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Abstract

Alzheimer disease (AD) is associated with distinctive changes in DNA methylation patterns.

DNA methylation is a chemical modification that is involved in gene silencing. These modi-

fications give rise to heritable changes in gene expression without altering the DNA sequence.

In a first study, researchers observed differential methylated regions (DMRs) in a specific DNA

in postmortem brains from AD patients. Due to this fact we decided to focus on two target

genes from AD in order to compare differences in methylation between different experimental

situations. In this project, we have developed a pipeline for finding DMR between different ex-

perimental conditions based on methylation data generated with the 454 GS FLX system from

Roche, and DNA bisulfite-treated samples.
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Chapter 1

Introduction: Scope of the Thesis

Alzheimer’s Disease (AD) is the most common cause of dementia in humans [Knopman (2011)].

It progress gradually and causes a irreversible neurodegenerative disorder, that ends with de-

mentia [Mastroeni et al. (2011)]. Dementia diagnosis due to AD is established using clinical

criteria [McKhann et al. (1984)]. Two of the most important risk factors considered for diagnosis

are advancing age and other cases in a family history. However, etiology and pathogenesis of AD

remains up in the air because they are complex. What has been proved is that large amounts

of neurofibrillary tangles and extracellular accumulation of β-amyloid peptide in the form of

extracellular senile plaques and blood vessel deposits, characterize and confirm the diagnosis

of AD, as evidenced by autopsies of affected brains [Bertram and Tanzi (2011)]. However, cur-

rently, there are not yet available biomarkers for AD being used as a routine diagnostic approach

[Knopman (2011)]. Even so, while etiology and pathogenesis of AD still remains up in the air,

actually, they involve many environmental risk factors, genetic mutations, direct regulation of

gene expression or epigenetic modifications that are able to stimulate changes in phenotype

by altering transcriptional activity in multiple genes encompassing several biological pathways

[Mastroeni et al. (2011)]. For all that during the last decade scientific community have focused

on finding and incorporating biomarkers for AD into diagnosis [Knopman (2011)].

2
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Figure 1.1: Central Dogma of Molecular Biology. Courtesy of Bio-Resource.

1.1 Principles of Epigenetic Mechanisms

Often the study of a human disease is focused on genome mechanisms1. However, it is un-

likely to understand the cellular mechanisms involved in complex diseases, such as cancer or

Alzheimer, just by studying only the DNA sequences on a linear genome.

The Central Dogma of Molecular Biology provides a basic explanation of the flow of the in-

formation within a biological system [Crick (1970)]. It states that DNA of a cell is transcribed to

RNA, and then it is translated to proteins, that perform specific biological processes and molec-

ular functions (Figure 1.1). However, in multicellular organisms, like in humans, cells sharing

identical DNA sequences can have different functions in response to alterations in the environ-

ment (e.g. age, gender, lifestyle, or a disease state). Usually, these variations are called epigenetic

changes.

1The human genome is the complete set of genetic information of Homo sapiens [Brown (2002)]. It is encoded
as DNA in 23 chromosome pairs found in cell nuclei and a small DNA molecule within a individual mitochondria.
It consists of approximately 3.2 billion DNA base pairs.

http://technologyinscience.blogspot.com.es/2014/07/dna-sequencing-traditional-and-next-gen.html#.Ve290rOkU_s
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1.1.1 Epigenetics

Epigenetics is the study of heritable changes in gene expression that are not due to mutations

in the DNA sequence [Eccleston et al. (2007), Bird (2007) and Goldberg et al. (2007)]. In other

words, they are modifications in the phenotype with no changes in the genotype. These changes

can be assumed and accumulated by an person, and then they can be passed from generation

to generation.

Epigenetic mechanisms regulate a large number of essential biological processes, such as

those responsible for cell division or cell differentiation [Bonetta (2008)]. For instance, two of

the major biological processes that result in epigenetic modifications to the genome are: DNA

methylation and histone modification (section 1.1.3) [Goldberg et al. (2007), Bonetta (2008) and

Portela and Esteller (2010)]. These mechanisms are also involved in some complex diseases like

cancer [Jones and Baylin (2007), Agrawal et al. (2007), and Colnot et al. (2004)], diabetes [Ling

and Groop (2009) and Hanson and Godfrey (2015)], Parkinson [Feng et al. (2015) and Kaidery

et al. (2013)] or, of course, Alzheimer [Bennett et al. (2015), Marques and Outeiro (2013) and

Portela and Esteller (2010)]. The essential idea is that epigenetic mechanisms can be influenced

by different factors and/or processes (Figure 1.2). That is, different exposures to environmental

factors, drugs, diets, aging, etc. during the development and throughout the whole life of a

person can modify DNA and the proteins bound to the genome [Bonetta (2008)].

1.1.2 Epigenomics

With the advent of the omic era huge quantities of information have been generated, and it has

become a major breakthrough for molecular biology. This revolution began with the decipher-

ing of the whole genome sequences of several organisms –among them the human genome–,

and rapidly, similar ideas were applied to the study of the transcriptome, proteome and

metabolome. This resulted in the emergence of omic studies: genomics, transcriptomics, pro-

teomics and metabolomics (Figure 1.3) [Mosquera (2014)]. But, this revolution has been pos-

sible thanks to a new generation of high-technologies known as high-throughput technologies.

These technologies allow the performance, in a routine way, of new types of experiments to an-

alyze simultaneously the behavior of thousands of features under different conditions. There
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Figure 1.2: Illustration of how epigenetic mechanisms and modifications can influence DNA
coiling around histones causing heritable changes. Courtesy of Wiki Commons.

are different types of high-throughput technologies (e.g. microarrays, next generation sequenc-

ing or mass spectrometry) that allow the performance of a broad range of omic experiments. In

the case of epigenetics the irruption of such technologies and different bioinformatic resources,

storing and mining an overwhelming quantity of data, made way for the epigenomics.

Epigenomics is defined as, “the study of epigenetic modifications across the whole genome”

[Bonetta (2008)], which is referred as the epigenome. To know the epigenome is important be-

cause it provides information for when some of the proteins encoded by the 25,000 genes of

the human genome are produced, and where this production takes place (i.e in which cells or

tissues).

1.1.3 Epigenetic Modifications

In eukaryote cells, genomic DNA is packaged with histone proteins into chromatin to form

structures that make up chromosomes (Figure 1.2). This composition is the key for regulat-

ing the accessibility to gene and the corresponding function, which is controlled by epigenetic

modifications. Probably the most important epigenetic modifications are DNA methylation and

https://commons.wikimedia.org/wiki/Main_Page
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RNA
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Figure 1.3: Illustration of the relationships between genome, transcriptome, proteome and
metabolome in omic studies. Courtesy of Mosquera (2014).

histone modifications. Histones are proteins that DNA winds around to compact into chromo-

somes and contain certain chemical tags [Bonetta (2008)]. Different chemical modifications on

the histones have an effect on the genic control. For example, a histone modification can occurs

when a chemical modification in histone tails do not let the DNA coil as tightly, causing that the

availability of genes in the DNA is activated, and in consequence the mRNA is transcribed. Now,

on the DNA methylation what happens is the opposite effect. That is, when a methyl group is

added to a cytosine residue, the DNA is coiled more tightly, due to the binding of DNA–methyl–

binding proteins that recruit cofactors related to gene repression, and as a result the mRNA

cannot be transcribed.

1.2 DNA Methylation Analysis

DNA methylation is the most well–characterized epigenetic modification [Laird (2010), Bonetta

(2008) and Feinberg and Tycko (2004)]. It is involved in gene silencing [Wood (2014), Feinberg
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and Tycko (2004) and Laird (2010)], and it is often found in the contexts CpG or CpHpG, where

H can be A, T or C [Wood (2014) and Laird (2010)]. Moreover, it has been also observed that

in embryonic stem cells and in neural development, non-CpG methylation is prevalent [Lister

et al. (2013), Lister et al. (2009), and Dodge et al. (2002)].

DNA methylation analysis experimented a qualitative leap forward with the advent of high-

throughput technologies [Jones (2012) and Feinberg and Tycko (2004)]. This fact allowed to

introduce improvements on the genome-wide mapping of methylation [Jones (2012)]. Current

methods are able to measure DNA methylation at a different genomics contexts (e.g. transcrip-

tional start sites (TSS) with or without CpG islands, in gene bodies, at regulatory elements and

at repeat sequences. This fact has helped to prove that methylation in cancer is perturbed.

Hence, researchers moved the focus on other diseases like AD. It is reasonable that mapping

CpG methylation can highlight genetic/epigenetic interactions and in consequence to help find-

ing disease risk loci.

There is a large list of methods for detecting such changes in methylation across the entire

genome (Table 1.4) [Laird (2010)]. In this report, we only focus on the bisulfite conversion com-

bined with the Next Generation Sequencing (NGS) technologies [Korshunova et al. (2008) and

Cokus et al. (2008)].

Figure 1.4: Table describing main principles of DNA analysis. Courtesy of Laird (2010).



CHAPTER 1. INTRODUCTION: SCOPE OF THE THESIS 8

1.2.1 Bisulfite Sequencing

NGS in combination with bisulfite treatment is probably the most widely used technique for

studying DNA methylation modifications [Chatterjee et al. (2012)]. Basically, bisulfite treatment

(aka sodium bisulfite treatment or simply bisulfite conversion)of DNA converts non-methylated

cytosines (C) to uracils (U), but leaves 5-methylcytosine (5mC) residues unaffected. In oder

words, bisulfite conversion introduces modifications in the DNA sequence that depends on the

methylation status of specific cytosines residues. Then by applying sequencing methods on the

bisulfite-treated DNA, one can determine methylation status of CpG sites.

Figure 1.5 shows the outline of bisulfite treatment of DNA, where nucleotides colored in

red indicate 5-methylcytosines resistant to conversion and nucleotides colored in blue are un-

methylated cytosines converted to uracils by the bisulfite treatment.

Figure 1.5: Illustration of the outline of bisulfite treatment of genomic DNA. Courtesy of Wiki
Commons.

https://commons.wikimedia.org/wiki/Main_Page
https://commons.wikimedia.org/wiki/Main_Page
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1.2.2 Downstream Analysis

Methylation data analysis can be performed using different types of tools and configurations

[Laird (2010), Henry et al. (2014), and Chatterjee et al. (2012)]. Such analyses depends on the

objectives of the study, the target sequences, the type of methylation protocol, and the high-

throughput technology for sequencing the DNA (Figure 1.6 ). The overall steps for processing

these kinds of data have been quite well established during the last years, and the main differ-

ences between them are the downstream analyses [Laird (2010)].

  

Bisulfite conversion

NGS

(Type of analysis: BS-seq, RRBS, BSPP, BC-seq)

Databases

(MethDB, pubMeth, DBCAT, MethylomeDB)

Mapping treated reads vs. reference

(BSMAP, NS Seeker, Bismark, SOC-B, RRBSMAP)

Visualization

(CisGenome Browser, MethVisual, MethTools)

DNA methylation Analysis

(Meth Tools, CyMATE, CpG PatternFinder, QUMA)

Other Analyses

(CPG_MI, Galaxy, Batman, QDMR)

Figure 1.6: Different existing bioinformatic resources for a methylation data analysis based on a
bisulphite conversion.



Chapter 2

Hypothesis, Objectives and Outline of the

Thesis

Alzheimer disease (AD) is associated with distinctive changes in DNA methylation patterns 1.

DNA methylation is a chemical modification that is involved in gene silencing. These modifica-

tions give rise to heritable changes in gene expression without altering the DNA sequence.

2.1 Hypothesis: Knowledge Gap

In a previous study, researchers observed differential methylated regions (DMR) in a specific

DNA in postmortem brains from AD patients. Considering these results, they decided to focus

on two target genes from AD in order to compare differences in methylation between different

experimental situations. Due to this fact, researchers would need to have a pipeline for finding

DMR. Due to this fact, different tools and approaches for performing this kind of analysis were

reviewed from the literature [Laird (2010), Henry et al. (2014), Gentleman et al. (2004), Lutsik

et al. (2011), Krueger and Andrews (2011), Xi and Li (2009), and Chen et al. (2010), among others].

However, none of the strategies reviewed were well adaptable to the purposes of the researchers.

Some of them are devoted to look for whole genome differences, other are intended to work

with sequencing system from other companies (e.g. illumina sequencing systems, or other are

focused on different downstream analyses 1.2.2. Therefore, a pipeline for finding DMR based

on bisulfite sequencing using a 454 GS FLX system from Roche for target DNA genomic regions

10
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was required. Thus, in order to shed light on this issue, the main and specific objectives that this

master’s thesis will address are presented in the following sections.

2.2 Objectives

The context of this master thesis is focused on the methods and tools that have been developed,

implemented and used to build a specific pipeline for finding a targeted DNA methylation Data

Analysis, mainly associated with Alzheimer’s Disease.

2.2.1 Main Objective

The main objective of this master’s thesis is to develop and implement a pipeline for finding

Differentially Methylated Regions (DMR) between different experimental conditions of a spe-

cific region of a DNA sequence, whose samples have been treated with bisulfite and sequenced

with a 454 GS FLX system from Roche.

2.2.2 Specific Objectives

In order to accomplish the main objective of the project, specific questions were proposed by

researchers. Specifically, the specific objectives of this master’s thesis are:

1. To find DMR in a target gene 1 between:

(a) a experimental condition A and a control group.

2. To find DMR in a target gene 2 between:

(a) a experimental condition B and a control group.

(b) a experimental condition D and a control group.

(c) a experimental condition D and a experimental condition B.

In all the cases, comparisons performed have to take into account the contexts. That is, they

are performed on CG sites, CHG sites, and CHH sites, where H = A, T, or C.



CHAPTER 2. HYPOTHESIS, OBJECTIVES AND OUTLINE OF THE THESIS 12

2.2.3 Limitations

Due to the fact that this research project is still ongoing, we agreed with Dr Marta Barrachina and

their collaborators , inter alia, to impose special conditions for the handling of these sensitive

data. Therefore, neither raw data nor processed data as well as biological results will be reported

in this thesis.

2.3 Outline

This master’s thesis is organized in five chapters. Chapter one discusses the background of the

project and presents main ideas of the scope of the thesis. Chapter two focuses on the hypoth-

esis formulation, states both the main objective and then specific questions to answer, and ex-

poses the limitations of the research. In chapter three, materials are presented. Chapter four

is devoted describe tools and methods as well as to present the results of the implementation

of the pipeline. Finally, chapter five summarizes the contributions and proposes some recom-

mendations for further work.



Chapter 3

Material

Due to the necessities of the researchers (section 2.1), the main goal of this project is the de-

velopment of a pipeline that allows the identification of DMR between different experimental

conditions (section 2.2.1). In order to achieve this objective, two specific comparisons between

two experimental conditions from a experimental design, agreed with researchers, were formu-

lated (section 2.2.2). In this chapter, we first expound the experimental conditions and design,

the sample size and raw data used.

3.1 Experimental Conditions

The experimental conditions considered in the data analysis were:

1. Phenotype group (Group)

(a) Group A (A)

(b) Group B (B)

(c) Group C (C)

(d) Group D (D)

2. Region of interest (Amplicon or Gene)

(a) Region associated with gene 1 (Gene1)

(b) Region associated with gene 2 (Gene2)

13
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Figure 3.1: Illustration of the FLX primers design for the gene of interest.

3.2 Experimental Design and Sample Size

Data analysis was based on a total of 44 samples; 8 from group A, 8 from group B, 8 from group

C associated with gene1, 8 from group C associated with gene2, and 8 from group D. Table 3.1

shows the allocation of each sample to each experimental condition.

3.3 Raw Data

DNA was isolated from the mouse neocortex and all samples were bisulfite-treated. In order

to avoid technical batch effects, bisulfite treatment was carried out in parallel and using the

same stock. In order to identify the DNA sequence region of interest from each sample af-

ter, two primer adapters were designed, according to the guidelines for the 454 GS FLX System

from Roche [Roche (2009)]. The primers used consist of four components, namely, a directional

primer (Primer A or Primer B), a four-base library “key”, a Multipex Identifier (MID) [454 Life

Sciences Corporation (2012)] and a template specific sequence (aka consensus primer) (Figure

3.1). More specifically:

• Forward primer (Primer A-Key-MID-consensus primer):

5'-CGTATCGCCTCCCTCGCGCCA-TCAG-MID-template specific sequence-3'

• Reverse primer (Primer B-Key-MID-consensus primer):

5'-CTATGCGCCTTGCCAGCCCGC-TCAG-MID-template specific sequence-3'
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454 GS FLX Titanium pyrosequencer was used for sequencing the DNA bisulfite sequences.

This process generated two types of plain text files; reads.fasta is a fasta file containing the nu-

cleotides sequence for each read, and reads.qual containing the corresponding Phred scores

for each fasta sequence [Ewing and Green (1998)]. These two files were used as the basis for the

data analysis.
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Table 3.1: Allocation of each sample to each experimental condition.

sampleID sample sampleName Lane MID Gene Group

S01 sample.01 Gene1.MID.1 1 MID.1 Gene1 C
S02 sample.02 Gene1.MID.2 1 MID.2 Gene1 C
S03 sample.03 Gene1.MID.3 1 MID.3 Gene1 C
S04 sample.04 Gene1.MID.4 1 MID.4 Gene1 C
S05 sample.05 Gene1.MID.5 1 MID.5 Gene1 C
S06 sample.06 Gene1.MID.6 1 MID.6 Gene1 C
S07 sample.07 Gene1.MID.7 1 MID.7 Gene1 C
S08 sample.08 Gene1.MID.8 1 MID.8 Gene1 C
S09 sample.09 Gene1.MID.9 1 MID.9 Gene1 C
S10 sample.10 Gene1.MID.10 1 MID.10 Gene1 C
S11 sample.11 Gene1.MID.11 1 MID.11 Gene1 A
S12 sample.12 Gene1.MID.12 1 MID.12 Gene1 A
S13 sample.13 Gene1.MID.13 1 MID.13 Gene1 A
S14 sample.14 Gene1.MID.14 1 MID.14 Gene1 A
S15 sample.15 Gene1.MID.15 1 MID.15 Gene1 A
S16 sample.16 Gene1.MID.16 1 MID.16 Gene1 A
S17 sample.17 Gene1.MID.17 1 MID.17 Gene1 A
S18 sample.18 Gene1.MID.18 1 MID.18 Gene1 A
S19 sample.19 Gene1.MID.19 1 MID.19 Gene1 A
S20 sample.20 Gene1.MID.20 1 MID.20 Gene1 A
S21 sample.21 Gene2.MID.1 1 MID.1 Gene2 C
S22 sample.22 Gene2.MID.2 1 MID.2 Gene2 C
S23 sample.23 Gene2.MID.3 1 MID.3 Gene2 C
S24 sample.24 Gene2.MID.4 1 MID.4 Gene2 C
S25 sample.25 Gene2.MID.5 1 MID.5 Gene2 C
S26 sample.26 Gene2.MID.6 1 MID.6 Gene2 C
S27 sample.27 Gene2.MID.7 1 MID.7 Gene2 C
S28 sample.28 Gene2.MID.8 1 MID.8 Gene2 C
S29 sample.29 Gene2.MID.9 1 MID.9 Gene2 B
S30 sample.30 Gene2.MID.10 1 MID.10 Gene2 B
S31 sample.31 Gene2.MID.11 1 MID.11 Gene2 B
S32 sample.32 Gene2.MID.12 1 MID.12 Gene2 B
S33 sample.33 Gene2.MID.13 1 MID.13 Gene2 B
S34 sample.34 Gene2.MID.14 1 MID.14 Gene2 B
S35 sample.35 Gene2.MID.15 1 MID.15 Gene2 B
S36 sample.36 Gene2.MID.16 1 MID.16 Gene2 B
S37 sample.37 Gene2.MID.17 1 MID.17 Gene2 D
S38 sample.38 Gene2.MID.18 1 MID.18 Gene2 D
S39 sample.39 Gene2.MID.19 1 MID.19 Gene2 D
S40 sample.40 Gene2.MID.20 1 MID.20 Gene2 D
S41 sample.41 Gene2.MID.21 1 MID.21 Gene2 D
S42 sample.42 Gene2.MID.22 1 MID.22 Gene2 D
S43 sample.43 Gene2.MID.23 1 MID.23 Gene2 D
S44 sample.44 Gene2.MID.24 1 MID.24 Gene2 D



Chapter 4

Methods and Results: The Pipeline

In this chapter, the outline of the pipeline is introduced. Then, availability and requirements of

the program are indicated, and finally, the flow of the execution and main results generated are

described step by step, indicating which methods or software tools have been implemented or

integrated.

4.1 Outline

As mentioned in section 1.2.2, there are different types of tools and configurations for finding

DMR. However, based on our review, none of the pipelines proposed were well-adapted for the

interests of the researchers (section 2.1). For this reason, and based on the general outline of

a pipeline (Figure 1.6), the pipeline that we have developed and implemented consists of the

following processes:

1. Quality control of raw data: quality assessment and checks on raw reads generated by the

sequencer.

2. Preprocessing: in order to prepare raw data for the alignment process, sequence reads are

filtered, splitted, and trimmed according to different criteria.

3. Alignment process: mapping preprocessed reads against the reference sequence and iden-

tification of methylated sites.

17
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Quality Assessment of Raw Reads

(Quality control checks of raw reads)

Raw Data Preprocessing

(Filtering, Splitting, and trimming raw reads)

Alignment

(Mapping reads vs reference sequence
 and identification of methylated sites)

Selection of DMR

(Comparisons between experimental conditions)

Quantification
(Quality assessment of the alignment, 
construction of methylation matrices,

and quantification the methylation measures)

Figure 4.1: Illustration depicting the flow of the pipeline.

4. Quantification process: quality assessment of the alignment process, construction of methy-

lation matrices associated with each context (i.e. CG, CHG or CHH), and quantification of

the methylation measures for each sample and target region (i.e. gene).

5. Selection of DMR: finding the differentially methylated regions (i.e. sites) between the ex-

perimental conditions.

Figure 4.1 shows the flow of the pipeline throughout each process of execution implemented.

4.2 Availability

The pipeline, that we called pmda, is freely available under a License GPL-2 (http://www.r-project.

org/Licenses/GPL-2). It can be downloaded from the GitHub repository https://github.

com/jlmosquera/pmda.

http://www.r-project.org/Licenses/GPL-2
http://www.r-project.org/Licenses/GPL-2
https://github.com/jlmosquera/pmda
https://github.com/jlmosquera/pmda
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4.3 Requirements

To use the pipeline one must have R 3.2 (or greater) [R Core Team (2015)] installed, as well

as Bioconductor 3.1 [Gentleman et al. (2004)] (or greater). But also, some extra packages

from CRAN (http://CRAN.R-project.org/) [R Core Team (2015)] are required. Specifically,

ShortRead [Morgan et al. (2009)], tools [R Core Team (2015)], reshape2 [Wickham (2007)],

parallel [R Core Team (2015)], and gplots [Warnes et al. (2015)]. It is also essential to have

Perl 5 18.2 [Team (2015)], FastQC [Andrews (2015)] and BiQ Analyzer HT [Lutsik et al. (2011)]

well installed.

4.4 Execution

To run the pipeline, the user must to:

1. Set up the required parameters in file parameter.R.

2. Open a terminal console, and execute the file run_pmda.R as follows

$ ./run_pmda.R

During the execution, the program calls sequentially the R script sources corresponding to

each process of the pipeline. Results are stored in a new path (or folder) called ./results/. In

turn, this folder contains five new folders named qc.raw, preprocessing, alignment, quantification,

and comparison, where the files yielded by the program at each step are respectively stored.

The following subsections describe the methods implemented and the software tools in-

volved at each step of the pipeline, and also presents the files provided by the program at the

end of each process.

4.4.1 Quality Control of Raw Data

The goal of this process is assessing the quality of read sequences generated by the 454 GS FLX

System from Roche. It consists of two main steps:

1. FastQC on raw reads.

http://CRAN.R-project.org/


CHAPTER 4. METHODS AND RESULTS: THE PIPELINE 20

2. Descriptive statistics of raw reads.

4.4.1.1 FastQC on Raw Reads

First step can be only executed when the user provides either files .fasta and .qual or a file

.fastq1. In such case, the program runs the software FastQC and provides the user with dif-

ferent types of quality checks, which are organized in an interactive .html file. The information

provided is listed as:

• Basic Statistics: generates some simple composition statistics for the file analysed.

• Per base sequence quality: an overview of the range of quality values across all bases at

each position in the FastQ file.

• Per sequence quality scores: allows to see if a subset of the sequences have universally low

quality values.

• Per base sequence content: plots out the proportion of each base position in a file for which

each of the four normal DNA bases has been called.

• Per base GC content: shows graphically the GC content of each base position in a file.

• Per sequence GC content: measures the GC content across the whole length of each se-

quence in a file and compares it to a modelled normal distribution of GC content.

• Per base N content: represents in a plot the percentage of base calls at each position for

which an N was called.

• Sequence Length Distribution: a graph showing the distribution of fragment sizes in the

file which was analysed.

• Sequence Duplication Levels: counts the degree of duplication for every sequence in the

set and creates a plot showing the relative number of sequences with different degrees of

duplication.

1A .fastq is a plain text file format containing both a sequence (usually nucleotide sequence) and its corre-
sponding quality scores (usually Phred scores).
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• Overrepresented sequences: lists all of the sequence which make up more than 0.1% of the

total.

• Kmer Content: counts the enrichment of every 5-mer within the sequence library.

4.4.1.2 Descriptive Statistics on Raw Reads

Second step runs an R scripting code that yields the following files devoted to provide control

checks that allows to assess the quality of the raw reads. This step shall be run regardless of the

execution of FastQC , which in such a case it can be interpreted as a complementary informa-

tion. Descriptive statistic results are provided in the following files:

• descriptive.reads.csv: summary table showing the number of reads, and the mini-

mum, first quartile, median, mean, third quartile and maximum read length per lane.

• distribution.reads.csv: summary table showing the absolute frequency, cumulative

absolute frequency, relative frequency and cumulative relative frequency for intervals of

read lengths of 50 base pairs.

• histogram.read.lengths.read.pdf: histogram describing the number of reads per each

read length.

• density.overall.read.quality.pdf: density of overall average read quality per each

lane.

• base.call.frequency.table.csv: summary table showing the number and the per-

centage of each base per each lane.

• base.call.frequency.plot.pdf: bar plot of base call frequency over all reads per lane.

4.4.2 Raw Data Preprocessing

Raw data preprocessing is intended to prepare files for the alignment process. It consists of three

main steps:

1. Filtering raw reads.
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2. Splitting and trimming reads by MID primers.

3. Splitting reads by consensus primers.

4.4.2.1 Filtering Raw reads

The high-throughput sequencing technologies have been represented a revolution (section 1.1.2).

However, these technologies have some limitations [Kircher and Kelso (2010) and Tucker et al.

(2009)]. This step was implemented in order to filter reads containing some technical errors.

Currently, there are two types of filters implemented:

1. Removing reads that are less than minimum length of nucleotides.

2. Trimming and filtering reads containing bases N [454 Life Sciences Corporation (2012)].

As a result of applying these filters, the program yields two files named reads.filtered.fastq

and reads.filtered.fasta. These files contain the the sequences in fastq and fasta text for-

mat respectively. Moreover, the program also provides a brief summary describing the number

and lengths of the reads filtered stored in a file called summary.filtering.raw.reads.csv.

Table 4.1 shows the summary table describing the remaining number and lengths of the

reads after performing each filter during the execution of the data analyzed.

Table 4.1: Summary table describing the number an length of the reads after performing the
filtering step.

Filtering.Criteria N Min Q1 Median Mean Q3 Max

(none) 676498 41 415 458 414 468 1338
reads with length < 150 636641 151 417 462 433,4 468 1338
remove and trim reads with N’s 613425 151 417 463 434,5 468 967

In file parameters.R, a user can also order to run a quality control of filtered reads per-

formed by using FastQC.

4.4.2.2 Splitting and Trimming Reads by MID Primers

Primers are useful for the task of identifying amplicons and samples. However, removal of

primers from reads improves the quality of results from downstream analyses [Criscuolo and
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Brisse (2013) an Laird (2010)]. This step of the pipeline is devoted to split reads by MID primers

and then trimming such adapters from the reads.

Leaving aside the input parameters provided in file parameters.R, in order to prepare the

reads according to each sample and amplicon, this step also requires that the user provides

some extra files associated with information about the lanes, samples, and primers. These files

must be placed in the folder ./data/ and, specifically, they contain the following information

(Appendix A):

• lanes.csv: a tabulated text file with two columns indicating for each lane:

– Lane.ID: number of lane.

– FileName: name of the .fastafile storing the read sequences associated with Lane.ID.

• primers.csv: a tabulated text file provinding information about the consensus primer,

specifically:

– Primer.ID: number of consensus primer.

– Ampl.Name: name of the amplicon (or gene of interest).

– Sense: Sense of the sequence. fw indicates a forward sequence and rv indicates a

reverse sequence.

– Primer.Seq: nucleotide sequence associated with Primer.ID, Ampl.Name, and Sense.

– Start: starting position of the consensus primer in the reference sequence.

– Num: number of nucleotides o the primer.

• mids.csv: a tabulated text file indicating for each MID primer the following information:

– MID.ID: number of MID.

– MID.Seq: nucleotide sequence associated with MID.ID.

• samples.csv: a tabulated text file relating samples, primers, amplicons and reference se-

quences

– Sample.ID: sample identification.
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– Ampl.Name: name of the amplicon provided in file primers.csv.

– Patient.ID: sample name.

– Lane.ID: number of lane provided in file lanes.csv.

– Primer.ID: number of consensus primer provided in file primers.csv.

– RefSeq.ID: number of reference sequence provided in file RefSeqs.csv.

After performing this step, the program generates a large list of fastq and fasta text for-

mat files. Each couple of files are associated with a unique MID, they are named, respectively,

as MID.nn.fastq and MID.nn.fasta where nn indicates the number of MID primer, being 0

those reads that have not been identified. These list of files are stored in a new folder called

./data/splitted/mids/.

The program also yields a bar plot showing the number of reads splitted by MID primer,

which is stored in file reads.by.MID.pdf. Figure 4.2-A shows an example of this mentioned

plot. In dark gray color is highlighted the number of reads non-identified by MID primerand in

red color the MID with the lowest number of reads (less than 1% of the total number of reads).

4.4.2.3 Splitting Reads by Consensus Primers

Third step of raw data preprocessing splits reads by the consensus primers. This allows to iden-

tify the reads by amplicon. However, consensus primers are not removed from the reads. BiQ

Analyzer HT is the software tool that has been integrated in the pipeline for the alignment

process [Lutsik et al. (2011)]. The developers of this tool mention in the documentation of the

software that trimming primers is not required because the algorithms implemented in the pro-

gram already takes this fact into account. Hence, after splitting reads by consensus primers,

adapters are not removed from the read sequences.

As a result, this step yields also a large list of fastq and fasta text format files such that, for

each pair of files MID.nn.fastq and MID.nn.fasta generates two files for (i.e. four new files)

storing the reads already splitted. These files are named xxx_MID.nn.fw.fastq and

xxx_MID.nn.rv.fastq, xxx_MID.nn.fw.fasta and xxx_MID.nn.rv.fasta where xxx indi-

cates the amplicon, textttnn the number of MID primer and fw or rv if the file contains forward

or reverse read sequences respectively. These large list of files are stored in a new folder called



CHAPTER 4. METHODS AND RESULTS: THE PIPELINE 25

  

A B

DC

Figure 4.2: Bar plots associated with the steps of splitting and trimming during the execution of
the raw data preprocessing. Bar plot shows the number of reads by MID primer. Bar plots B and
C shows the number of reads by MID primer and amplicon (e.g gene1 and gene2). Bar plot D
shows the number of by MID primer that have not been splitted by amplicon.

./data/splitted/consensus/. Moreover, due to the fact that BiQ Analyzer HT requires

for each sample and target DNA sequence a .fasta file with the appropriate read sequences,

the pipeline concatenates the sequences from each pair of files xxx_MID.nn.fw.fasta and

xxx_MID.nn.rv.fasta and yield a single .fasta file for each amplicon and MID, named

xxx.MID.nn.fasta. These new files are stores in new folder named ./data/alignment/xxx/.

In order to summarize the results of this process, the program yields a .pdf file called

reads.by.amplicon.and.MID.pdf that contains a bar plot for each amplicon profiled plus a

bar plot with the number of unidentified reads per MID primer (plots B–D in Figure 4.2), and a

tabulated text file with the number of reads per amplicon, MID and sense (Table 4.2)

In file parameters.R, a user can also order to run a quality control of splitted reads which is



CHAPTER 4. METHODS AND RESULTS: THE PIPELINE 26

Table 4.2: Summary table describing the number of reads identified by amplicon, MID and sense
of the sequence.

Ampl.Name MID.ID Sense Num.Reads

gene1 MID.1 fw 2156
gene1 MID.1 rv 3597
gene1 MID.2 fw 5110
gene1 MID.2 rv 7513
... ... ... ...
gene1 MID.20 fw 3389
gene1 MID.20 rv 3569
gene2 MID.1 fw 12795
gene2 MID.1 rv 12796
gene2 MID.2 fw 9976
gene2 MID.2 rv 10515
... ... ... ...
gene2 MID.23 rv 3961
gene2 MID.24 fw 10124
gene2 MID.24 rv 7665
unidentified MID.1 NA 483
unidentified MID.2 NA 142
... ... ... ...
unidentified MID.24 NA 43

performed again by FastQC.

4.4.3 Alignment Process

Alignment process is devoted to map read sequences treated with bisulfite from each sample

onto a target genomic reference sequence. There are different method and tools for mapping

bisulfite-treated reads to a reference sequence (aka methylation aligners) [Henry et al. (2014),

Krueger and Andrews (2011), Xi and Li (2009), and Chen et al. (2010)]. In this pipeline, we have

selected the BiQ Analyzer HT from the Max Plank Institut Informatik (http://biq-analyzer-ht.

bioinf.mpi-inf.mpg.de/) [Lutsik et al. (2011)].

BiQ Analyzer HT takes as input files xxx.MID.nn.fasta stored in path

./data/alignment/xxx/ (paragrah 4.4.2.3) and a reference DNA genomic sequence provided

in fasta text format stored in a file at the folder ./data/. Then, the software maps, one by

one, the read sequences in each file to the reference sequence. As a result, BiQ Analyzer HT

outputs the DNA methylation information in different files. Briefly, main files reported for each

http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/
http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/
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.fasta file aligned are (Appendix A):

• summary.dat: a short summary of the analysis run.

• alignment.mfa: .fasta file containing multiple alignment of the bisulfite reads to the

genomic reference sequence.

• heatmap.png: a methylation heatmap, containing methylation patterns per read. Methy-

lation heatmap represents the extracted methylation patterns of the bisulfite reads graph-

ically. Columns of the heatmap are formed by methylation sites found in the reference

sequence by matching the analyzed methylation context (i.e. CG, CHG or CHH), while

rows correspond to read sequences.

• pearlNecklace.png: a pearl–necklace diagram, summarizing methylation information

for each CpG. Pearl-Necklace diagram summarizes methylation information for the whole

set of filtered reads, by identified methylation sites. For each site the diagram has a colored

rectangle plotting a distribution of the methylated, unmethylated and unrecognized states

of this site in the given set of bisulfite reads. In other words, the diagram gives a “mean”

methylation profile of the read population.

• results.tsv is a tabulated text file containing methylation information for each analyzed

read.

All these files are generated for each context, amplicon and MID and they are stored in a new

paths named ./results/alignment/cpg/xxx/MID.nn/ where cpg indicates the context, xxx

the amplicon (or target region) and nn the number of MID.

4.4.4 Quantification Process

In order to perform a downstream analyses such as the selection of DMR between two experi-

mental conditions, it is necessary to quantify the number of reads (un)methylated per each site

and sample in order to compute and compare statistical measures.

Mentioned in section 4.4.3, alignment process performed with BiQ Analyzer HT , gener-

ates a large list of files. Among the files provided for just one single mapping, the most important
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file is results.tsv. This file consists of a enormous table describing the methylation informa-

tion for each read, specifically, it contains the following data (Appendix B):

• ID: the identification of the read aligned.

• Alignment score: “matching score” used in the definition of the sequence identity.

• Sequence identity: percentage of identity for the read aligned.

• Methylation pattern: pattern of all the sites identified for the read (0:unmethyled, 1:methyled,

x:missing site).

• Mean methylation level: percentage of de number of methylated sites.

• Missing sites: number of not present sites after alignment.

• Conversion rate: percentage of the bisulphited conversion rate of the read.

• Reference sequence: name of the reference sequence.

This file is generated for each context (i.e. CG, CHG or CHH), region of interest (i.e. gene or

amplicon), and MID.

Quantification is the largest the process implemented in the pipeline. It consists of four main

steps:

1. Pile up tables from all “results.tsv” files into one single table associated with a unique

context and amplicon.

2. Quality assessment of the aligment process.

3. Quantification.

4. Heatmap plot of quantification measures (i.e. beta values).
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4.4.4.1 Pile Up Methylation Alignment Results

In order to asses the quality of the alignments and then quantify the methylation of each site

and sample, the pipeline executes a functions that takes all the files called “results.tsv” from all

the MID in each amplicon and context, and concatenates all the information into a one single

table. This table identifies the origin of each read binding a column that indicate the MID (i.e.

the patient ID). This concatenation is done for each context and amplicon, and the resulting

files are stored in a new folder called ./results/quantification/. These files are named

cpg.xxx.csv where cpg indeicates the context (i.e. CG, CHG or CHH) and xxx the name of the

amplicon.

4.4.4.2 Quality Assessment of Alignment Process

Quality assessment of alignment is based on files containing the methylation information piled

up from the original files results.tsv generated by BiQ Analyzer HT (section 4.4.4.1). This

step yields three files containing descriptive plots for the corresponding measures reported in

files cpg.xxx.csv. Specifically,

• cpg.Aligment.Score.tiff: density and box plots of alignment score per each amplicon

in a specific context.

• cpg.Mean.Methylation.tiff: density and box plots of the % of (detected) methylation

sites per each amplicon in a specific context.

• cpg.Missing.Sites.tiff:density and box plots of missing methylation sites per each

amplicon in a specific context.

Figures 4.3, 4.4, and 4.5 show and example of the densities plots and box plots associated

with the alignment scores, the mean methylation and the missing sites measures provided by

files cpg.xxx.csv, respectively. In the three cases box plots show two horizontal lines. Red color

line show the mean of the measure, while orange line shows the media.
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Figure 4.3: Density plot (left side )and box plots (right side) of alignment score per each ampli-
con in a specific context. Red color line show the mean of the measure, while orange line shows
the media.

4.4.4.3 Quantification of Methylation Levels

For performing comparisons between the different experimental conditions it is necessary to

summarize the methylation status of each site, in each context and amplicon. This process is

called quantification. Probably the most widely use method for quantifying methylation levels

is the β-value [Du et al. (2010)]. The β-value is the ratio of methylated reads per site and the

overall the sum of methylated and unmethylated reads per site, that is

βi , j = M

M +U

where M is the number of methylated reads in site i and MID j , and U is the number of

unmethylated reads in site i and MID j . The bet a-value statistic results in a number between 0

and 1, such that under ideal conditions, a value of 0 indicates that all copies of the CpG site in the

sample were completely unmethylated and a value of 1 indicates that every copy of the site was

methylated. The pipeline computes β-values and provides M-values that can be interpreted as

a “inverse” of β-values [Du et al. (2010)].

After performing this step, the program yields as a result for each context and amplicon the

following files:

• cpg.xxx.num.Meth.Sites.csv: number of (un)methylated sites per MID for each con-
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Figure 4.4: Density plot (left side )and box plots (right side) of the % of (detected) methylation
sites per each amplicon in a specific context. Red color line show the mean of the measure,
while orange line shows the media.

text (cpg) and amplicon (xxx).

• cpg.xxx.beta.values.csv: β-values of sites per MIDs for each context (cpg) and am-

plicon (xxx).

• cpg.xxx.M.values.csv: M-values of sites per MIDs for each context (cpg) and amplicon

(xxx).

• cpg.xxx.Meth.Pattern.csv: methylation pattern for each read by context (cpg) and

amplicon (xxx).

• cpg.xxx.mid.freq.csv: frequencies for each context and MID excluding missing sites

by context (cpg) and amplicon (xxx).

• cpg.xxx.Met.summary: summary of frequencies for each site in each context

4.4.4.4 Heatmap of Methylation Levels

Last step of quantification process is a devoted to plot a heatmap for each context and amplicon,

cpg.xxx.heatmap.pdf (Figure 4.6). This figure facilitates the review of comparisons associated

with an specific situation. It reports a z-score of β-values for each site and MID in a specific

context and amplicon.
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Figure 4.5: Density plot (left side )and box plots (right side) of missing methylation sites per each
amplicon in a specific context. Red color line show the mean of the measure, while orange line
shows the media.

4.4.5 Selection of Differentially Methylated Regions (DMR)

Finally, last step is the process devoted to find the differentially methylated regions (DMR) be-

tween each pair of experimental conditions. This analysis is based on the Fisher’s Exact Test

[Fisher (1922) and Agresti (2002)]. Briefly, for each site the program tests if (un)methylation and

phenotypes are independent, or equivalently if the odds ratio (OR) is equal to 1. Associated P–

values are adjusted for correcting the problem of multiple testing by the method of Benjamini

and Hochberg [Benjamini and Hochberg (1995)].

This process requires that the user provides an extra file associated with the comparison to

be performed. This file must be placed in the folder ./data/ and it must to contain the following

information (Appendix A):

• Gene: number of amplicon.

• Comp.Label: label to be shown in resulting files for identifying the comparison.

• <labels>: labels associated associated with each experimental condition.

After performing this step, the program yields the following two files for each context and

amplicon:
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Figure 4.6: Heatmap plot of beta values associated with experimental conditions A and C in the
context of sites CG for the gene1.

• cpg.xxx.Comparisons.csv: table with the OR, the confidence interval (CI) for the OR,

the raw p–value and the adjusted pvalue for each condition and site in a specific context

and amplicon.

• cpg.xxx.plotOR_x_vsy.pdf: plot of the OR, whit their CI for all the sites of a specific

context in an amplicon and comparison x_vs_y.

Moreover, in order to summarize help the user with the summarization of the results, the

pipeline yields a file called numDMR.csv, where for each context, gene and comparison indicates

the number of DMR according to show a False Discovery Rate (FDR) lower than 0.01 and 0.05.

Table 4.3 shows the results provided by the pipeline for the comparison A vs B in the context

of site CG for the gene1.

Table 4.4 shows the results the number of DMR for the data analysis performed.

Figure 4.7 shows al
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Table 4.3: Summary table describing the results of comparison in CG for gene1 betwen group A
and group C.

GG.Site C_vs_A.OR C_vs_A.Lower.OR C_vs_A.Upper.OR C_vs_A.Pvalue C_vs_A.Adj.Pvalue

site1 1.2206178997 0.8940349751 1.6734518705 0.1971028932 0.3844981015
site2 1.1883892672 0.9077696805 1.5601554391 0.2087895516 0.3844981015
site3 1.39272528 1.0615775769 1.8350945525 0.0146559878 0.1905278413
site4 1.369766737 0.9976846646 1.891587833 0.0461108279 0.1998135875
site5 1.5336674469 1.0349860495 2.2991117058 0.0310774655 0.1998135875
site6 0.8956542199 0.6223124368 1.2893874015 0.5350219357 0.5600505906
site7 1.3101379355 0.9488629274 1.8188091895 0.099794099 0.2594646575
site8 1.116276708 0.7940933758 1.5749295255 0.5600505906 0.5600505906
site9 1.4036077779 0.9489051583 2.0962737572 0.0905287885 0.2594646575
site10 1.2741010287 0.8169658873 2.0067883854 0.2859961928 0.4131056118
site11 1.2307982827 0.8180214014 1.8659252142 0.3237930795 0.4209310033
site12 1.2526392212 0.8598729488 1.8370354238 0.2366142163 0.3844981015
site13 1.109583105 0.7844931373 1.5752392132 0.5541254153 0.5600505906

Table 4.4: Summary table of the number of DMR found for each context, gene and comparison,
and according to a FDR<0.01 or a FDR<0.05

Context Gene Comparison Num.Sites Adj.Pvalue < 0.01 Adj.Pvalue < 0.05

CG gene1 C_vs_A 13 0 0
CG gene2 C_vs_B 7 4 4
CG gene2 C_vs_D 7 3 6
CG gene2 B_vs_D 7 1 1
CHG gene1 C_vs_A 9 0 0
CHG gene2 C_vs_B 8 0 0
CHG gene2 C_vs_D 8 0 0
CHG gene2 B_vs_D 8 0 1
CHH gene1 C_vs_A 72 0 0
CHH gene2 C_vs_B 14 1 1
CHH gene2 C_vs_D 14 1 2
CHH gene2 B_vs_D 14 1 2
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C vs B

Figure 4.7: OR plot describing the log2(OR) values for each CG site when comparing group C
vs group B in gene2. Red dots indicate DMR according to a FDR lower than 0.05. Light blue
shadows is the 95% confidence band.



Chapter 5

Conclusions and Recommendations for

Further Work

5.1 Conclusions

This master’s thesis which focused on the “Methylation Data Analysis Associated with Alzheimer’s

Disease” is an attempt help researchers at the lab of Dr Marta Barrachina providing them a tool

for finding differentially methylated regions based on DNA bisulfite sequencing of target regions

by using the 454 GS FLX system from Roche.

The project has focused on main aspect:

1. The development and implementation of a pipeline for finding Differentially Methylated

Regions (DMR) between different experimental conditions of a specific region of a DNA

sequence, whose samples have been treated with bisulfite and sequenced with a 454 GS

FLX system.

With regard to this issue, it has have been taken advantage of a experimental design and spe-

cific objectives in which researchers were interested. This fact has allowed the implementation

of a pipeline that

• It is completely coded in R language.

• Performs a whole data analysis for finding DMR.

36
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• Integrates properly external tools (Perl script, FastQC and BiQ Analyzer HT ) for tak-

ing advantage of their results, and based on them performing new computations.

• Provides the user appropriate measures, summaries and plots at each step of the pipeline.

• The pipeline is called pmd and it is freely available at the GitHub repository https://

github.com/jlmosquera/pmda under a License GPL-2 (http://www.r-project.org/

Licenses/GPL-2).

5.2 Recommendations for Further Work

In order to facilitate the data analysis for potential user, it would be interesting to build an R

package with all the functions and sources developed as well as to develop an Application Pro-

gramming Interface (API) for those user less familiarized with this kind of data analysis. Current

pipeline only is thought to perform simple comparisons, however, it is possible that more com-

plex experimental designs require the use of considering linear regression. Thus integrating

approches such as the limma package from Bioconductor [Gentleman et al. (2004)], the user

count take into account other interactions between different effects.

https://github.com/jlmosquera/pmda
https://github.com/jlmosquera/pmda
http://www.r-project.org/Licenses/GPL-2
http://www.r-project.org/Licenses/GPL-2


Appendix A

Input Files Required by the Pipeline

A.1 lanes.csv

Table A.1 shows an example of the information provided in file lanes.csv to the pipeline.

Table A.1: lanes.csv.
Lane.ID FileName

1 reads.fasta

A.2 mids.csv

Table A.2 shows an example of the information provided in file mids.csv to the pipeline.

Table A.2: mids.csv.
MID.ID MID.Seq

1 ATAGAGTACT

2 CACGCTACGT

3 CAGTAGACGT

4 CGACGTGACT

5 TACACACACT

6 TACACGTGAT

7 TACAGATCGT

8 TACGCTGTCT
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A.3 primers.csv

Table A.3 shows an example of the information provided in file primers.csv to the pipeline.

In order to preserve the data analyzed, nucleotide sequences provided in this table are not the

ones used for the data analysis performed. This table shows information associated with two

hypothetical amplicons analyzed.

Table A.3: mids.csv.
Primer.ID Ampl.Name Sense Primer.Seq Start Num

1 gene1 fw ATAGTAAATGTTTTTATTTATTCTTGTATTG 1 30
1 gene1 rv GTTTATAAATCCAATACTCATCCTAATCAT 370 30
2 gene2 fw TGTAAGTTTGATTGTATTTATGGGGGATTA 1 30
2 gene2 rv ACTACAAAATTCAATCATTAAATA 475 25

A.4 samples.csv

Table A.4 shows an example of the information provided in file samples.csv to the pipeline.

Data provided here are not the ones used for the data analysis performed. This table shows

information associated with two hypothetical amplicons profiled in tha same lane.

Table A.4: mids.csv.
Sample.ID Ampl.Name Patient.ID Lane.ID MID.ID Primer.ID RefSeq.ID

s01 gene1 gene1.01 1 1 1 1
s02 gene1 gene1.02 1 2 1 1
s04 gene1 gene1.04 1 4 1 1
s05 gene1 gene1.05 1 5 1 1
s06 gene1 gene1.06 1 6 1 1
s07 gene1 gene1.07 1 7 1 1
s08 gene1 gene1.08 1 8 1 1
s09 gene2 gene2.09 1 1 2 2
s10 gene2 gene2.10 1 2 2 2
s11 gene2 gene2.11 1 3 2 2
s12 gene2 gene2.12 1 4 2 2
s13 gene2 gene2.13 1 5 2 2
s14 gene2 gene2.14 1 6 2 2
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A.5 comparisons.csv

Table A.5 shows an example of the information provided in file comparisons.csv to the pipeline.

Actually, it is the contrasts matrix, where a user must take into account that values can be 1, 0 or

-1. Currently, the pipeline only supports simple contrasts. Thus, a cell with a value 1 indicates

that the the experimental condition is the first in the comparison and a value -1 is intended

for the second experimental condition. A value 0 indicates that a label is not included in the

comparison.

Table A.5: comparisons.csv.

Gene Comp.Label C A B D

gene1 A_vs_C -1 1 0 0
gene2 B_vs_C -1 0 1 0
gene2 D_vs_C -1 0 0 1
gene2 D_vs_B 0 0 -1 1



Appendix B

Output Files Provided by BiQ Analyzer HT

B.1 heatmap.png

Figure B.1 shows the type of methylation heatmap that BiQ Analyzer HT provides in filee

heatmap.png.

B.2 perlNecklace.png

Figure B.2 shows a pearl–neclace diagram yielded by BiQ Analyzer HT.

B.3 results.tsv

Table B.1 shows an example of the methylation information privide by BiQ Analyzer HT , for

each read sequence mapped to a reference genomic sequence of “Gene1”.

Table B.1: results.tsv.
ID Alignment score Sequence identity Methylation pattern Mean methylation level Missing sites Conversion rate Reference sequence

read.1 1444 0.7826 xxx1111000111 0.7 3 0.5349 Gene1
read.2 1868 0.9925 0000001111111 0.5385 0 0.5116 Gene1
read.3 1868 0.9926 0101100011110 0.5385 0 0.6124 Gene1
read.4 1861 0.9928 1000111110000 0.4615 0 0.7984 Gene1
... ... ... ... ... ... ... ...
read.3000 1859 0.9957 0000000000000 0 0 0.9845 Gene1
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Figure B.1: Illustration of a piece of a methylation heatmap provided by BiQ Analyzer HT

showing methylation patterns per each read and site.

Figure B.2: Illustration of a perl–necklace diagram generated by BiQ Analyzer.



Appendix C

File parameters.R

The following R scripting code are the parameters required by the pipeline. That is, a potential

user of the of the program must select and set up the appropriate parameters for his/her analy-

sis, before running the R script run_pmda.R.

###################################################

## chunk 1 : R Output Options

###################################################

Sys . s e t l o c a l e ( ’LC_ALL ’ , ’C ’ ) # To avoid warnings due to language

options ( width = 170)

mc. cores <− 3 # Number of cores

###################################################

## chunk 1 : P r o j e c t I d e n t i f i c a t i o n

###################################################

. project <− "<project _name>" # P r o j e c t name

. t i t l e <− "< t i t l e _ of _the_ project >" # P r o j e c t t i t l e

. abstract <− "< b r i e f _ description _ of _the_ project >" # P r o j e c t descr ipt ion
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. researcher <− "<name_ of _the_ researcher >" # Researcher name

. lab <− "<name_ of _the_ lab−_ organization >" # Lab ( Organization )

. email <− "<contact _@_e−mail>" # Contact e−mail

. analysts <− "<name_ of _the_data_ analyst >" # Data Analyst

###################################################

## chunk 2 : Paths

###################################################

## Main path

. main . path <− "<path_ to _the_ project >" # e . g . " /home/Documents/ myproject "

## Basic s t r u c t u r e

.wd <− f i l e . path ( . main . path , . project ) # Working path

setwd ( .wd)

. dat <− f i l e . path ( . wd, " data " ) # Data

. fun <− f i l e . path ( . wd, " functions " ) # R functions

. res <− f i l e . path ( . wd, " r e s u l t s " ) # Results

## Paths to software t o o l s

. r <− f i l e . path ( . fun , "R" ) # path name to R functions

. perl <− f i l e . path ( . fun , " perl " ) # path name to perl s c r i p t s

. fastqc <− "<path_ to _FastQC>" # e . g . " /home/ Software / FastQC"

. biq <− "<path_ to _BiQAnalyzerHT" # e . g . " /home/ Software / ’ BiQAnalyzerHT "
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###################################################

## chunk 4 : Quality Control of Raw Data

###################################################

##

## Parameters associated with f i l e : " process01 . qc_raw_ reads . R"

##

## 1 . FastQC of raw reads

run . FastQC . raw <− TRUE # TRUE runs the software FastQC on raw reads

convert . to . fastq <− TRUE # TRUE i f does not e x i s t a . f a s t q f i l e , but

# f a s t a . fn and qual . fn e x i s t .

# FALSE i s any other case

. run <− f i l e . path ( . dat , "run" ) # path name to . f a s t a and . qual f i l e s

f a s t a . fn <− " reads . f a s t a " # f i l e name of the f i l e with f a s t a sequences .

# NULL, otherwise

qual . fn <− " reads . qual " # f i l e name of the f i l e with qual sequences .

# NULL, otherwise

fastq . fn <− " reads . fastq " # f i l e name of the f i l e with f a s t q sequences .

# NULL, otherwise

## 2 . Load Data F i l e s

lanes . fn <− " lanes . csv " # f i l e name of the f i l e with lanes

save . reads <− TRUE # TRUE saves in a f i l e c al l ed ’ reads . Rda ’ an

# o b j e c t with raw reads , and in case of having a

# f a s t q f i l e , i t also save an o b j e c t with f a s t q
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# sequences . FALSE loads the o b j e c t ( s ) mentioned

# above

## 3 . QC of raw reads

run .QC. raw <− TRUE # TRUE builds s t a t i s t i c s summaries and p l o t s

###################################################

## chunk 5 : Pre−processing : F i l t e r i n g Raw Reads

###################################################

##

## Parameters associated with f i l e :

## ’ process02 . preprocessing _ 1 . f i l e t e r i n g _raw_ reads . R ’

##

## 1 . F i l t e r i n g raw reads

f i l t e r i n g <− TRUE # TRUE applies d i f f e r e n t f i l t e r i n g c r i t e r i a to

# raw reads

min . len <− 150 # minimum read length accepted f o r data analysis

## 2 . FastQC of f i l t e r e d reads

run . FastQC . f i l t e r e d <− TRUE # TRUE runs software FastQC on f i l t e r e d reads

###################################################

## chunk 6 : Pre−processing : S p l i t t i n g and Trimming

###################################################
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##

## Parameters associated with f i l e :

## ’ process02−preprocessing _ 2 . s p l i t t i n g _and_trimming_ reads . R ’

##

## 1 . Load Data F i l e s

samples . fn <− "samples . csv " # f i l e name of the f i l e with sample t a r g e t s info

primers . fn <− " primers . csv " # f i l e name of the f i l e with consensus primer

# sequences

mids . fn <− "mids . csv " # f i l e name of the f i l e with MID primer sequences

## 2 . S p l i t t i n g and trimming reads by MID primers

run . s p l i t .MIDs <− TRUE # TRUE runs s t e p s s p l i t t i n g and trimming reads by

# MID primers . FALSE loads reads already s p l i t t e d

# and trimmed

max . s t a r t . pos <− 5 # Maximum s t a r t i n g posit ion of primers

max .mm. mid <− 0 # Maximum number of mismatches in each MID primer

with . indels . mid <− FALSE # Indels are not allowed in MID primer

## 3 . S p l i t t i n g reads by consensus primers

run . s p l i t . cons <− TRUE # TRUE runs step s p l i t t i n g by consensus primers

max .mm. cons <− 3 # Maximum number of mismatches in each consensus

# primer

with . indels . cons <− TRUE # Indels are not allowed in consensus primers
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## 4 . FastQC of reads s p l i t t e d by consensus primers

run . FastQC . consensus <− TRUE # TRUE runs the software FastQC on reads s p l i t t e d

###################################################

## chunk 7 : Aligment process

###################################################

##

## Parameters associated with f i l e : ’ process03 _alignment . R ’

##

cpg <− c ( "CG" , "CHG" , "CHH" ) # Contexts where methylation s i t e s in the

# r e f e r e n c e sequence must be found

###################################################

## chunk 8 : Quantification

###################################################

##

## Parameters associated with f i l e : ’ process04 _ quantif ication . R ’

##

## 1 . Load Data F i l e s

t a r g e t s . fn <− " t a r g e t s . t x t " # f i l e name of the f i l e with t a r g e t s info of

# each sample

p i l e . up <− TRUE # TRUE p i l e up a l l ’ r e s u l t . tsv ’ generated by

# alignment . FALSE loads concatenated t a b l e s

# r e s u l t i n g from the p i l e up step
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## Plot heatmaps with beta values

t a r g e t . samples . order <− NULL # Numeric vector indicating the order in which

# samples should be shown NULL, which i s the

# parametrization by default , takes the order of

# samples in t a r g e t s . fn f i l e

experimental . condition <− "Group"

###################################################

## chunk 10: Comparisons

###################################################

##

## Parameters associated with f i l e : ’ process05 _comparissons . R ’

##

comparisons . fn <− "comparisons . t x t " # f i l e name of the f i l e with the comparisons
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