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By Maria Riera PIQUÉ BORRÀS 

 
Breast cancer is the most common diagnosed cancer and the leading cause of cancer 

death among females worldwide. It is considered a highly heterogeneous disease and it must 

be classified into more homogeneous groups. Hence, the purpose of this study was to classify 

breast tumors based on variations in gene expression patterns derived from RNA sequencing by 

using different class discovery methods. 42 breast tumors paired-samples were sequenced by 

Illumine Genome Analyzer and the data was analyzed and prepared by TopHat2 and htseq-count. 

As reported previously, breast cancer could be grouped into five main groups known as basal 

epithelial-like group, HER2 group, normal breast-like group and two Luminal groups with a 

distinctive expression profile. Classifying breast tumor samples by using PAM50 method, the 

most common subtype was Luminal B and was significantly associated with ESR1 and ERBB2 high 

expression. Luminal A subtype had ESR1 and SLC39A6 significant high expression, whereas HER2 

subtype had a high expression of ERBB2 and CNNE1 genes and low luminal epithelial gene 

expression. Basal-like and normal-like subtypes were associated with low expression of ESR1, 

PgR and HER2, and had significant high expression of cytokeratins 5 and 17. Our results were 

similar compared with TGCA breast cancer data results and with known studies related with 

breast cancer classification. Classifying breast tumors could add significant prognostic and 

predictive information to standard parameters, and moreover, identify marker genes for each 

subtype to find a better therapy for patients with breast cancer. 

 

http://www.uvic.cat/
http://www.omicsuvic.net/
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1. Introduction 

 
Breast cancer is the most common diagnosed cancer and the leading cause of cancer 

death among females worldwide, accounting for 25,2% (1,7 million) of the total cancer cases 

[1] and 6.4% (522,000) of the cancer deaths in 2012 [2]. 

Incidence rates are generally higher in socioeconomically well-developed world regions, 

whereas rates in less developed regions are relatively low but rising. This international variation 

reflects multiple factors, including differences in reproductive and hormonal factors, 

population structure, population life expectancy, environment, and the availability of early 

detection services [3,4]. Physical inactivity and alcohol consumption also increases the risk of 

breast cancer [5,6]. 

 Although significant advances in diagnosing and treating breast cancer have been found, 

several unresolved clinical problems still remain. Breast cancer is a heterogeneous group of 

neoplasms stemming from the epithelial cells lining the milk ducts. The high heterogeneity in 

breast tumors at molecular and clinical level emphasizes the importance of studying gene 

pattern expression. Therefore, there has been extensive effort to clear up the molecular drivers 

of this disease, which has led Perou et al.  [7] to the classification of breast cancer into, initially, 

four intrinsic subtypes based on gene expression profile or immunohistochemical (IHC) 

characteristics, called luminal, basal-like, HER2 enriched and normal-like. Subsequent studies 

have led to the sub-stratification of luminal breast cancers into luminal A and luminal B, 

followed by the recently identified Claudin-low subtype, a sub-stratification of Basal-like 

subtype [17]. These subtypes (Table 1.1) reflect clinical phenotypes based on estrogen receptor 

(ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). 

 ER is a steroid receptor transcription factor that remains the most informative biomarker 

in breast cancer, defining both luminal tumor-types [8]. More than 75% of tumors are ER+ and 

tend to be less aggressive and better prognosis than other subtypes. PR is an estrogen-regulated 

gene, expressed by >50% of ER+ tumors [9-11]. Tumors that co-express ER and PR have more 

favorable clinicopathological parameters, and luminal A tumors are more likely to express both 

compared with luminal B. 

 Human epidermal growth factor receptor 2 (HER2) belongs to the epidermal growth 

factor receptor family. Its over-expression occurs in approximately 20% [12,13] of breast cancer 

and half of which are ER-negative [14,15]. Biologically, the resultant protein of HER2 up-

regulation is associated with increased cell proliferation and motility, increased angiogenesis 

and tumor invasiveness and decreased apoptosis [16]. 

 Triple negative breast cancer (TNBCs) is another type of breast cancer, which do not 

express ER, PR nor HER2. In general, approximately 15% of breast cancer fall into this group, 

including basal-like tumors subtype. Compared with other subtypes, TNBCs is an aggressive 

form of breast cancer with limited treatment options with a poorer overall prognosis. 
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Other biomarkers have been studied and have potential to be biologically informative and 

clinically useful, such as Ki67, cytokeratin 5/6/17, EGFR and SLC39A6, among others. Their 

high expression have been associated with some subtypes of breast cancer [19]. 

Given the importance of the classification of breast cancer into useful clinically subtypes, 

the purpose of this study was to classify 42 human breast tumors analyzed by RNA-sequencing 

based on variation in their gene expression patterns. In this study, we wanted to describe the 

results obtained by RNA-seq for detecting and measuring mRNA expression levels and comparing 

expression levels across samples. Furthermore, we proposed to compare the obtained results 

with the same study made for 1100 breast tumor samples of TGCA data. Finally, finding 

differential expressed genes in each subtype was another aim of our study, as well as to find 

the gene ontology annotations for each subtype list of DEGs.  

Table 1.1. Intrinsic subtypes of breast cancer. Table based on table 1 of Parvin F.Peddi[18] 
Intrinsic 
subtypes 

Characteristics Phenotype 

Luminal A High level expression of ER and ER-associated 
genes, associated with a favourable clinical 
outcome. Similar expression than the luminal 
epithelium of the breast. 

ER+ and/or PR+; HER2- 

Luminal B Low level expression of ER and ER-associated 
genes, associated with a higher tumour cell 
proliferation rate and a worse clinical 
outcome compared to the luminal A subtype. 

ER+ and/or PR+; HER2+ 

HER-2 
Enriched 

High level expression of HER2 and GRB7, 
associated with a poor outcome before the 
era of HER2-targeted agents. 

ER-,PR-, and HER2+ 

Basal-like Similar expression to that of the basal 
epithelial cells. 
Positive for the expression of basal 
cytokeratin and basal markers (CK5/6, cK14, 
CK17), but negative for the expression of 
luminal- and HER2-related genes, associated 
with a high tumour cell proliferation rate and 
a poor clinical outcome. 

ER-, PR-, HER2-, cytokeratin 5/6+ 
and/or HER1+, EGFR+. 
CK15, CK17, vimentin and c-kit over-
expression. 

Normal-like Similar expression compared to normal 
breast, suspicious for normal cell 
contamination. 

Negative for all main markers (ER-, 
PR-, HER2-, cytokeratin 5/6- and 
EGFR-). 
Expression of CK8/18 

Claudin-low 
(Basal-like 
subgroupe) 

Lack the expression of claudin proteins that 
are implicated in cell-cell adhesion, but high 
expression of EMT and putative stem cell 
markers, associated with ER and HER2 
negativity but low in basal cytokeratin 
expression. 

ER-, PR-, HER2-, and/or cytokeratin 
5/6+ 



Maria Riera Piqué Borràs 

   

7 
 

2. Materials and methods 

Patients  
We used a data set of breast carcinoma paired samples from 42 women. The gene-

expression data set was derived by researchers from Hospital Vall d'Hebron using RNA-seq 

analysis (IlluminaHiSeq). Clinical information about stage of breast cancer and received therapy 

was not available. This study also included the mRNA expression data of 1100 breast invasive 

carcinomas extracted from The Cancer Genome Atlas. 

RNA sequencing  
DNA from each sample was sequenced using the Illumina Genome Analyzer Sequencing 

Technology. We obtained a library of 42 paired-end samples, 97 bp reads per sample. Reads 

were processed using Illumina FASTQ filter (Illumina CASAVA package), which performed a 

quality control of the obtained reads. This provided an average of 41 million post-quality-

control reads, for approximately 7 GB of sequence per sample.  

After quality control, the goal was to count the number of reads that mapped to each 

annotated gene in the human genome.  

Sequence Alignment 
In order to quantify genes, the sequencing reads were aligned against the whole genome 

reference using R language to create the UNIX commands to call TopHat2 (R script in supporting 

information). TopHat2 is a spliced aligner for RNA-seq that combines the ability to identify 

novel splice sites with direct mapping to known transcripts, producing sensitive and accurate 

alignments [20]. Bowtie2 [21] is the core read-alignment engine of TopHat2, which is used to 

discover indels (insertions and deletions) caused by sequencing errors. As a result, BAM files 

were created comprising the mapped reads. 

Statistical Analysis 

Expression Analysis                   
BAM files needed to be transformed using UNIX commands to call SAMtools (commands 

in supporting information) before to be used with the feature-counting software of htseq-count. 

Given the transformed BAM file and a GTF file with gene models, htseq-count counted for each 

gene how many aligned reads overlap its exons [22], using also R-generated UNIX commands 

(commands in supporting information). Minimum score of 10 reads was set to estimate 

expression at the mRNA level.  

A total of 23,710 genes were obtained. EdgeR R package 

(http://bioinf.wehi.edu.au/edgeR) was applied to prepare the table of counts and filter out 

weakly expressed and noninformative features (R script in supporting information).     

     

http://bioinf.wehi.edu.au/edgeR
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Normalization  
The RNA-seq data has demonstrated unwanted and obscuring variability even though 

RNA-seq technology has reduced variability in comparison to microarrays.  Therefore, 

normalization of RNA-seq data is required where the underlying distribution of expressed genes 

between samples is markedly different. We started by using RPKM [24] and TMM normalization 

[23], which both normalize considering the library size. However, it has been demonstrated 

that the number of reads from a given gene is not simply determined by the gene expression 

level, and it has been shown that GC-content influences a number of DNA-related 

measurements. For that reason, we finally used CQN normalization, which removes the GC-

content effect [25]. 

Previous to normalization, tables of counts were filtered out according to gene ensembl 

annotation. Those genes without annotation, without % of GC content or with duplications were 

delated. Those obtained genes were again filtered out by filterCounts() function of tweeDEseq 

R package [39]. The criteria was to keep those genes which met a minimum mean of counts per 

million (0.9) occurring in a minimum number of sample. 

Class Discovery  
Class prediction was performed by using three wide strategies: unsupervised clustering, 

dimension reduction techniques and supervised clustering. Unsupervised analyses aim to 

identify intrinsic classes in unlabeled data by grouping together samples with similar gene 

expression and calculating the matrix of distances between them. Algorithms that we used were 

the hierarchical clustering [26] and k-means [27] (R scripts in supporting material). The 

hierarchical clustering algorithm organizes the experimental samples only on the basis of 

similarity in their pattern of expression. 

Dimension reduction techniques aim to combine the features in a way to summarize 

their correlation into a small number of components [28]. We used two methods in this category, 

principal components analysis (PCA) [29] and non-negative matrix factorization (NMF) [30] (R 

scripts in supporting material). NMF has been successful in identifying homogenous clusters of 

samples due to the fact that the components are forced to have non-negative values providing 

a better interpretation of the results and groups of samples are easily identified.  

As a supervised clustering, we used a risk predictor of breast cancer based on a gene 

expression assay of 50 genes (PAM50) (Table 1 in supporting information) [31]. The subtype 

classification is based on similarities between a given case and molecular subtype centroids 

(mean expression profiles for each of the five molecular subtypes). 

Differential Expressed Genes  
To identify differential expressed genes for each obtained subtype and obtain their 

phenotypes, we applied a recently described analytical R package called DESeq2 [32] (R script 

in supporting material). This package lets to perform a likelihood ratio test, in order to compare 

the fit of two models (null model and alternative model) and express how many times more 

likely the data is under one model than the other.  
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Using this package, we were able to get the most significant genes for each subtype 

correcting for Bonferroni [33]. 

 Furthermore, we compared each subtype against all the other gene expression data, as 

there was just two groups (for example: Basal gene expression against all subtypes). To perform 

it, we also used likelihood ratio test, as well as the Wilcoxon test, a non-parametric statistical 

test used to compare two related samples, to verify the results.  

Once the DE genes list was obtained for each subtype, we applied the same process to 

TGCA samples, to compare with our data results. 

Enrichment Analysis     
The results of DESeq2 analysis was a list of differential expressed genes for each subtype. 

In many cases, the list of DEGs is not enough accurate to define their biologic processes. 

Therefore, additional biological knowledge is needed to enhance the interpretation of such a 

list of genes. The biological interpretation was performed using enrichment analysis, the 

identification of biological functions and processes that were over/under-represented in the 

given list of genes. A popular choice for gene sets are genes collected under Gene Ontology 

(GO) terms, which are considered more important if many genes in the group are annotated to 

GO terms close in graph topology.  

In our study, we used GOstats R package [34] (R script in supporting material) to obtain 

GO terms specifically for each subtype. The GOstats package uses the hypergeometric test to 

calculate the probability that a certain GO term occurs X times just by chance in the list of 

DEGs. Finally, we grouped the most important GO terms using REVIGO tool 

(http://revigo.irb.hr/).  

 

 

 

 

 

 

 

 

 

http://revigo.irb.hr/
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3. Results and Discussion 

Normalization of Row Data  
Expression genes of our 42 breast tumors were previously normalized based on RPKM, 

TMM and CQN normalizations. Firstly, the table of counts of each breast tumor was filtered out 

as is described above. 21959 genes were kept after being filtered by gene annotation and gene 

duplications. After being filtered by filterCounts() function, 15855 genes were kept.  

Once we had tables of counts filtered, we applied the three normalization and 

performed MA plots (edgeR package) to check which normalization had obtained better results 

and the slope of the line was closer to 1 (Fig.1, published as supporting information). Knowing 

that CQN normalization was better for counts data and with MA obtained plots of CQN, we 

decided to perform next steps of our study with data normalized by CQN. Furthermore, 

heatmaps obtained using hierarchical clustering classified clearly better our 42 tumors using 

CQN normalization. 

Classification of Breast Tumors in Vall d'Hebron Data       

Identification of Tumor Subtypes by Using Unsupervised Clustering 
As it is explained before, we used hierarchical clustering and k-means to classify breast 

tumor in their intrinsic subtypes. The hierarchical clustering algorithm summaries relationships 

between samples in a dendogram and the gene expression is visualized by a heatmap. We 

plotted the data obtained after the three normalizations (Figs. 2 and R script, published as 

supporting information). CQN data was the best classified by hierarchical clustering (Fig.2C in 

supporting information), obtaining six groups without a clear gene pattern classification, which 

were difficult to classified between the intrinsic subtypes. Comparing those groups with the 

obtained classification by Vall d’Hebron researchers (Table 2, published as supporting 

information), some HER2 and Basal-like samples were well classified, but both Luminal subtypes 

were not visibly differentiated, being mixed between both groups and some HER2 samples. 

Normal-like sample were well identified, except that they were grouped together with Basal-

like and HER2 samples.  

Table 3.1 - Summary of subtype classification for each method 

Method Luminal 
A 

Luminal 
B 

HER2 Basal-like Normal-
like 

No 
classified 

% 
different 
classified 

K-means 14 12 4 7 5 0 40% 

PCA 10 15 7 7 3 0 19% 

NMF 12 5 14 6 0 4 26% 

PAM50 11 12 9 7 3 0 12% 

Vall 
d'Hebron  

12 10 11 7 2 0   -                    

  

By using k-means, we obtained the most different classification (40%) comparing with 

Vall d’Hebron classification (Table 3, published as supporting information). As showed in Table 
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3.1, 10 tumors were classified as Luminal A, 15 as Luminal B, 7 as HER2, 7 as Basal-like and 5 

as Normal-like. Most of different grouped samples were Luminal A grouped as Luminal B, HER2 

as Luminal B, and the other way around, due to Luminal A and B share features, just with some 

different gene expression such as ERBB2 gene, which is as well shared with HER2, making these 

subtypes difficult to be distinguished.  

Identification of Tumor Subtypes by Using Dimension Reduction 
Techniques 

As depicted in Fig. 3 in supporting information, Principal Component Analysis grouped 

samples in five clusters. Some samples were not clear discriminated, but comparing the results 

with those obtained by Vall d'Hebron researchers, the classification was quite similar although 

some HER2 and Luminal B samples were mixed. These two groups usually have difficulties to 

be well classified due to the fact that both have a high expression of HER2 gene. 

We employed the NMF R-package [36] to perform non-negative matrix factorization. To 

carry out that analysis, we estimated the factorization rank using the cophenetic correlation 

coefficient and performing 40 runs, because between 30 and 50 runs is considered sufficient to 

get a robust estimate of the factorization rank. Brunet et al. suggested choosing the smallest 

value of r for which this coefficient starts decreasing. In our case, we chose the rank number 2 

as the smallest value. As a result, we obtained also 5 clusters (Fig. 4, published as supporting 

information), and comparing with the known classification, Basal-like group was well classified 

and HER2 and both luminal groups had some variations. Normal-like samples were not 

discriminated, and four samples which were classified in different subtypes in Vall d'Hebron 

classification and the other used methods, were not classified using NMF technics.      

Identification of Tumor Subtypes by Using Supervised Clustering 
Using PAM50 classification, we obtained the strongest agreement with VdH classification 

with just 5 samples (12%) different classified (Table 4, published as supporting material), and 

it was used to perform the next steps of the study. The training set was comprised of 11 Luminal 

A, 12 Luminal B, 9 HER2, 7 Basal-like and 3 Normal-like (Table 3.1). The five different classified 

samples were grouped as luminal B instead of HER2 and the other way around, and one sample 

as Normal-like instead of luminal A as VdH classification.   

Figure 3.1 displayed the heatmap of the 50 genes of PAM50 (4 genes of them were not 

in our data: CDCA1, KNTc2, MIA and ORC6L). The tumors were separated in two main branches. 

The left branch contained two subgroups (Normal-like and Luminal A, yellow and blue line 

respectively), characterized by high expression of different cytokeratins (5,17 and 14) and low 

expression of most of the other PAM50 genes. Lumianl A also had more expression in ESR1, PgR 

and SLC39A6 genes, more normally high expressed in this subtype. The right branch is composed 

of three subgroups (Basal, HER2 and Luminal B, red, green and grey line respectively). The 

clearest discrimination of that branch was tumors that had EGFR, KRT5/17 and FOXC1 genes at 

high level and ESR1, PgR and ERBB2 at low level, which comprised basal-like subtype, between 

those tumors that had a high expression of ERBB gene, comprising HER2 subtype and some 

Luminal B subtype. Basal-like samples also had high expression of EGFR, an epidermal growth 

factor receptor known as over-expressed in this subtypes [38]. 
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HER2 and Luminal B subtypes were the least well discriminated, due to both expressed 

ERBB2 gene (HER2) and phenotypes were not very clear. It was known that Luminal B had a high 

expression of ESR1, ERBB2 and/or PgR genes, and HER2 subtype expressed ERBB2 also greatly 

but ESR1 and PgR genes low expressed (Perou C. et al). Nevertheless, some of our samples 

displayed different phenotypes like low expression of ERBB2 gene or high expression of ESR1 

and ERBB2 although the sample was classified as HER2, more normal for Luminal B subtype. 

Moreover, comparing VdH classification and our PAM50 classification, these two subtypes were 

those ones which differed more between both classifications. The Table 5 in supplementary 

material shows those samples different classified. To further explore those differences between 

classifications, we studied gene expression of genes known as associated with HER2 or Luminal 

B [37]. GRB7 gene is normally high expressed in HER2 subtypes and CCNE1 gene commonly in 

Luminal B. Nevertheless, B13-370 and B13-395 samples, classified as Luminal B subtype using 

PAM50, had a phenotype more common for HER2 (HER2+, ESR1-, PgR+, GRB7+ and CCNE1-). 

B13-377 and B13-385 had an overexpression of all five genes (HER2+, ESR1+, PgR+, GRB7+, 

CCNE1+ ), making them difficult to be correctly classified.  

Tumor samples included in the normal breast-like group showed high expression of a 

gene cluster associated with Basal-like subtype (cytokeratins 5, 17 and 14), and had the most 

of the other PAM50 genes under-expressed. These results were also obtained by Sorlie, T. et al. 

study, which explained that normal-like subtype showed strong expression of basal epithelial 

genes and low of luminal epithelial genes. B13-371 normal-like sample was classified as Luminal 

A for VdH classification (Table 5). Exploring its phenotypes, ESR1 gene had a low over-

expression and PgR gene was over-expressed, two luminal epithelial genes which normally were 

under-expressed in normal-like subtype. These over-expression could be the reason why VdH 

researchers grouped it as Luminal A. However, Bastien et al. study also classified as normal-

like subtype samples with similar phenotypes than B13-371; PgR and Basal genes high expressed, 

and almost the rest of PAM50 genes under-expressed.  

The group of 11 tumors pertaining to Luminal A subtype demonstrated the highest 

expression of the ESR1 gene, PgR gene, estrogen-regulated LIV-1 (SLC39A6), N-

acetyltransferase 1 (NAT1), melanophilin (MLPH) and Microtubule-Associated Protein Tau 

(MAPT) [38]. Bastien et al. study had similar gene expressions in Luminal A subtype, with low 

expression in those genes high expressed in Basal-like subtypes, and high expression for those 

low expressed in the same group. B13-409 sample was classified in Luminal A subtype by PAM50, 

but in the heatmap it had a stronger relationship with Luminal B samples, due to its high 

expression of almost all PAM50 genes and under-expression of some basal epithelial genes.    

In TGCA data (1100 samples) classified by PAM50,  we obtained 18% of basal-like, 55% of 

Luminal A, 15% of Luminal B, 9% of Her2 and 1% of Normal-like subtype (Table 6, published as 

supporting information).    

 

 

 



Maria Riera Piqué Borràs 

   

13 
 

 

 

Figure 3.1 – Heatmap PAM50 genes 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. Hierarchical clustering of 42 breast tumor normalized data for the PAM50 classifier genes. 

Five clusters were identified and designated as Normal-like (yellow), Luminal A (light blue) Basal-

like (red), HER2 (green) and Luminal B (grey). Some Luminal B and HER2 samples were classified 

mixed between both subtypes.  
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Differential Expressed Genes      
Applying the likelihood ratio test (LRT) of DESeq2 package and a Bonferroni correction 

of 3.153579e-06 (0.05/15855), we obtained 1386 differential expressed genes for all subtypes. 

Figure 5 published in supporting information shows the classification of our data with just those 

significant genes. The most significant genes were from Basal-like subtype (Table 7 in 

supporting information), which also was the most different subtype. Figure 6 published in 

supporting information displays more important genes to define Basal-like phenotype (ERBB2-, 

ESR1-, FOXC1+, KRT5+, KRT17+ and SOX10+). EGFR normally overexpressed in Basal-like and 

PgR over-expressed in Luminal subtypes were not enough significant to be discriminated.  

To analyze further DEGs, we performed the LRT in all samples without Basal-like subtype 

and we obtained a better classification of samples and their gene patterns (Figure 7, published 

as supporting information). 670 DEGs were kept. Plotting the gene expression of obtained DEGs, 

we could check that the most important genes had a higher expression for their corresponding 

subtype (Figure 3.2). Other important gene expressions are published in supporting information 

(Figure 8). Figure 3.2 – Examples of gene expressions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.2. ERBB2, ESR1 and KRT5 gene expression for HER2, Luminal A and B, and Normal-like. All 

three genes had the expected expression. ERBB2 over-expressed in HER2, ESR1 and SLC39A6 in both 

Luminal subtypes and KRT5 in normal-like subtype. Red arrows show some outliers which could make 

difficult to discriminate DEG genes.  
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Likelihood ratio test performed considering two groups (gene expression of one subtype 

against the rest of subtypes), resulted in DEGs list for each subtype (Table 8 in supporting 

information). Peculiarly, the most important genes for each subtype were not discriminated as 

DEGs. For instance, ERBB2 were not in DEG list of HER2, ESR1 was neither in Luminal A nor 

Luminal B list. Compering those results with those obtained with Wilcoxon test, we could affirm 

that those genes defined as phenotypes of at least one of the intrinsic subtypes were not enough 

strong significant (Table 9 in supporting information). An explanation of those results could be 

that some samples were not well classified, causing that some important genes for one subtype 

were shared between more than one subtype (Fig. 3.2, red arrows show outliers), being non-

significant for a specific group.  

For TGCA data, LRT was also performed, and 13224 DEGs were obtained. Figure 3.3 

displays those 1053 DEGs shared between our data of 42 breast tumor and TGCA data. ESR1 was 

also high expressed in Luminal A and B as we obtained in our data, and FOXC1 was high 

expressed in Basal-like samples. Nevertheless, important genes such as ERBB2 and keratins 5/17, 

which are essentials as phenotypes of some intrinsic subtype, were not in TGCA data. In Figure 

9 in supporting information some genes with same gene expression as our data were displayed.   

Figure 3.3 – Venn diagram of shared 
genes 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enrichment analysis     
 Once a DEG list for each subtype was obtained, we carried out a biological interpretation 

(Figure 10, published as supporting information). For HER2 genes, NADPH regeneration, 

negative regulation of protein glutathionylation and borate transmembrane transport were the 

main obtained GO terms. DEGs for Luminal A subtype got as main GO terms those associated in 

DNA metabolism and organelle assembly, and some related in regulation of cell division and 

chromosome segregation. Luminal B DEGs were related in regulation of intracellular transport, 

stem cell division and biological adhesion. For Basal-like, the main GO terms were cell 

proliferation and positive regulation of mitotic cell cycle. Finally, Normal-like subtype got GO 

terms associated in positive regulation of synaptic transmission, cellular component assembly 

and response to temperature stimulus, among others.  

Fig. 3.3. Venn diagram shows those genes shared between TGCA data and our data. TGCA data got 13224 

DE genes, and our data 1386 DE genes, which 1053 were shared.  
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4. Conclusion  
 

The ability to classify different subtypes of breast tumors by identifying gene expression 

profiling captures the molecular complexity of tumors. By using PAM50 classification method, 

we have found that Luminal A subtype tumors are likely to be associated with high expression 

of ESR1, a steroid receptor transcription factor, and PgR, an estrogen-regulated gene, among 

other genes such as NAT1, SLC39A6 and GATA3. Luminal B subtype tumors are associated with 

a gene expression pattern similar than Luminal A, with high expression of ESR1 and some PgR. 

Furthermore, human epidermal growth factor receptor 2 (ERBB2) is also high expressed in 

Luminal B, as well as in HER2 subtype tumors, which also have a significant high expression of 

Cyclin E1 (CCNE1). By contrast, Normal-like and Basal-like, both triple negative breast cancer 

group, have a low expression of ESR1, PgR and ERBB2 genes. Both groups have cytokeratins 5 

and 17 high expressed. Normal-like subtype tumors are also associated with a significant high 

expression of cytokeratins 14, and Basal-like subtype tumors have significant gene expression 

of FOXC1 and Sox10.  

To conclude, classifying breast tumors enables identifying of combinations of marker 

genes for each subtype and provides a more refined stratification of patients, representing a 

tremendous opportunity to find a better therapy for them. Furthermore, this study sets the 

first step for more elaborate studies in which many breast tumors need to be examined, 

allowing to identify expression motifs that represent important clinical phenotypes.  
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6. Supporting Information 

 
Figure 1 – MA plots 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. MA-Plots of raw data, TMM, CQN and RPKM data normalization of two samples of our data. 

Raw data plot showed that data required to be normalized because the underlying distribution 

of expression between two samples is noticeably different. CQN normalization got the best 

distribution.  
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Figure 2 - Hierarchical Clustering   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A                             

Figure 2A: Variation in expression of 15,855 genes in 42 experimental samples. Data is presented 

in a matrix format: each row represents a single gene, and each column an experimental sample. 

The data has been normalized by RPKM normalization method, and the dendrogram did not show 

any good classification. 
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B                            

Figure 2B: Variation in expression of 15,855 genes in 42 experimental samples. Data was also 

presented in a matrix format. The data has been normalized by TMM normalization method, and 

the dendrogram displayed a better classification than the data obtained by RPKM normalization, 

however, different expression patters were not able to be discriminated.  
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C                           

Figure 2C: Variation in expression of 15,855 genes in 42 experimental samples. Data was also 

presented in a matrix format. The data has been normalized by CQN normalization method, and 

a gene pattern expression was able to be differentiated.  
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Figure 3 – PCA Classification 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Principal Component Analysis allowed to group five cluster. Compared with VdH 

classification, most of samples were well classified. Basal-like subtype (green) was well 

discriminated, Her2 (brown) and Luminal B (light blue) were mixed, Luminal A (yellow) and 

Normal-like (dark blue) subtyped were greatly classified.  

 

PCA of log counts 
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Figure 4 – NMF Classification 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. NMF method classified the 42 breast tumors in 5 clusters. A)Heatmap obtained using NMF. 

Classification was mixed: B)Luminal A (red) and Basal-like (green) were similar classified as VdH 

classification, Her2 and Luminal B subtypes were mixed in two groupd (light blue and black), 

and a group of samples (blue) was not classified in any group.  

 

A      B                      
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Figure 5 – Classification by the most significant genes 
 

 

 

 

 

 

 

 

 

Fig. 5. Hierarchical clustering of 42 breast tumor normalized data for 1386 significant genes. 

The five subtypes classified by the most significant genes were clustered slightly different than 

PAM50 classification.  
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Figure 6 – Boxplot of important genes of Basal-like 
phenotype 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Example of 6 important genes to define Basal-like phenotype. FOXC1, SOX10, KRT5 and 

KRT17 were over-expressed and were the most significant genes for all subtypes. ERBB2 and 

ESR1 were under-expressed.  
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Figure 7 – Significant Genes Without Basal-like Subtype 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Hierarchical clustering of all subtype samples without Basal-like subtype. The four 

subtypes were classified better considering those 670 significant genes than with Basal-like 

significant genes.  Normal-like subtype was designed as yellow, Luminal A as light blue, HER2 as 

green and Luminal B grey. Three Luminal B samples had a gene expression more similar with 

HER2 samples than Luminal B subtype (red), which possibly were not well classified.  
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Figure 8 – Other genes over-expressed for some subtypes 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. KRT15 is a gene known as over-expressed in Normal-like subtype and also in Basal-like. 

Cyclin E1 (CCNE1) is over-expressed in HER2 as D. Botstein et al result [37]. NAT1 and SLC39A6 

are over-expressed in Luminal groups.  
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Figure 9 – Genes shared between both data  
 

 

 

 

 

 

Fig. 9. Genes shared between both datas and with similar gene expression. ESR1 was also more 

expressed in Luminal A and B subtypes.  NAT1 and SLC39A6 were more expressed in Luminal A, 

and FOXC1 was more expressed in Basal-like subtype, as we obtained in our data.  
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Figure 10 – Main GO Terms for each subtype 

A) Luminal A 

 

 

B) HER2 

 

Fig. 10A. Luminal A GO terms are grouped in seven main groups: DNA metabolism, organelle 

assembly, exit from mitosis, regulation of chromosome segregation, protein localization to 

chromosome, cytokinesis and trophoblast giant cell differentiation.  

 

Fig. 10B. HER2 GO terms are grouped in three main groups: NADPH regeneration, negative 

regulation of protein glutathionylation and borate transmembrane transport.   
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C) Basal-like 

 

 
 

D) Luminal B 

 

 

Fig. 10C. Luminal A GO terms are grouped in three main groups: cell proliferation, positive 

regulation of mitotic cell cycle and oxoacid metabolism.  

 

 

Fig. 10C. Luminal B GO terms are grouped in one main group: regulation of intracellular 

transport. 
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E) Normal-like 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10C.  Normal-like GO terms are grouped in four main groups: positive regulation of synaptic 

transmission, glutamatergic, glycosaminoglycan metabolism, cellular component assembly, 

response to temperature stimulus and actin filament-based process.  
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Table 1: PAM50 genes 
50 relevant genes used to classified breast cancer.  

 

 

 

 

 

 

 

 

Table 2 – Vall d’Hebron Classification  
Classification of the 42 breast tumor data, classified by Vall d’Hebron researchers. The 42 

breast tumors were classified in five subtypes: Luminal A (28.6%), Luminal B (23.8%), Her2 

(26.2%), Basal-like (16.6%) and Normal-like (4.8%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CEP55 NAT1 

CXXC5 PGR 

EGFR PHGDH 

ERBB2 PTTG1 

ESR1 RRM2 

EXO1 SFRP1 

FGFR4 SLC39A6 

FOXA1 TMEM45B 

FOXC1 TYMS 

GPR160 UBE2C 

GRB7 UBE2T 

ACTR3B KIF2C 

ANLN KRT14 

BAG1 KRT17 

BCL2 KRT5 

BIRC5 MAPT 

BLVRA MDM2 

CCNB1 MELK 

CCNE1 MKI67 

CDC20 MLPH 

CDC6 MMP11 

CDH3 MYBL2 

CENPF MYC 

Sample Name Subtype 

B13_389 LumB 

B13_390 Her2 

B13_391 LumA 

B13_392 LumB 

B13_393 LumB 

B13_394 Her2 

B13_395 Her2 

B13_396 LumA 

B13_397 LumA 

B13_398 Her2 

B13_399 Her2 

B13_400 LumB 

B13_401 LumB 

B13_402 LumA 

B13_403 LumA 

B13-404 Basal 

B13-405 Basal 

B13_406 Normal 

B13_407 Normal 

B13_408 Her2 

B13_409 LumA 

Sample Name Subtype 

 B13_368 Basal 

B13_369 Her2 

B13_370 Her2 

B13_371 LumA 

B13_372 LumB 

B13_373 LumB 

B13_374 LumA 

B13_375 LumA 

B13_376 Basal 

B13_377 Her2 

B13_378 Basal 

B13_379 LumB 

B13_380 Basal 

B13_381 Her2 

B13_382 Her2 

B13_383 LumA 

B13_384 LumA 

B13_385 LumB 

B13_386 Basal 

B13_387 LumA 

B13_388 LumB 
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Table 3 – K-means Classification 
 

Classification of the 42 breast tumor data, classified using k-means method. The 42 breast 

tumors were classified in five subtypes: Luminal A (33.3%), Luminal B (23.8%), Her2 (9.5%), 

Basal-like (16.6%) and Normal-like (11.9%). The method classified 40% of the sample in a 

different subtype than VdH classification. 

 

                    

 

 

 

 

 

 

 

 

 

Sample Name Subtype 

B13_368 Basal 

B13_369 Her2 

B13_370 LumA 

B13_371 Normal 

B13_372 LumA 

B13_373 LumB 

B13_374 LumA 

B13_375 LumA 

B13_376 Basal 

B13_377 LumB 

B13_378 Basal 

B13_379 LumB 

B13_380 Basal 

B13_381 Normal 

B13_382 Basal 

B13_383 LumA 

B13_384 LumA 

B13_385 Her2 

B13_386 Basal 

B13_387 LumA 

B13_388 LumA 

Sample Name Subtype 

B13_389 LumB 

B13_390 Her2 

B13_391 LumB 

B13_392 LumA 

B13_393 LumB 

B13_394 Her2 

B13_395 LumA 

B13_396 LumB 

B13_397 LumA 

B13_398 LumB 

B13_399 LumB 

B13_400 LumB 

B13_401 LumB 

B13_402 LumA 

B13_403 LumA 

B13-404 Normal 

B13-405 Basal 

B13_406 Normal 

B13_407 Normal 

B13_408 LumA 

B13_409 LumB 
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Table 4: PAM50 classification  
 

Classification of the 42 breast tumor data, classified using PAM50  method. The 42 breast tumors 

were classified in five subtypes: Luminal A (33.3%), Luminal B (23.8%), Her2 (9.5%), Basal-like 

(16.6%) and Normal-like (11.9%). The method classified 40% of the sample in a different subtype 

than VdH classification. 

 

 

 

Table 5: Phenotype of samples different classified 
Five of the 42 samples were different classified comparing PAM50 and VdH classification. 

Samples  VdH   PAM50  Phenotype  

B13_370  HER2  Luminal B  HER2+, ESR1-, PgR+, GRB7+, CCNE1- 
B13_377  HER2  Luminal B  HER2+, ESR1+, PgR+, GRB7+, CCNE1+ 

B13_385  Luminal B  HER2  HER2+, ESR1+, PgR+,  GRB7+, CCNE1+ 

B13_395  HER2  Luminal B  HER2+, ESR1-0, PgR+,  GRB7+, CCNE1- 
B13_371  Luminal A  Normal  HER2-, ESR1+,PgR+, KRT5/17+ 

 

 

Sample Name Subtype 

B13_389 LumB 

B13_390 Her2 

B13_391 LumA 

B13_392 LumB 

B13_393 LumB 

B13_394 Her2 

B13_395 LumB 

B13_396 LumA 

B13_397 LumA 

B13_398 Her2 

B13_399 Her2 

B13_400 LumB 

B13_401 LumB 

B13_402 LumA 

B13_403 LumA 

B13-404 Basal 

B13-405 Basal 

B13_406 Normal 

B13_407 Normal 

B13_408 Her2 

B13_409 LumA 

Sample Name Subtype 

B13_368 Basal 

B13_369 Her2 

B13_370 LumB 

B13_371 Normal 

B13_372 LumB 

B13_373 LumB 

B13_374 LumA 

B13_375 LumA 

B13_376 Basal 

B13_377 LumB 

B13_378 Basal 

B13_379 LumB 

B13_380 Basal 

B13_381 Her2 

B13_382 Her2 

B13_383 LumA 

B13_384 LumA 

B13_385 Her2 

B13_386 Basal 

B13_387 LumA 

B13_388 LumB 
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Table 6: TGCA Data Classified by PAM50 
 

Subtype Nº samples 

Basal-like 199 

Luminal A 610 

Luminal B 175 

Her2 104 

Normal-like 12 

 

 

Table 7: 10 most significant genes between all subtypes 
 

baseMean log2FoldChange lfcSE stat pvalue padj 

FOXC1 402.702.674.841.389 -336.861.507.116.809 0.502254628702659 350.406.973.860.774 1,43E-60 

SOX10 183.334.495.974.208 -0.645196453271659 0.533368096218529 335.683.078.457.324 2,16E-57 

FRMD3 142.732.186.788.042 -309.135.726.423.395 0.427209201871919 213.026.170.050.028 5,93E-31 

DMD 112.781.328.818.634 160.998.600.065.958 0.476765340821824 180.768.070.086.977 5,10E-25 

KRT14 40.050.400.010.335 442.824.345.923.408 0.815419754832213 175.719.262.461.807 6,19E-23 

SOX6 182.194.160.099.407 -347.729.095.605.509 0.750269014832966 175.498.401.735.855 6,91E-23 

OXTR 21.447.040.468.425 491.550.162.407.686 0.630456535943588 16.601.051.915.271 7,51E-21 

KRT5 473.513.406.011.712 180.801.983.411.934 0.769551862519267 162.410.531.649.448 4,45E-20 

CHST3 250.896.050.370.008 -112.306.575.674.218 0.443312307345515 146.883.957.254.589 9,47E-18 

MFI2 175.289.015.526.563 -108.572.914.115.675 0.552876222277291 151.508.325.524.915 9,67E-18 

FOXC1 402.702.674.841.389 -336.861.507.116.809 0.502254628702659 350.406.973.860.774 1,43E-60 

SOX10 183.334.495.974.208 -0.645196453271659 0.533368096218529 335.683.078.457.324 2,16E-57 
 

 

Table 8 - Summary of subtype classification for each 
subtype 
 

 

 

 

 

 

 

Subtype DEGs 

Basal-like 456 

Normal-like 144 

Her2 23 

Luminal A 120 

Luminal B 65 
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Table 9: Wilcoxon test results for more common gene in 
intrinsic subtypes 
 

Gene  Subtype p-value 

ERBB2  HER2 0.000658 

ESR1  Luminal A 0.05825 

SLC39A6  Luminal A 0.062317 

ERBB2  Luminal B 0.55442 

ESR1  Luminal B 0.00113 

FOXC1  Basal-like 3.82E+09 

KRT17  Basal-like 0.002971 

KRT5  Basal-like 0.0045743 

KRT17 Normal-like 0.0083 

KRT8  Normal-like 0.041289 
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UNIX commands  
 

################################################################################# 

##Alignment by tophat2## 

################################################################################# 

 

##Commands to perform an alignment of a paired end sample 

 

/share/apps/tophat-2.0.11/tophat2 -G ~/reference_genome/genes.gtf -p 5 -o 

~/typhon/aligns/Sample1/  

  ~/reference_genome/genome B13_370_TGACCA_L001_R1_001.fastq 

B13_370_TGACCA_L001_R2_001.fastq                                                            

                                                                   

################################################################################# 

##Prepare files to see the results using IGV  

################################################################################# 

 

/share/apps/samtools-0.1.18/samtools sort accepted_hits.bam Sample1_s 

/share/apps/samtools-0.1.18/samtools index Sample1_s.bam 

 

################################################################################# 

##Prepare files to perform table of counts using htseq_count 

################################################################################# 

 

##Prepare files: 

/share/apps/samtools-0.1.18/samtools sort -n accepted_hits.bam breast1_sn 

/share/apps/samtools-0.1.18/samtools view -o B13_390_sn.sam B13_390_sn.bam 

 

##Performing table of counts by: 

/share/apps/Python/Python-2.6.3/bin/htseq-count -s no -a 10 B13_382_sn.sam 

~/reference_genome/genes.gtf > ~/typhon/table_of_counts/B13_382.count 
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R script 
####################################################################################

##Prepare table of counts using R 

#################################################################################### 

#Libraries:  

library(QuasR) 

library(rtracklayer) 

library(GenomicFeatures) 

library(Gviz) 

#Read table of counts with readDGE():  

all.samples <- list.files("~/typhon/table_of_counts/", full=TRUE) 

samples_table <- NULL  

for (i in all.samples){ 

  sample <- readDGE(i,header=FALSE)$counts 

  samples_table <- cbind(samples_table,sample)   

} 

colnames(samples_table)<-gsub(".*//","",colnames(samples_table)) 

 

#Filter weakly expressed features:  If there are columns called no_feature, ambiguous...  

noint = rownames(table_sample) %in% 

c("__no_feature","__ambiguous","__too_low_aQual","__not_aligned","__alignment_not_unique") 

cpms = cpm(table_sample)  

#Now, it's needed to check which is the lowest value for a gene: 

min(table_sample[,1]) #in this case it's 0, so now in the next step we will use 0 

keep = rowSums(cpms >1) >=0 & !noint  #If we have noint variable 

#keep = rowSums(cpms >1) >=0  #if we don't have it.  1 is that we want those genes with less than 

1 read.  

dim(table_sample)  

counts = table_sample[keep,] #we just want those ones with conditions keep.  

dim(counts)  
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####################################################################################

##Getting ensembl information for homo sapiens before to normalize 

#################################################################################### 

source("http://bioconductor.org/biocLite.R") 

biocLite("biomaRt") 

library(biomaRt) 

mart <- useMart("ensembl", dataset = "hsapiens_gene_ensembl") 

listAttributes(mart)  

val <- listAttributes(mart)[,1] 

val[60:1] 

infoannot <- getBM(c("ensembl_gene_id", "entrezgene", "chromosome_name",  

                     "start_position", "end_position", "hgnc_symbol", "hgnc_id", 

                     "percentage_gc_content"), filter = "hgnc_symbol",       

                   values = rownames(counts), mart = mart) 

 

#We need to add a column with gene length. 

infoannot$gene_length <- infoannot$end_position - infoannot$start_position 

head(infoannot) 

####Filtering infoannot#### 

#Delete those ones without % of GC content 

#Delete those ones which are duplicated 

infoannot <- infoannot[!is.na(infoannot$percentage_gc_content),] 

dupl <-!duplicated(infoannot$hgnc_symbol) 

infoannot <- infoannot[dupl,] 

 

####Filtering table of count#### 

#Delete those ones without annotation 

genes <- infoannot$hgnc_symbol 

genes.ok <- intersect(genes, rownames(counts)) 

head(genes.ok)  



Maria Riera Piqué Borràs 

   

41 
 

identical(genes.ok, rownames(counts))  #FALSE 

counts.ok <- as.data.frame(counts)[genes.ok,] 

identical(genes.ok, rownames(counts.ok))   #TRUE 

dim(counts.ok)  

 

####################################################################################

##Plots to delete no significative genes 

#################################################################################### 

#Calculate mean and sd 

table <-NULL 

for (i in 1:nrow(counts.cqn)) { 

  mean <- mean(counts.cqn[i,]) 

  sd <- sd(counts.cqn[i,]) 

  data <- data.frame(Variable=rownames(counts.cqn)[i], mean=mean,  

                     sd=sd, row.names=NULL) 

  table<- rbind(table, data)  

} 

#Plot 

plot(table$mean,table$sd, log="xy") 

plot(table$mean,(table$sd)^2, log="xy") 

abline(0,1) 

hist(log(table$mean)) 

hist(log(table$mean),50) 

plot(density(log(table$mean))) 
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####################################################################################

##Normalization 

#################################################################################### 

##Libraries 

library(edgeR) 

library(Biobase) 

library(tweeDEseq) 

library(cqn) 

 

##Normalization by total number of reads## 

lib.size <- colSums(counts.ok)  

NormByTotalNrReads <- sweep(counts.ok, 2, FUN="/", lib.size) 

dim(NormByTotalNrReads) 

 

############RPKM normalization############ 

width <- infoannot$gene_length  

counts.rpkm2 <- t(t(counts.ok / width * 1000)/colSums(counts.ok)*1e6) 

dim(counts.rpkm2) 

head(counts.rpkm) 

#############CQN normalization############ 

counts.f <- filterCounts(counts.ok, mean.cpm.cutoff=.9)  

 

#Firsly, we need annotation to perform it (gene lenght and % GC content) 

annotation <- infoannot[,c("gene_length", "percentage_gc_content")]   

head(annotation)  

rownames(annotation) <- rownames(infoannot) 

 

#Annotation needs to have the same rownames than counts.ok, so we need to change them.  

genes <- rownames(counts.f) 

genes.ok <- intersect(genes, rownames(annotation)) 
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head(genes.ok)  

identical(genes.ok, rownames(annotation))  #FALSE 

annotation.f <- as.data.frame(annotation)[genes.ok,] 

identical(genes.ok, rownames(annotation.f))   #TRUE 

dim(annotation.f)  

rownames(annotation.f) = rownames(counts.f)  

head(annotation.f)  

 

#Normalization:  

counts.cqn <- normalizeCounts(counts.f, method="cqn",annot=annotation.f) 

head(counts.cqn) 

 

#############TMM normalization############ 

counts.f <- filterCounts(counts.ok, mean.cpm.cutoff=.9)   #to remove those genes which are lowly 

expressed.  

counts.tmm <- normalizeCounts(counts.f, method="TMM")  

 

##### MA plots of each normalization ##### 

pdf("MA-plot.pdf") 

par(mfrow = c(2,2)) 

maPlot(counts[,5], counts[,6],  

       pch=19, cex=.5, ylim=c(-8,8),   

       allCol="darkgray", lowess=TRUE,  

       xlab=expression( A == log[2] (sqrt(Sample1 %.% Sample2)) ), 

       ylab=expression(M == log[2](Sample1)-log[2](Sample2)))  

grid(col="black")  

title("Raw Data") 

maPlot(counts.tmm[,5], counts.tmm[,6],  

       pch=19, cex=.5, ylim=c(-8,8),   

       allCol="darkgray", lowess=TRUE,  
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       xlab=expression( A == log[2] (sqrt(Sample1 %.% Sample2)) ), 

       ylab=expression(M == log[2](Sample1)-log[2](Sample2)))  

grid(col="black")  

title("TMM") 

maPlot(counts.cqn[,5], counts.cqn[,6],  

       pch=19, cex=.5, ylim=c(-8,8),   

       allCol="darkgray", lowess=TRUE,  

       xlab=expression( A == log[2] (sqrt(Sample1 %.% Sample2)) ), 

       ylab=expression(M == log[2](Sample1)-log[2](Sample2)))  

grid(col="black")  

title("cqn") 

x <- counts.rpkm[,5] 

y <- counts.rpkm[,6] 

mask <- !is.na(x) & !is.na(y) 

x <- x[mask] 

y <- y[mask] 

maPlot(x, y, counts.rpkm[,2],  

       pch=19, cex=.5, ylim=c(-8,8),   

       allCol="darkgray", lowess=TRUE,  

       xlab=expression( A == log[2] (sqrt(Sample1 %.% Sample2)) ), 

       ylab=expression(M == log[2](Sample1)-log[2](Sample2)))  

grid(col="black")  

title("RPKM") 

dev.off() 
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####################################################################################

##hierarchical clustering 

#################################################################################### 

 

#Create transposed data matrix and distance matrix using log counts 

d <- dist(t(as.matrix(log_counts))) 

#Clustering and plot 

plot(hclust(d)) 

 

####################################################################################

##K-means method 

#################################################################################### 

counts.t <- counts.cqn.log 

cl = kmeans(counts.t, 5, nstart=1) 

####################################################################################

##PCA method 

#################################################################################### 

plotPCA <- function (X, labels = NULL, intgroup = cond_A_B$Groups, colors = black, dataDesc = "", 

scale = FALSE, pch = 19) 

{ 

  pcX <- prcomp(t(X), scale = scale) # o prcomp(t(X)) 

  loads <- round(pcX$sdev ^ 2 / sum(pcX$sdev ^ 2) * 100, 1) 

   

  xlab <- c(paste("PC1", loads[1], "%")) 

  ylab <- c(paste("PC2", loads[2], "%")) 

  if (is.null(colors)) colors = 1 

    plot(pcX$x[, 1:2], xlab = xlab, ylab = ylab, col = colors,  

       xlim =c(min(pcX$x[, 1]) - 10, max(pcX$x[,1]) + 10), pch = pch) 

  text(pcX$x[, 1], pcX$x[, 2], labels, pos = 3, cex = 0.8) 

  title(paste("PCA", dataDesc, sep = " "), cex = 0.8) 

} 
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#row data 

plotPCA(log(1+counts.ok), labels = rownames(pData(table_sample)) , 

        dataDesc = "of row counts",  pch = 42) 

 

####################################################################################

##NMF method 

#################################################################################### 

#Now we can calculate the log of this table  

counts.cqn.log <- log(1+counts.cqn) 

#Estimating the factorization rang 

estim.r <- nmf(counts.cqn ,2:6, nrun=40, .opt="vp30", seed=1234) 

#Fit a model for several different methods:  

es.multi.method2 <- nmf(counts.cqn, 2, list("brunet","lee","ns"), 

nrun=40,seed=123456, .options="t") 

#and start NMF method:  

res.brunet <- nmf(counts.cqn.log, 2, nrun=40, method="brunet", seed=1234, .options="vp30") 

w2 <- basis(res.brunet) 

h2 <- coef(res.brunet) 

 

pdf("PCA_log.pdf") 

groups_names <- read.table("sampleTable2.csv", sep=";", header=TRUE) 

mycolours <- as.factor(groups_names[,2]) 

plot(h2.log[1,],h2.log[2,], col=mycolours,pch=20) 

text(h2.log[1,],h2.log[2,],labels=groups_names$SampleName, pos = 3, cex = 0.8) 

 

pdf("heatmap.pdf") 

layout(cbind(1,2)) 

basismap(res.brunet, subsetRow=T) 

coefmap(res.brunet) 

dev.off() 
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####################################################################################

##PAM50 

#################################################################################### 

#data needs to be transposated.  

aa <- intrinsic.cluster(data=table.t, annot=annot, do.mapping=FALSE, std=c("none"), 

rescale.q=0.05,  

                        intrinsicg=intrins, number.cluster=5, mins=3, method.cor= c("spearman"),  

                        method.centroids=c("mean"), verbose=TRUE)  

 

aa$subtype 

pdf("heatmap_PAM50_genes.pdf")  

heatmap.2(countsLog[rownames(PAM50_genes),], col=bluered(75), scale="row", key=TRUE, 

symkey=FALSE, density.info="none", trace="none", cexCol=1, main="Heatmap of significative 

genes") 

dev.off() 

 

####################################################################################

##DESeq2 

#################################################################################### 

library(DESeq2) 

 

dds <- DESeqDataSetFromMatrix(countData=counts_cqn, colData=conditions, design=~ Conditions) 

dds_Fran <- DESeq(dds) 

dds_LRT <- nbinomLRT(dds, reduced=~ 1) 

res_LRT <- results(dds_LRT) 

res_LRT 

mcols(res_LRT) 

 

0.05/(15855) #bonferroni 

sig <- res_LRT[!is.na(res_LRT$pvalue) & res_LRT$pvalue<3.153579e-06,] 

sig <- sig[order(sig_$padj),] 
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#Heatmap significant genes 

pdf("heatmap_sign_genes.pdf")  

heatmap.2(countsLog[rownames(sig),], col=bluered(75), scale="row", key=TRUE, symkey=FALSE, 

density.info="none", trace="none", cexCol=1, main="Heatmap of significative genes") 

dev.off() 

#Boxplot significant genes   

pdf("all_groups_boxplot.pdf") 

for (i in 1:nrow(sig)){ 

  #print(i) 

  x <- cbind(conditions, countsLog[rownames(sig)[i],]) 

  boxplot(x[,2] ~ x[,1], main=rownames(sig)[i]) 

} 

dev.off() 

 

####################################################################################

#Wilcoxon test 

#################################################################################### 

list = "" 

for (i in 1:nrow(counts_2)){ 

  aa <- wilcox.test(unlist(counts_2[i,]) ~ cond_her2$Condition) 

  list <- rbind(list, aa) 

} 

####################################################################################

#GO enrichment analysis 

#################################################################################### 

library(org.Hs.eg.db) 

library(GOstats) 

library(GO.db) 

library(annotate) 

genesid<-unique(unlist(rownames(sig))) 

genesid<-genesid[ genesid != "" ] 

genesid <- genesid[!is.na(genesid)] 
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xx2 = unlist(mget(as.character(genesid),ifnotfound=NA, revmap(org.Hs.egSYMBOL))) 

univ <- Lkeys(org.Hs.egGO) 

param2 <- new("GOHyperGParams", geneIds=xx2, universeGeneIds=univ, 

annotation="org.Hs.eg.db",  

              ontology="BP",pvalueCutoff= 0.01, conditional=FALSE,testDirection="over")#for BP 

hyp <- hyperGTest(param2) 

## Get the p-values of the test 

gGhyp.pv <- pvalues(hyp) 

gGhyp.odds<-oddsRatios(hyp) 

gGhyp.counts<-geneCounts(hyp) 

sigGO.ID <- names(gGhyp.pv[gGhyp.pv < 0.01]) 

### Test the number of counts 

gGhyp.counts<-as.data.frame(gGhyp.counts) 

gGhyp.counts$GOterms<-rownames(gGhyp.counts) 

gGhyp.counts<-gGhyp.counts[rownames(gGhyp.counts) %in% sigGO.ID,] 

## Here only show the significant GO terms of BP (Molecular Function) 

sigGO.Term <- getGOTerm(sigGO.ID)[["BP"]] 

results_GO<-cbind(as.data.frame(gGhyp.pv[gGhyp.pv < 0.01]), as.data.frame(sigGO.Term), 

gGhyp.counts) 

write.csv(results_GO, "results_GO_sig_genes.csv") 


