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Abstract 

Background: The genetic bases of natural resistance to HIV‑1 infection remain largely unknown. Recently, two 
genome‑wide association studies suggested a role for variants within or in the vicinity of the CYP7B1 gene in 
modulating HIV susceptibility. CYP7B1 is an appealing candidate for this due to its contribution to antiviral immune 
responses. We analyzed the frequency of two previously described CYP7B1 variants (rs6996198 and rs10808739) in 
three independent cohorts of HIV‑1 infected subjects and HIV‑1 exposed seronegative individuals (HESN).

Findings: rs6996198 and rs10808739 were genotyped in three case/control cohorts of sexually‑exposed HESN and 
HIV‑1‑infected individuals from Italy, Peru and Colombia. Comparison of the allele and genotype frequencies of the 
two SNPs under different models showed that the only significant difference was seen for rs6996198 in the Peruvian 
sample (nominal p = 0.048, dominant model). For this variant, a random‑effect meta‑analysis yielded non‑significant 
results (dominant model, p = 0.78) and revealed substantial heterogeneity among cohorts. No significant effect of the 
rs10808739 allelic status on HIV‑1 infection susceptibility (additive model, p = 0.30) emerged from the meta‑analysis.

Conclusions: Although our study had limited power to detect association due to the small sample size, comparisons 
among the three cohorts revealed very similar allelic and genotypic frequencies in HESN and HIV‑1 positive subjects. 
Overall, these data indicate that the two GWAS‑defined variants in the CYP7B1 region do not strongly influence HIV‑1 
infection susceptibility.
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Findings
Individual variation in susceptibility to HIV-1 infection 
is well documented [1–3], and a minority of individu-
als (15  % of the HIV exposed people), usually referred 
to as HIV-1 exposed seronegative individuals (HESN), 
does not become productively infected despite multiple 
exposures to the virus [2, 4, 5]. Because only a minority 
of these subjects is homozygous for the CCR5Δ32 dele-
tion [6], it is logical to postulate that other, additional 
genetic factors can modulate susceptibility to HIV-1 
infection. Some of such factors were identified through 

candidate gene approaches; only few of them however 
were replicated across different samples [6]. In recent 
years, genome-wide association studies (GWAS) have 
been used for the identification of common variants that 
underlie complex phenotypes. Among these, two GWASs 
for HIV-1 infection susceptibility have suggested a role 
of variants within or in the vicinity of the CYP7B1 gene 
in this phenomenon [7, 8]. In one study, HIV-1 infected 
individuals were compared with HIV-1 negative sub-
jects [7]. Using meta-analysis of two European cohorts 
and further validation in European Americans, a sin-
gle signal with genome-wide significance was detected 
at rs6996198, a SNP that is located downstream the 
CYP7B1 gene and possibly modulates its expression [7]. 
Another variant in CYP7B1 (rs10808739, in intron 1) was 
described in a GWAS of HIV-1 serodiscordant couples 
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from Eastern and Southern Africa. Although the variant 
did not reach genome-wide significance, it was one of the 
top signals in the study [8].

The CYP7B1 gene encodes an enzyme belonging to the 
cytochrome P450 superfamily that is involved in choles-
terol catabolism by inactivation of oxysterols and their 
subsequent conversion into bile salts, mainly in the liver, 
brain, and reproductive tract [9]. Controlling intracel-
lular cholesterol metabolism is essential for the correct 
entry, assembly and budding of virions, and many viruses 
are dependent on cellular lipid metabolisms to ensure 
the correct budding of functional virions from infected 
cells [10]. HIV alters cholesterol trafficking switching it 
from a physiological efflux to a virus-controlled trans-
port, thus reducing the ability of a cell to export choles-
terol. CYP7B1 also modulates several immune functions, 
as well including proinflammatory cytokine release [11] 
and, via its catabolite 25-hydroxycholesterol [12], pro-
grammed cell death [13] and the synthesis of IgA [14], a 
class of antibodies that has been associated with resist-
ance to HIV infection [15]. Hence, CYP7B1 represents an 
appealing candidate as a modifier of infection susceptibil-
ity due to its contribution to the synthesis of virions and 
the initiation of antiviral defense.

To verify the role played by CYP7B1 in resistance to 
HIV infection we recruited 125 Italian HESN exposed 
through unprotected sexual intercourse (SexExp-HESN). 
Inclusion criteria were a history of multiple unprotected 
sexual episodes for more than 4  years at the time of 
enrolment, with at least three episodes of at-risk inter-
course within 4 months prior to study entry and an aver-
age of 30 (range, 18 to >100) reported unprotected sexual 
contacts per year [5]. Infection in HESN was ruled-out by 
plasma HIV RNA and proviral DNA analyses. HESN and 
114 seropositive (SP) partners were recruited at the S. M. 
Annunziata Hospital, Florence; all of them were Italian of 
Caucasian origin.

Sixty-two Colombian SexExp-HESN and 51 SP part-
ners were also included. The inclusion criteria for these 
HESN subjects were previously reported [16] and 
included a negative HIV-1/2 ELISA test within 1 month 
of sample taking. The similar ancestry component and 
pair-wise fixation index (FST) values in the Colombian 
cohort [17] indicated no intra-cohort stratification by 
ethnicity.

The third HESN cohort was recruited in Peru and has 
been described [18, 19] both in terms of host genetics 
(HLA and KIR) and immune reactivity to HIV and viral 
co-pathogens. The similar frequency of HLA and KIR 
alleles [18] suggested no major intra-cohort stratification. 
For this study, samples were available for a total of 130 
HESN and 95 SP individuals, all of whom were recruited 
at IMPACTA clinics across Lima. HESN were tested on a 

3-monthly basis for newly acquired HIV infection. Risk 
criteria for the HESN cohort were more than five differ-
ent sexual partners over the last 3 months, reported STI 
over the last 6 months, sexual intercourse with a known 
HIV SP partner in the last 6 months and having accepted 
money for sex as described previously [J. Coll et al. Bang-
kok AIDS Vaccine meeting 2011, Factors influencing 
recruitment, retention and seroconversion rates in MSM 
at high risk for HIV infection in Lima and Barcelona].

The study was designed and performed according to 
the Helsinki declaration (1975 revised in 2000) and was 
approved by the Ethics Committee of the participating 
units. All subjects provided written informed consent to 
participate in this study.

Genotyping of CYP7B1 rs6996198 and rs10808739 was 
performed by TaqMan probe assays (TaqMan SNP geno-
typing assay, Applied Biosystems, Foster City, CA, USA) 
using the allelic discrimination real-time PCR method. 
Genotyping rate was >0.90 for both SNPs in all samples. 
The two SNPs complied to Hardy–Weinberg equilib-
rium in all samples with the only exception of rs6966198 
in the SP Peruvian sample (uncorrected p value = 0.02). 
Association analysis for single variants was performed 
using logistic regressions under different models using 
the PLINK software [20]. Meta-analysis was performed 
using a random effect model using the R package “meta” 
(R package version 4.3-0. http://CRAN.R-project.org/
package=meta). Linkage analysis was performed using 
HaploReg v2 [21].

The two CYP7B1 SNPs previously suggested to be asso-
ciated with HIV-1 infection susceptibility (rs6996198 
and rs10808739) are located ~177  kb apart and are not 
in strong linkage disequilibrium (LD) in individuals of 
European or American descent (r2 = 0.15 and r2 = 0.12, 
respectively, http://analysistools.nci.nih.gov/LDlink/). 
The two variants were genotyped in three distinct 
cohorts of HESN and geographically matched HIV-1 SP 
subjects (Table 1). The main risk factor in all HESN was 
unprotected sex.

The allele and genotype frequencies at the two SNPs 
were compared under different models. The only sig-
nificant difference was observed for rs6996198 in the 
Peruvian sample (nominal p =  0.048, dominant model): 
as in the original GWAS [7], the frequency of TT + CT 
genotypes was lower in SP compared to HESN sub-
jects (Table  2). For this variant, a random-effect meta-
analysis yielded non-significant results (dominant 
model, p = 0.78, OR = 1.0971, 95 % CI: 0.5727–2.1016) 
and revealed substantial heterogeneity among cohorts 
(Cochrane’s Q p value  =  0.047, I2  =  67.32). Like-
wise, meta-analysis indicated no significant effect of 
rs10808739 allelic status on HIV-1 infection suscep-
tibility (additive model, p =  0.30, OR =  0.85, 95  % CI: 

http://CRAN.R-project.org/package%3dmeta
http://CRAN.R-project.org/package%3dmeta
http://analysistools.nci.nih.gov/LDlink/
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0.6309–1.1531); no heterogeneity was observed for this 
variant (Cochrane’s Q p value = 0.700, I2 = 0).

The original study that reported association of 
rs6996198 with protection from HIV-1 acquisition was 
performed in European populations; analysis of the 1000 
Genomes Project data (Phase I) indicated that no vari-
ant in strong LD (r2  ≥  0.8) with rs6996198 segregates 
in Europeans (nor in Americans). As for rs10808739, it 
was initially described in cohorts of African ancestry. LD 
analysis in African populations indicated that rs10808739 
is in strong LD (r2 ≥ 0.8) with several variants, the major-
ity of which show a similar LD pattern in Europeans and 
Americans (Fig. 1). Thus, it seems unlikely that the nega-
tive results we obtained are due to substantially different 
haplotype structures across populations.

CYP7B1 plays a major role in the synthesis of HIV and 
in immunity and is thus a likely candidate in the modu-
lation of susceptibility to HIV. Results, however, did not 
confirm the previously reported associations, suggest-
ing that these particular CYP7B1 genetic variants do not 

play a role in HIV-1 infection susceptibility, and indicat-
ing that other variants will need to be analyzed. A limi-
tation of our study is the relatively small sample sizes of 
the HESN and HIV-1 infected cohorts, resulting in low 
power to detect potentially existing associations. None-
theless, the combined sample size was comparable to that 
analyzed in the serodiscordant couple study that detected 
an association at rs10808739 [8]. As for rs6966198, it 
reached genome-wide significance in a relatively large 
two-stage study that employed a different design from 
the one applied herein [7]. Thus, in that case, HIV-1-in-
fected individuals were compared to HIV-1 negative sub-
jects, irrespective of their exposure status. This may have 
determined a proportion of HIV-1 negative controls to be 
misclassified—i.e. most of with a consequent reduction 
of power. Our analyses were performed in well charac-
terized HESN cohorts hence overcoming this problem; a 
degree of misclassification may nevertheless still remain 
for HIV-1 positive subjects because their exposure his-
tory may not always be properly and completely recorded 

Table 1 Demographic status of the populations examined

SP seropositives, HESN HIV-1 exposed seronegative, SD standard deviation, yrs years, Afr African, Amer Amerindian, Eur European
a In HESNs sexually transmitted diseases but no AIDS-defining illnesses
b Ancestry of the Colombian cohort was previously reported [17]
c In Peru, this refers to number of partners, not sexual episodes
d “nd” is not determined. The majority is gay men but this question was not formally asked
e Cohort inclusion criteria was CD4 count >250 (requested by ethics board)

Characteristics Colombia Italy Peru

SP (n = 51) HESN (n = 62) SP (n = 114) HESN (n = 125) SP (n = 95) HESN (n = 130)

Age, mean years ± SD 33.9 ± 7.5 35.1 ± 10.6 42.4 ± 8.8 41.6 ± 9.1 30.8 ± 6.7 31.2 ± 10.7

Males, n (%) 26 (50) 27 (44.2) 69 (60.5) 53 (42.4) 94 (99) 123 (90)

Viral load, median 
copies/mL (inter‑
quartile range)

2569 (488–25,075) – 10,950 (395–27,410) – 29,694 (11,162–
63,381)

–

CD4+ T cell/µL count, 
median (interquar‑
tile range)

366 (190–568) – 369 (239–554) – 417e (331–544) –

Monthly unprotected 
sexual episodes, 
mean (range)c

8 (1–30) 8 (1–30) 3 (1.5–10) 7 (1–25)

Previous history of 
sexually transmit‑
ted diseases and/
or AIDS‑defining 
illnesses (%)

40 22a 39 – ndd 29

Heterosexual orienta‑
tion (%)

79 90 100 100 ndd 17

Homosexual orienta‑
tion (%)

3 2 0 0 ndd 44

Bisexual orientation 
(%)

17 7 0 0 ndd 39

Ethnicity, ancestryb (%) Afr: 25 Afr: 22 European (Tuscan): 
100

European (Tuscan): 
100

Mestizo: 100 Mestizo: 89

Amer: 40 Amer: 42 Indigenous: 5

Eur: 34 Eur: 35 Others: 6
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and their group is likely to include individuals in a wide 
susceptibility range.

Taking into account these limitations, comparisons in 
the three cohorts showed very similar allelic and geno-
typic frequencies in HESN and HIV-1-infected individu-
als, with the only exception being the Peruvian sample 
that reached nominal significance for rs6996198. For the 
same variant, the Italian cohort also showed some differ-
ence in frequency, albeit not significant, that was in the 
opposite direction to that reported by the original asso-
ciation study [7] and to that observed in Peruvians. The 
original study that identified rs6996198 as potentially 
associated with HIV-1 infection susceptibility estimated 
an OR of 0.64 with narrow confidence intervals (95  % 

IC: 0.54–075). Herein, also due to heterogeneity among 
samples, we obtained an OR very close to 1 with wide 
uncertainty (95  % IC: 0.5727–2.1016). Thus, our results 
do not imply that rs6996198 has no role in modulating 
HIV-1 infection susceptibility, but indicate that its effect 
(if any) is small. Overall, these data lead us to conclude 
that the two genotyped variants in the CYP7B1 region do 
not strongly influence HIV-1 infection susceptibility.
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Table 2 Association of rs6966198 and rs10808739 with HIV-1 infection susceptibility

a Genotypic counts (dominant model, as in [7])
b Logistic regression p value for an additive model
c Logistic regression p value for a dominant model
d Logistic regression p value for a recessive model

Sample Genotype frequency Allelic frequency pb
additive pc

dominant pd
recessive

CC CT TT CT + TTa C T

rs6966198

 Italian HESN 0.648 0.304 0.048 0.35 0.8 0.2 0.112 0.137 0.373

 Italian SP 0.551 0.373 0.076 0.45 0.737 0.263

 Colombian HESN 0.661 0.274 0.065 0.339 0.798 0.202 0.557 0.83 0.309

 Colombian SP 0.681 0.298 0.021 0.319 0.83 0.17

 Peruvian HESN 0.685 0.292 0.023 0.315 0.831 0.169 0.147 0.048 0.399

 Peruvian SP 0.805 0.152 0.043 0.196 0.88 0.12

Sample Genotype frequency Allelic frequency pb
additive pc

dominant pd
recessive

GG GA AA – G A

rs10808739

 Italian HESN 0.58 0.33 0.09 – 0.746 0.254 0.392 0.267 0.961

 Italian SP 0.5 0.412 0.088 – 0.706 0.294

 Colombian HESN 0.71 0.226 0.064 – 0.823 0.177 0.831 0.787 0.275

 Colombian SP 0.686 0.294 0.02 – 0.833 0.167

 Peruvian HESN 0.794 0.198 0.008 – 0.893 0.107 0.302 0.38 0.389

 Peruvian SP 0.741 0.235 0.024 – 0.859 0.141

Fig. 1 Analyzed variants and LD analysis. Representation of the CYP7B1 gene region within the UCSC Genome Browser view. The two variants we 
genotyped are shown in red. Variants in LD (r2 ≥ 0.8) with rs10808739 in Africans, Americans, and Europeans are reported in blue. SNPs in green show 
LD (r2 ≥ 0.8) with rs10808739 in African populations only. Relevant ENCODE regulation tracks are shown
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