} × {1, 2}m−1. (2)

The notation (, α) ∈ {P, 2}m−1 for fixed j1 = 1 and α1 = 2 is equivalent to (2).

Here, we put Z|nj−1| := {−(nj − 1), . . . ,−1, 0, 1, . . . , nj − 1} for j ∈ Nm and
Lm(nj , j ∈ Nm) := Z|n1−1| × . . .× Z|nm−1|.

4 Applications

We apply the above obtained integral representations to some problems in speech
recognition. Let us consider a setting where sample correlograms and sample
cross-correlograms of stationary time series appear.

Let Y (t) := (Y1(t), Y2(t)), t ∈ Z, be a weak sense stationary zero-mean
bidimensional vector-valued stochastic process with real-valued components whose
matrix-valued autocovariance function is as follows:

CY (t) :=

(

C11(t) C12(t)
C21(t) C22(t)

)

, t ∈ Z,

and let

FY (λ) :=

(

F11(λ) F12(λ)
F21(λ) F22(λ)

)

, λ ∈ [−π, π],



be the matrix-valued spectral function of the vector-valued process Y (t), t ∈ Z.
Let γ, δ ∈ {1, 2}. Consider the following random variables:

Ĉγδ(τ ; N) :=

N
∑

k=1

bγδ(k; τ, N)Yγ(k + τ)Yδ(k), τ ∈ Z, N ∈ N,

where bγδ(k; τ, N), k ∈ NN , τ ∈ Z, N ∈ N, are non random real-valued weights.
It is often assumed that

N
∑

k=1

bγδ(k; τ, N) = 1, τ ∈ Z, N ∈ N. (3)

For example, let N ∈ N be given and let

bγδ(k; τ, N) =
1

N
, k ∈ NN , τ ∈ Z.

Then (3) holds and

Ĉγδ(τ ; N) =
1

N

N
∑

k=1

Yγ(k + τ)Yδ(k), τ ∈ Z, N ∈ N. (4)

The following sample correlograms are also often used in spectral analysis and
speech recognition as estimates of Cγδ(·), γ, δ ∈ {1, 2} :

C̃γδ(τ ; N) =











1

N

N−|τ |
∑

k=1

Yγ(k + |τ |)Yδ(k), for |τ | < N ;

0, for |τ | ≥ N,

˜̃
Cγδ(τ ; N) =











1

N − |τ |

N−|τ |
∑

k=1

Yγ(k + |τ |)Yδ(k), for |τ | < N ;

0, for |τ | ≥ N.

Let γ, δ ∈ {1, 2}, N ∈ N, m ∈ N, and τj ∈ Z, j ∈ Nm. Put

cum
(N)
γδ (τ1, . . . , τm) := cum(Ĉγδ(τj ; N), j ∈ Nm);

nj = N, j ∈ Nm; aj(k) = bγδ(k; τj , N), k ∈ NN , j ∈ Nm;

Xj,1(k) = Yγ(k + τj), k ∈ NN , j ∈ Nm;

Xj,2(k) = Yδ(k), k ∈ NN , j ∈ Nm.

Under these conditions the results obtained in Section 3 can be applied to the
cumulants. These results imply that the Gaussian component of the cumulant

cum
(N)
γδ (τ1, . . . , τm) is represented as a finite sum of integrals involving cyclic

products of kernels.
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3. Grenander, U.; Szegő, G. : Toeplitz forms and their applications. University of
California Press (1958)

4. Makhoul, J.: Linear prediction: A tutorial review. Proc. IEEE, 63, 561–580 (1975)
5. Nemer, E., Goubran, R., Mahmoud, S.: Speech enhancement using fourth-order

cumulants and optimum filters in the subband domain. Speech Comm., 36, 219–
246 (2002)

6. Paliwal, K. K., Sondhi, M. M.: Recognition of noisy speech using cumulant-based
linear prediction analysis. Proc. ICASSP, 429–432 (1991)

7. Sugrailis, D.: On multiple Poisson stochastic integrals and associated Markov semi-
groups. Probab. Math. Statist., 3, 217–239 (1984)


