
Statistics & Operations Research Transactions

SORT 41 (1) January-June 2017, 139-158

Statistics &
Operations Research

Transactions
© Institut d’Estadı́stica de Catalunya

sort@idescat.catISSN: 1696-2281
eISSN: 2013-8830
www.idescat.cat/sort/

A quadtree approach based on European

geographic grids: reconciling data privacy and

accuracy

Raymond Lagonigro, Ramon Oller and Joan Carles Martori∗

Abstract

Methods to preserve confidentiality when publishing geographic information conflict with the need

to publish accurate data. The goal of this paper is to create a European geographic grid frame-

work to disseminate statistical data over maps. We propose a methodology based on quadtree

hierarchical geographic data structures. We create a varying size grid adapted to local area densi-

ties. High populated zones are disaggregated in small squares to allow dissemination of accurate

data. Alternatively, information on low populated zones is published in big squares to avoid iden-

tification of individual data. The methodology has been applied to the 2014 population register

data in Catalonia.
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1. Introduction

One of the main goals of the national statistical agencies is to collect and distribute

individual statistical data. Spatial data processing techniques allow gathering accurate

geographic information for individuals along with other statistical data. As statistical

agencies are totally concerned about confidential use of data, anonymity methods must

be applied to ensure privacy.

Dissemination of geographic data gets in conflict with confidentiality, as individual

data may be revealed. Classical anonymity techniques avoid the distribution of any piece

of information that may lead to individual identification and so, geographic data might

be eliminated before disseminating statistical data.
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Besides, there is a strong demand by the research community for accessing geo-

graphic data to perform spatial data analysis. The use of geographic data to publish

maps displaying statistical information is very engaging for national statistical agencies.

When publishing geographic information, it is important to develop techniques and

methods that preserve confidentiality while at the same time, for spatial data analysis

the information has to be reliable. Both goals are obviously conflicting, that is why the

development of methodologies to balance them is so valuable.

The Statistical Institute of Catalonia (Idescat) has been using spatial data processing

techniques to obtain geographic data for all individuals in the Catalonian 2014 popula-

tion register data with the aim to provide high-quality and relevant statistical informa-

tion. Idescat is interested on the automation of techniques to release and visualize the

geospatial data as precise as possible without conflicting with confidentiality require-

ments.

We develop an automatic system to reconcile data privacy and accuracy on the dis-

tribution process of geographic social and economical data. The goal of our work is to

create a framework, based on European standard grids, to distribute statistical data over

on-line maps. The framework pursues the data accuracy at the best possible resolution,

without individual information disclosure. Hierarchical geographic data structures are

used to build a varying size grid adapted to local area densities.

In addition to the use of a varying size grid, a well known data protection method,

our main contribution is the use of European standard based grids and a double threshold

system to minimize information loss while maintaining data privacy.

The methodology has been implemented using the R software (R Core Team, 2015)

and tested with the Catalonian 2014 population register data. The framework developed

in this paper is to be used at the Catalonian Statistical Institute as a method to build and

distribute statistical maps and data.

This paper is organized as follows: the second section reviews privacy concepts re-

lying the visualization and delivery of geographical referenced data. The third section

overviews the use of standard grids to deliver statistical data. It also introduces our

methodology for creating a varying size grid based on the European standards for statis-

tical data collection. The fourth section presents the results obtained applying a varying

size grid quadtree methodology to the Catalonian 2014 population register data. Finally,

the last section concludes and draws future research lines.

2. Privacy and geographic data

Privacy is an important issue when releasing confidential data about individuals. Many

methods have been proposed to preserve privacy when delivering confidential infor-

mation; Aldeen et al. (2015) present an extensive literature review and classification

of privacy preserving on data analysis and publishing; Domingo-Ferrer et al. (2016)

also provide a comprehensive overview of privacy models and anonymisation methods.
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Concepts of privacy may vary in different countries (Exeter, Rodgers and Sabel, 2013),

and the purpose of the research may also lead to different considerations on the level

of confidentiality before delivering data to researchers (Fienberg, 1994; VanWey et al.,

2005; Vilhuber, 2013). Many health research results, for instance, are worthless if the

distributed information has been distorted. In such cases appropriate frameworks must

be established between researchers and data custodians to enable information to be dis-

seminated (Exeter et al., 2013).

Geospatial technologies brought on new aspects to be considered when dealing with

privacy concepts for publishing georeferenced data (Armstrong and Ruggles, 2005).

Two situations may arise when publishing spatial data. Individual geographic coordi-

nates may be confidential by themselves and should be anonymised to avoid the iden-

tification of an individual location at a moment in time. This is, for instance, the case

of location aware applications, where devices are used to know and handle the user’s

geographic position with some purpose (Beresford and Stajano, 2003). Location-based

services (LBS), where information is sent to a user depending on his position must pro-

vide mechanisms for balancing high quality information services and privacy. Such

mechanisms usually use obfuscation techniques and intermediation to mask the individ-

ual’s locations and so ensure privacy and, at the same time, supply enough information

to provide a service of satisfactory quality (Sweeney, 2002a; Duckham and Kulik, 2005;

Ardagna et al., 2007; Xu and Cai, 2009). On the other hand, geographic coordinates may

be published among many other attributes as part of statistical databases. Dissemination

of spatial coordinates introduces disclosure risks that may lead to re-identification of

individual private information and so should be anonymised (Armstrong and Ruggles,

2005; Curtis et al., 2006, 2011; Cassa et al., 2008; Boulos et al., 2009). For instance,

individual addresses may be revealed through reverse geocoding when publishing maps

with information on individual locations.

Armstrong et al. (1999) carry out a revision of existing strategies to deal with con-

fidentiality of geocoded individual data. Zandbergen (2014) also compares the effec-

tiveness of the different methodologies in terms of anonymisation and quality for spatial

analyses of data being released. When individual data records are to be distributed,

geomasking techniques should be applied. Geomasking techniques alter individually

the position of each map point location to ensure the actual locations can’t be discov-

ered (Armstrong et al., 1999; Zimmerman et al., 2007; Hampton et al., 2010). Different

types of random perturbations can be applied on every individual point so there is no

coincidence between original and geomasked points. Some systems may also imple-

ment variable perturbations depending on the distribution of the risk of re-identification

(Young et al., 2009). The perturbation applied directly increases the difficulty of re-

identification, but simultaneously reduces the usefulness of the data to perform spatial

analyses. In that sense, as many authors have stated (Duncan et al., 2001; Kwan et al.,

2004; Reiter, 2012), altering the spatial distribution of individual data may introduce

biases on further analyses and may make more difficult to ensure the results of such

analyses are not compromised by the alteration method applied. Kwan et al. (2004)
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demonstrate how data analyses provide very different results beyond some perturbation

thresholds.

When the goal is map visualization, geomasking techniques do not seem to be the

best approach, as they display points on a map that may not coincide with dwellings.

In addition, geomasked locations may present paradoxical visual contradictions when

being displayed on digital maps because they may fall into clearly uninhabitable zones

(rivers, lakes, parks). Those effects may reduce confidence on the whole system. Zand-

bergen (2014) introduces spatial filters to ensure that masked locations do not fall into

some special zones, therefore avoiding those undesired effects of geomasking.

As an alternative, aggregation methods avoid re-identification by grouping individual

information into sets of summarized data. Microaggregation techniques pursue data

privacy in microdata databases by aggregating individual records into small groups prior

to publication (Defays and Anwar, 1998; Mateo Sanz and Domingo Ferrer, 1998). K-

anonymity was defined as a basis model to provide guarantees of privacy protection

for aggregation methods (Sweeney, 2002b). In k-anonymity models, a release is said

to provide k-anonymity if the information for an individual cannot be distinguished

from at least k–1 individuals within the same release. k-microaggregation techniques

accomplish k-anonymity by creating groups with at least k records to prevent disclosure

of individual information.

In the context of geographic data privacy, k-anonymity implies that for any individual

in the dataset, his location is indistinguishable from at least k–1 other individuals. In

geographic aggregation methods, individual information is aggregated into geographic

areas to include and summarize in some way the individual data. Thus, to achieve k-

anonymity, geographic aggregation methods must ensure that all the zones created in

the aggregation process include at least k individuals (Vu et al., 2012).

Census tracts are a clear example of aggregated spatial data delivering and have been

widely used as many information collection processes are related to these units. The

area definition criteria is extremely important. Administrative or political boundaries,

for instance, may not be a good choice to area definition as they often lead to incom-

patible statistical geographies (Walford, 2013). Several algorithms have been developed

to automate the zone definition process creating uniform areas in terms of some defined

variables (Openshaw, 1995, 1977; Martin, 2002; Ralphs and Ang, 2009). Duque et al.

(2007) present a review of aggregation techniques to build optimized census regions.

The use of administrative boundaries on data aggregation methods may also lack of

stability because they may change over time (Martin et al., 2002). Some methods have

been developed to deal with zone matching problems which try to maintain the maxi-

mum number of areas without modification and hence maximising the match between

different zonal geographies (Martin, 2003; Cockings et al., 2011).

Automated zone definition algorithms create aggregated data from bottom to up,

grouping points or small areas to build bigger areas that meet a given criteria usually

restricted to administrative boundaries. Grid-based aggregation is a good alternative

as it does not rely on administrative areas (Giuliani et al., 2011; Tammilehto-Luode,
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2011). Grid-based aggregations perform a top-down disaggregation methodology, in

which areas are defined based on an initial rectangular grid (Steinnocher and Kaminger,

2010). Those aggregations offer a stable area system to disseminate data which will not

change over time so that successive temporal spatial datasets will be comparable.

The quality of published aggregated information relies on the scale and the bound-

aries chosen. As stated by Openshaw (1984) in the modifiable area unit problem (MAUP)

definition, results of spatial analyses are completely dependent on the spatial units be-

ing used to deploy them. This dependence is described by two factors: the scale of the

aggregation units and the boundaries in which the area is divided to create those units

(Flowerdew et al., 2001).

The modifiable area unit problem has been largely discussed in literature and many

works have explored its influence on the results of analyses using aggregated data (Fother-

ingham and Wong, 1991; Cockings and Martin, 2005; Briant et al., 2010; Burden and

Steel, 2013; Walford, 2013; Marceau, 2014). Briant et al. (2010) evaluate the magnitude

of biases derived from the choice of the specific zoning system concluding that the size

of the units matters much more than their shape. Andersson et al. (2012) results also

reinforce the scale effect of the MAUP: they use a square grid zoning system at different

resolutions stating that the scale effect is much more important than that of shape on the

MAUP.

3. Data and methodology

Idescat has been gathering social and economical data at individual level and aims to

publish such data using web maps. The Catalonian 2014 population data register in-

cludes 7,566,443 records with information such as sex, age, nationality, study level,

along with the geographic coordinates of the individuals. Up to now, Idescat has been

publishing such information in an aggregated form using census tracts to keep privacy.

With an extension of 32,108 km2, the Catalonia region is subdivided in 5040 census

tracts. The use of administrative zones to gather spatial data makes difficult to perform

analyses comparing information from different countries. Grid-based data collection is

an alternative for comparable territorial statistics across countries and to perform time

series statistical analyses (Tammilehto-Luode et al., 2003). Grid areas are time indepen-

dent and extend over countries. In addition, in a grid system all the areas have the same

form and size and can easily be divided into lower size area grids.

We propose to use a quadtree methodology based on an initial 1km2 European grid

and population data points to create a varying size grid. This methodology results in

high populated zones being disaggregated in small squared areas and thus accurate data

is disseminated, but at the same time low populated zones being maintained in big areas

to avoid identification of individual data.

In the rest of the section we present our methodology to build a grid with much more

precision than the census tracts without breaking the confidentiality.
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3.1. A Hierarchical European standard grid

The European Forum for Geostatistics within the GEOSTAT project has promoted a

common framework for grid based statistics across all the European countries. The

GEOSTAT project collected experiences, methods and good practices from national

statistical institutes and international bodies to encourage the production of grid data

(GEOSTAT 1A, 2011). The project aims to represent various European characteristics

in a 1km2 grid dataset. With the results of the GEOSTAT 1A final report, the GEOSTAT

1B action developed the guidelines for datasets and methods to link the census 2011

based data with grid datasets (GEOSTAT 1B, 2014).

The GEOSTAT 1A project makes the following recommendation for the grid size:

“Regarding the recommended size of grid cells, 1km2 appears to be a good compro-

mise between data availability, data confidentiality and suitability for national to Eu-

ropean study areas. The project also recommends introducing intermediate grid sizes

based on a two-level data structure (i.e. 250m and 500m as subdivision of the 1km

grid).”(GEOSTAT 1A, 2011)

In the definition of the grid dataset, grid cells must be unambiguously identified to

ensure a clear linkage between data and its geographic reference. In that sense, the

INSPIRE grid coding system is adopted as defined in the INSPIRE Data specifications

(INSPIRE, 2010). INSPIRE specifications use the European Terrestrial Reference Sys-

tem 89, Lambert Azimuthal Equal Area (ETRS89-LAEA) projection (Annoni et al.,

2001). Each cell of the grid is identified by a code composed by the cell’s size and the

coordinates of the lower left cell corner in the ETRS89-LAEA system.

There are many techniques to represent hierarchical data structures. Hunter (1978)

introduced the quadtree methodology to represent data used in cartographic applica-

tions, among others. This methodology is based on the principle of recursive decom-

position of space (Samet, 1984, 1988). The region quadtree is based on the successive

subdivision of space regions into four equal-sized quadrants, see Figure 1.

Figure 1: Example of space subdivisions (left) and the equivalent quadtree repre-
Figure 1: Example of space subdivisions (left) and the equivalent quadtree representation.
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Figure 2: Quadtree splitting example
Figure 2: Quadtree splitting example.

The 1 km2 grid can be subdivided into different size levels using a quadtree hierar-

chical structure in which cells of each size level can be easily linked. Quadtree method-

ology on spatial structures, can recursively split any squared area into four smaller areas,

or, conversely, join four squared areas into the upper level one that they conform (Samet,

1984, 1988).

In a quadtree structure every cell of a grid level links to its containing cell on the

upper grid level of larger size. Figure 2 shows an example of how an initial cell is split;

each of the four new cells is sequentially numbered starting at the bottom left on left-

right and bottom-up direction, and each of them will keep the number of the split cell.

The same process may be successively repeated until the desired resolution. Moreover,

any cell of the grid will keep its boundaries into a main European standard grid, so data

can be easily related to other databases.

Our proposal requires the creation of a series of spatial data structures in order to get

the final grid to work with. The initial 1km2 grid is first intersected with the Catalonian

boundaries to get the 32,915 squared grid cells that cover the whole 32,108 km2 territory.

The geographic points from the 2014 population database are then intersected with this

grid to discard all cells without population, for matters of efficiency, before dividing the

1 km2 grid into smaller ones. Once intersected the number of cells of the grid is reduced

to 9,145. Using a quadtree structure this grid is divided to generate a new grid with

double the resolution (i.e. half the scale) from which cells with no population will be

deleted again. This process is repeated until a scale of 62.5 m2 is reached and a set of 5

grids with 1 km2, 500 m2, 250 m2, 125 m2, 62.5m2 squared cells is obtained.

The process to build the structures can be described as follows:

1. Build the initial 1 km2 grid covering the while territory (in our case the Catalonian

boundaries)

2. Set the minimum cell size to 62.5 m2

3. While the actual grid cell size is bigger than the minimum defined:

(a) Perform the intersection of each cell with point level information
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(b) Aggregate individual information to each corresponding cell

(c) Discard grid cells with no points inside

(d) Subdivide each grid cell into four cells to build a new grid

3.2. A quadtree varying size grid

With the hierarchic spatial data structures created, the varying size grid is dynamically

created performing a bottom-up aggregation considering a minimum threshold for the

number of individuals in the cell.

Cells with less individuals than the threshold are automatically aggregated to the

upper level in a quadtree manner. Given a threshold of k, none of the cell grids have less

than k individuals as in a k-anonymity model.

An example of the varying size grid building process can be seen in Figure 3. The

numbers in cells represent the number of individuals that meet a given criteria for that

area. The grid on the left has several cells with values (in red) under the threshold (in

the example threshold value is 10). Those cells are grouped to their upper level cell in

the quadtree structure. The process is successively repeated until all cell values in the

grid are over the threshold value or until the 1 km2 cell size is reached in which case the

cell is suppressed.

Figure 3: Building the varying size quadtree grid using a threshold value of 10
Figure 3: Building the varying size quadtree grid using a threshold value of 10.
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Figure 4: Varying size quadtree grids examples. Urban region (left) and country
Figure 4: Varying size quadtree grids examples. Urban region (left) and country side region (right). Color

represent cell population density, ranging from yellow (low density) to red (high density).

Two example zones of the varying size quadtree grid created using the proposed

framework with a threshold of 100 can be seen in Figure 4.

3.3. A threshold for anonymity

The grid created ensures that a minimum number of individuals are clustered in each cell

to avoid disclosure, but an anonymization process is still to be applied to the different

variables available (i.e. sex, age, nationality). In the aggregation process, all the vari-

ables are summarized in each grid cell. Frequency counting was performed on the same

categories of the qualitative and grouped quantitative variables being used by Idescat to

deliver information for census tracts.

We propose to use a varying size quadtree methodology with a unique population

threshold for cell aggregation (an aggregation threshold) and a second lower threshold

for attribute anonymity (an anonymity threshold). A unique varying size grid was built

using the quadtree structure and the population of each cell was used as the aggregation

criteria. The rest of the attributes are qualified as “Not Available” when their values do

not reach the anonymity threshold.

In Figure 5 an example of the resulting varying size grid created by using this

methodology is shown. The example exhibits a zoomed zone around the Barcelona

municipality where the different cell sizes is more apparent. A list of variables being

published can also be seen; notice that several variables were anonymised to keep pri-

vacy as their values were below the anonymity threshold value. The anonymity thresh-

old ensures k-anonymity, as for every cell, attributes whose values do not reach the

threshold are not shown.
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Figure 5: Final varying size quadtree grid obtained with aggregation and
Figure 5: Final varying size quadtree grid obtained with aggregation and anonymity threshold values of

100 and 10 respectively. The list of variables for a cell are shown.

The use of a unique grid for all the dataset attributes also ensures reciprocity. Kal-

nis et al. (2007) introduced reciprocity as a sufficient property for spatial k-anonymity.

Reciprocity requires that a set of individuals are always grouped together for a given

k. The unique grid achieves reciprocity as the grouping is the same for any variable or

variable crossing.

4. Evaluation of the varying size quadtree

To test the methodology explained in the previous section a Web server interface was

implemented using the plotGooglemaps R package (Kilibarda, 2015) to project the grid

over Google maps (Miller, 2006); the Rook R package (Horner, 2014) was used to

dynamically serve the maps in web pages. An anonymity threshold value of 10, as rec-

ommended by GEOSTAT 1B (2013), was chosen to avoid disclosure and several aggre-

gation thresholds were assessed. Table 1 shows the results obtained using three different

aggregation thresholds. We can observe an obvious inverse relation between the aggre-

gation threshold and the rate of values that do not reach the anonymity threshold and

thus are considered NA values. A lower aggregation threshold yields a better resolution

grid, as more small areas are maintained, but less information will be available for those

areas.
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Table 1: Different population aggregation thresholds, with 62.5 m2 cells rate and NA values rate.

62.5 m2 cells rate NA values rate

Aggregation threshold 30 58.1% 29.4%

Aggregation threshold 50 48.6% 21.8%

Aggregation threshold 100 30.8% 11.9%

From the results shown on Table 1 we propose an aggregation threshold value of 100

so that 30.8% of high resolution cells are maintained on the final grid, with a rate of Not

Available of only 11.9%.

To reduce information loss, we slightly modify the algorithm so that only 1 km2

cells with population under the anonymity threshold are suppressed. For those 1 km2

cells with population between the anonymity and aggregation thresholds (i.e. between

10 and 100), the population number of each cell is disclosed and the rest of the variables

are anonymised if needed. In the case of the Catalonian 2014 population register only

0.17% of individuals are removed from the resulting set.

A varying size grid adapts its resolution to the population distribution. The use of a

fixed size grid, although may be more stable, as the cells are equally sized, introduces

accuracy loss when cells are big, or information loss when cells are small. Regarding

Figure 6: Census sections (left) compared to varying size quadtree grid (right)
Figure 6: Census sections (left) compared to varying size quadtree grid (right).
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accuracy, if we compare our varying size grid to a 1 km2 fixed grid, 45.3% of the cells

are subdivided in smaller ones using our methodology. The varying size adapts the cell

size to the population distribution delivering information closer to the actual individual

point information. In our grid, 30.8% of the cells are high resolution ones (i.e. 62.5 m2);

the grid also maintains 33.1% of 125 m2, 12.9% of 250m2 and 10.2% of 500 m2 cells

and only 13.1% are 1 km2 cells. The total number of Not Available values introduced

by the disaggregation is only 0.04% higher compared to the 1 km2 fixed grid. On the

other hand, using a 62.5 m2 fixed grid all the cells with population under the threshold

would be deleted to keep privacy, the total population loss would be 45.5% compared to

the 0.17% in our methodology.

Hitherto, the Catalonian Institute of Statistics, as most of the public statistical agen-

cies, has been using census tracts as spatial units to collect and distribute statistical data.

In Figure 6 those administrative census sections are compared to the quadtree varying

grid size for two different zones. Both systems offer varying size areas, but while census

sections have administrative boundaries, grid cells keep the boundaries within standard

grids. Moreover, the size of the automatically created cells of the grid reach higher

level of resolution on high population density areas and therefore, more accurate data

are being published.

High resolution spatial zones can also be created using automated zoning systems.

AZTool (Martin, 2003; Cockings et al., 2011) was used with the Catalonian 2014 popu-

lation register to compare the resulting areas with those created with our methodology.

AZTool algorithm applies a bottom-up methodology aggregating points into uniform

areas in terms of some defined constraints. To get comparable results, a population min-

imum threshold of 100 was used as the aggregation criteria. Figure 7 shows an example

of the resulting areas created using the AZTool algorithm compared to the varying size

quadtree grid. The AZTool algorithm also creates a zoning system adapted to population

density but irregular polygons are obtained. Our quadtree proposal creates squared cells

and, though also generating a varying size grid, due to its hierarchical structure, can be

compared at some scale because the boundaries are always within the main grid. As

a grid system, it offers more comparable spatial and time serial statistics (Tammilehto-

Luode, 2011).

The methodology proposed performs aggregation as an automatic non-disclosure

control system, but some aggregations must be examined and treated specially to avoid

information distortion. When neighbour zones with highly different population densities

are within the same 1 km2 unit cell, the minimum threshold may lead to an aggregation

of many high resolution cells, loosing accuracy and even distorting local densities. For

instance, consider the example shown in Figure 8 of an urban zone in a city, with a

1 km2 cell including a high populated neighbourhood and other sub-zones with few

population. When applying the proposed methodology, the two top left cells should be

protected for disclosure, but none of the intermediate aggregations reach the minimum

level of anonymity so only the 1 km2 cell can be displayed and thus, population in the

cell is shown as if it was equally distributed.
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Figure 7: AZTool zones (left), varying size quadtree grid (right)
Figure 7: AZTool zones (left), varying size quadtree grid (right).

Figure 8: Undesired aggregation effect example. Original 62.5 m2 cells (left); resulting 1 km2 cell being

published (right).

An analysis of the resulting grid was performed, focusing on those extreme aggre-

gations. There are 13% of 1 km2 cells in the final grid. From those, 14% contain one or

more 62.5 m2 cells with population over the aggregation threshold. Graph in Figure 9

represents the frequency distribution of the number of 62.5 m2 cells over the aggregation

threshold for each of the 1 km2 cells. There are few extreme cases in which many cells

are aggregated.
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Figure 9: Number of 62.5m2 cells over threshold being aggregated into 1km2 cells
Figure 9: Number of 62.5 m2 cells over threshold being aggregated into 1 km2 cells.

If we focus on 500 m2 cells, there are 10% on the final grid of which 25% contain

one or more 62.5 m2 cells with population over the aggregation threshold. Again, the

number of extreme cases in which this phenomena is observed is very small.

The quadtree algorithm can be slightly modified to improve those extreme cases

where low populated cells lead to aggregation of high populated ones (see Figure 9).

The distortions previously discussed result from heterogeneous regions with cells where

none of the in-between aggregations reach the threshold and the 1km2 is then produced

hiding cells over the threshold. Removing under-threshold cells from the quadtree pro-

cess when over-threshold cells are available in the same 1 km2 leads to a more precise

quadtree. The total population of the cells removed from the process can be given within

a randomly selected cell, specially denoted for that purpose. Information on that cell

could be anonymised in the same way as other cells.

Figure 10 exhibits the example region previously seen on Figure 8; numbers in cells

denote population in each cell; dark coloured cells have less population than the thresh-

old value (a threshold value of 100 is being used). If we look at the two top left cells,

they can only be covered in a 1 km2 aggregation. Removing them from the process,

leads to a grid with much more high resolution cells and so more accurate informa-

tion will be unleashed. The green cell in Figure 10 is randomly selected to denote the

total population of cells under the population threshold removed from the aggregation

process.

The same process can be applied to consider 500 m2 or 250 m2 cells. When the

resulting grids lead to loss of information in the sense of grouping a number of high

populated cells, the aggregation may be prevented taking low populated cells out of the

quadtree generation process. The grid generated is improved, with more high resolution

cells being published but, again, avoiding disclosure risk.
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Figure 10: Original 62.5m2 cells with population on each cell (left) and the result-
Figure 10: Original 62.5 m2 cells with population on each cell (left) and the resulting quadtree produced

with the final method proposed (right).

5. Conclusions

This study sets out a methodology to create a unique varying size grid for the dissem-

ination of statistical geographic data. We use quadtree hierarchical data structure to

recursively subdivide space regions from a standard grid.

The methodology proposed implements an automatic privacy control process by

adapting the grid cell size based on the population density of the regions represented

in the grid. Low resolution cells are produced on low populated zones, while high res-

olution cells are maintained for high populated zones. Thus, small grid cells are made

available when possible, while controlling data disclosure at the same time.

One of the major advantages of grid based statistics is the stability due to the fact that

all the areas have the same form and size (Tammilehto-Luode et al., 2003) and they do

not change over time. The methodology proposed, indeed, introduces variability on the

area size. The varying size grid created completely depends on the dataset being used,

here the 2014 population register. The stability of the system, however, is maintained

by the reference grid being used. Any grid created using the proposed methodology can

be compared at some scale, as the boundaries are always within a main grid. Moreover,

as a hierarchical grid system, it can easily be aggregated into a fixed size grid on a lower

resolution level.

Up to now, geographic statistical data is restricted to census sections which change

over time. The grid proposed will allow publication of more stable and accurate data as

the grid reference is fixed, and cell dimensions are much smaller than census sections.

The methodology has been implemented using the R software and applied to the

Catalonian 2014 population register data. The resulting grid has been dynamically rep-

resented and tested on a web server using Google maps.
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Our proposal may also be applied on map visualization of statistical data, as a re-

sponse to users zooming actions. The different grid levels can be associated to the

different scales of zoom thus applying automatic aggregation of information based on

the zoom level and the quadtree.
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