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Abstract

Bring a robot into ROS environment could be something difficult, but the idea that
have some hardware and software so well integrated that can be even simulated
with the help of some tools that ROS provides is really interesting, the intention of
this project is to design, model and build a mobile robot with holonomic properties
that will be able to compete in robotics competitions in the future, also have the
capability to be teleoperated, and creating a brand new and standardized ROS
packages to control it.
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Chapter 1

Introduction

This project is born due to the collaboration with the Robotics team from Uni-
versity of Vic and the opportunity to make a step further in the evolution of the
team to establish a great programming base with a simulation, that will improve
the movements of the robot in further competitions.

Personally, I’m a huge fan of robots and programming, during my membership of 3
years in the robotics team of the university every year the idea of bringing the team’s
robot Garrinator to a ROS system, it’s been a huge challenge that never became
real, but this year I’ve had the opportunity to have a closer look to the common
and complex algorithms that runs normally in mobile robots. Even that is my first
time in this field I felt really motivated against this challenge to give a proper ROS
environment and awaiting greater progress in this path on further competitions.

The Robot Operating System (ROS) is a flexible framework for writing robot soft-
ware. It is a collection of tools, libraries, and conventions that aim to simplify the
task of creating complex and robust robot behavior across a wide variety of robotic
platforms.

The robot used in this project is a class of mobile robot which uses omnidirectional
wheels that gives it plenty of mobility in all ground directions.

The main characteristics of the robot are:

• ROS based system

• 4 Omni wheel configuration

• Brushless with encoder powertrain.

From now on, the robot of this project will be referred as Garrinator.
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Model and build Robot in ROS enviroment

1.1 Objectives
The main goal of this project is to design , model and build a robust robot that will
be easily adaptable to the new challenges in further robotic competitions. In order
to achieve that goal the project has the following objectives:

• Design the base of the robot that has a power train with 4 omnidirectional
wheels, powered with brushless motors.

• Model and program the robot using the Operating System ROS and C++.

• Capability of the robot to be teleoperated.
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Model and build Robot in ROS enviroment

1.2 Structure of the memory
The following document follows a specific order. Each chapter includes a part of the
project:

• Chapter 1 Introduction

• Chapter 2 State of the art

• Chapter 3 Omni wheels kinematics

• chapter 4 Hardware architecture

• chapter 5 Software architecture

• chapter 6 Conclusions

• chapter 7 Results

To conclude this chapter, this project has an ambitious goal that will require a lot
of self learning, because the university do not provide any subject where the basics
of ROS are studied, the ROS concepts that are studied where theoretical basics of
odometry, kinematics and deeper knowledge of localization and mapping algorithms.
In addition is the first time that the robotics team and myself work with the ODrive
motor driver, so a technical research has been carried out to know how it works.

Chapter 1 9



Chapter 2

State of the art

This chapter will cover a comparison with the robots that are actually available in
the market or in development. The main characteristic among them is that they
are built over a ROS system. This chapter will compare the pros and cons with the
Garrinator. Another selection criteria is that they must have holonomic movement
and the dimensions have to be between 0.2 X 0.2 X 0.2m and 1 X 1 x 1m .
The robots are the following: Nav2 a multi purpose mobile platform, Seekur holo-
nomic indoor/outdoor payload transporter, X-terrabot a holonomic mobile platform
with a robotic arm, Mecanumbot a mobile platform used to practice and develop
ROS concepts.
The next pages will give more details about the principal characteristics of the se-
lected robots.

(a) Nav2 (b) Seekur

(c) X-terrabot (d) Mecanumbot

Figure 2.1: Robots to compare with Garrinator
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Model and build Robot in ROS enviroment

• Nav2

– Purpose:
The Nav2 is a highly modular and customizable robotic platform, some of
its applications are: Telehealth, Telepresence, automated pill dispenser.

– Especifications:
∗ Brushless motors
∗ 3 Omni directional wheels
∗ 360º Vision system with video transmission
∗ Touchscreen-based device (tablet, smartphone)
∗ Obstacle avoidance
∗ Speakers and microphone
∗ Localization and navigation.

– Pros/con/differences:
The nav 2 platform has an easily human-robot interface as it has monitor,
microphone and speakers, also it has 360º of vision, but it has almost no
load space, the main difference between them is field of application; the
nav 2 is telecommunication or health supporter, while the Garrinator is
development and robotics competitions.

• X-Terrabot

– Purpose:
X-Terrabot is a highly multi-purpose robot, some work fields of this robot
are: transport in factories or warehouses,hazardous material handling and
military applications. Currently is still a research product.

– Main characteristics:
∗ 6 Axis robotic arm with a gripper.
∗ 4 Mecanum wheels.
∗ Localization and navigation.

– Pros/cons/differences:
Both robots has research purposes that can end up to a very useful robot,
the main difference between them is the X-terrabot has navigation in-
cluded and 4 mecanum wheels.

Chapter 2 11
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• Seekur

– Purpose:
Seekur has various types of application depending on the hardware op-
tions, one example is to transport, indoor/outdoor medium payloads, or
just be the mobile base of another application.

– Main characteristics:
∗ Dimensions: 1,4 × 1,3 × 1,1 m
∗ Weight: 300 kg
∗ 4 standard wheels with 4 omnidirectional drivers
∗ Mono and stereo vision cameras
∗ GPS
∗ 6 DOF Inertial Mesurement Unit.
∗ Obstacle avoidance
∗ Navigation and path planning.

– Pros/con/differences This is a big outdoor focused robot. Its weight is
300kg and it is really robust and tough, it has much more payload than
the Garrinator.
But its manoeuvrability can be drastically reduced in small spaces as it
is much bigger.

• Mecanumbot

– Purpose:
Mecanumbot is designed as a software research platform, so basically it’s
a developmental robot that can allow anyone who’s learning ROS and
wants to build a robot try new algorithms and methods of localization.

– Main characteristics:
∗ Motors: Brushed of 2,5A.
∗ 4 Mecanum wheels of 100mm of diameter.
∗ Microsoft Kineckt
∗ Neato Laser Scanner
∗ Obstacle avoidance
∗ Localization and navigation.

– Pros/con/differences:
Both Robots are for research purposes, the main differences between them
is the camera, the type of the wheels and the localization and navigation
capabilities.

To summarize the chapter, the Garrinator is not common at all in factories or
transport duties, the fact that has 4 omnidirectional wheels do not make it unique
as there are more robots that implement that technology.
In the other hand it has a notable disadvantage against the robot that uses 4
mecanum wheels, that is because when moving forward/backward the Garrinator
uses the power of 2.85 motors, but the mecanum ones use the power of 4 since all
wheels are steered in the direction of motion.
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Chapter 3

Omniwheel kinematics

This chapter will introduce some concepts of mobile robotics, kinematics and the
structure of the Garrinator with 4 omni wheels. It is based on the grade course
"Mobile Robotics", with help of Some Essential Notes for Robotics from Andreu
Corominas-Murtra .
In order to be able to find the inverse kinematics matrix of the robot, some previous
knowledge will be needed. The first subsection will introduce the Coriolis Law which
can relate the movement of an object referred to a fixed frame, in our case could be
a robot (fixed frame) and wheels (mobile frame), also the concept of twist which is
important to understand in the future sections.

3.1 Coriolis Law

Given two coordinate frames, one called moving FM which is rotating at an angular
velocity w about the other frame, called fixed F F . Then the derivative of any vector
x with respect to the time is related by:

dxF

dt
= dxM

dt
+ w × xF (3.1)

Where the expression w×xF is the cross vector product. The x can be, for instance,
position, velocity or force.
In the practical situation of a robot rotating about a fixed frame of reference, a
given point p of that robot (fixed with respect to the vehicle frame) has a null
time derivative in the vehicle frame (dpM

dt
= 0), so equation 3.1 simplifies to the

expression of the linear velocity of any point of the vehicle according to the rotation
of the vehicle and the position of that point with respect to a fixed frame.

v = dpF

dt
= w × pF (3.2)

13



Model and build Robot in ROS enviroment

3.2 Twist
The twist is the expression of the velocity of a rigid body. It is composed by two
vectors which express linear and rotational velocities of the body. For instance a
robot that could move to any direction in the 3D space, has a twist such as:

Linear component velocity:

vxvy
vz



Angular component velocity:

wxwy
wz



Final 3D twist:



vx
vy
vz
wx
wy
wz



If the movements of the robot are restricted on a 2D plane, as the robot won’t go
uppers in the air or below the ground, the vz = 0. Regarding rotations the only
non-null rotation is the wz (arround he vertial azis). Therefore, the 2D twist looks
like:

2D twist:

 vxvy
wZ


This twist will describe how the robot moves through the floor.
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Model and build Robot in ROS enviroment

3.3 Kinematics
Robot kinematics is the study of a robot’s motion without considering the cause of
it. There are two types of kinematics equations: forward and inverse. Kinematics
equations vary by the type of robot and actuator position/configuration.

3.3.1 Forward kinematics
The forward kinematic equations of a robot will give the twist of a given frame of
interest of the robot, by knowing each of the wheel rotation velocities.

Figure 3.1: Forward Kinematics

3.3.2 Inverse kinematics
The inverse kinematic equations are capable to transform a robot twist into the
needed wheel velocities for each wheel in order to achieve the desired robot move-
ment.

Figure 3.2: Inverse Kinematics
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3.4 4 omni wheel inverse kinematics
This section will cover the inverse kinematics applied to a 4 omni wheeled robot,
this will be a relation between the wheel movement and the state of the robot, which
is a 2Dtwist. The following equations are generic for omni wheels robot, leading to
a generic expression with independently of the number of wheels and their position.
Finally the equations will be applied to the Garrinator wheel configuration.
In order to obtain the inverse kinematics matrix the first step is to find the linear
velocity of the i-th wheel center with respect to the robot base frame FR, by applying
the Coriolis law:

vRi =

vxvy
0

 +

 0
0
wz

 ×

xiyi
0

 =

vxvy
0

 +

−wzyi
wzxi

0

 =
[
1 0 −yi
0 1 xi

] vxvy
wz

 (3.3)

Once the linear velocity of the wheel center is computed, the wheel center linear
velocity with respect to the vehicle frame, it is possible to transform it to the wheel
frame by applying the rotation on the 2D plane.

vwi =
[
cosβi sinβi

−sinβi cosβi

] [
1 0 −yi
0 1 xi

] vxvy
wz

 (3.4)

Finally, from vwi , it’s only needed the first component ui, which is the actuated
velocity (aligned with the wheel driving direction):

ui =
[
1 0

] [
cosβi sinβi

−sinβi cosβi

] [
1 0 −yi
0 1 xi

] vxvy
wz

 (3.5)

Which can be simplified to:

ui =
[
cosβi sinβ1 −yicosβi + xisinβi

] vxvy
wz

 (3.6)

The image below describes the configuration of the Garrinator wheels, the wheels
are at 150mm from the center of the robot, and all of them are angularly separated
90º.
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Figure 3.3: Garrinator omni wheels configuration, with βi angles.
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The dimensions referred to the configuration of the wheels are the following:

xi yi βi
w0 150mm -150mm π

4
w1 150mm 150mm 3π

4
w2 -150mm 150mm 5π

4
w3 -150mm -150mm 7π

4

Table 3.1: Table of the Kinemaatics constructive parameters for the Garrinator
robot.

Taking the equation 3.6 and combining the table 3.1 with the wheel distances and
angles, it leads to the full inverse kinematics:


u0
u1
u2
u3

 =



1√
2

1√
2

0.3√
2

−1√
2

1√
2

0.3√
2

−1√
2
−1√

2
0.3√

2
1√
2
−1√

2
0.3√

2


vxvy
wz

 (3.7)

With this inverse kinematics the system is able to know the amount of angular
velocity (rad/s) that will need each wheel when a 2Dtwist is applied to the robot.
To conclude this chapter, the equation 3.7 will be really powerful in order to move
the robot in the application.

18 Chapter 3



Chapter 4

Hardware architecture

This chapter will introduce all the hardware components that are part of the Garri-
nator and how they are connected, first of all will give some important specifications
of the components, then the main configuration and how they work are specified be-
low.

Robot specifications :

• Dimensions: 300 x 300 x 100 mm

• Weight: 5 kg aprox.

• Wheels: 4 Omni wheels 60mm diameter with 10 rollers.

• Motors: 4 Brushless motors D5065 270KV max. current 65A.

• Max speed: 2 m/s.

• Motor driver: 2 ODrive V3.6 Electronic Speed Control 120A max peak
current.

• Power supply: Battery type LiPo 4s (14.8V) 5200mAh 50C (max. discharge
260A).

• Joystick gamepad to teleoperate the robot.

Computer specifications:

• Model: NUC7i7DNH.

• Processor: Intel® Core™ i7-7567U processor (3.5 GHz/4.0GHz Turbo).

• Disk drive: Corsair M.2 240 Gb SSD.

• RAM: Crucial 8GB DDR4.

• Operating system: Linux Ubuntu 18.04 LTS.

• ROS version: Melodic Morenia.

19
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4.1 What is ODrive?
ODrive is a powerful brushless motor driver, which is provided with built in software
that helps to simplify some tasks as controlling the angular speed, position and
current, in addition it comes with a configuration tool in python 3 that allows to
configure properly the board for the motors that would be used, also configure the
input from the encoders, it can control a maximum of 2 motors at the same time.
It has some protocols of communication that makes easier the control of the motors.
In order to control the board it will be needed a communication between the speed
control process and the board ODrive. There are different communication options,
as CAN and USB. This section will cover the type of message and structure in USB
mode to command the velocity and request the encoder feedback.
To communicate the board with the computer through the USB method the pro-
posed system by ODrive robotics is based on sending an ASCII string that has the
followings formats:
Command To modify the velocity of the wheel the next structure will be needed:

[v motor velocity current]

Where:
v stands for velocity, which is the parameter that will control.
motor the motor that will control, can be 0 or 1.
velocity the angular speed of the wheel in count/s
current is the current feed-forward term, in A which is optional.
After the command is sent there won’t be feedback from the ODrive.
Feedback If the system needs to know the actual velocity of a wheel or its position
the command is:

[f motor]

Where:
f stands for feedback.
motor the motor that will control, can be 0 or 1.
Immediately after the the command is sent the ODrive will respond with the position
followed by the velocity of the requested wheel in counts and counts/s
Even the units are far to be international in the section 4.6 will be more detail of
how to convert them in International Units.

Figure 4.1: ODrive board
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4.2 Brushless motors
A brushless motor is a direct current (DC) electric motor that operates without the
mechanical brushes and commutator of a traditional brushed motor. A controller
drive can provide pulses of current to the motor coils in order to control the speed
and torque of the motor.

Figure 4.2: Brushless motor

The chosen motors are brushless D5065 270KV. This kind of motors have high
torque even without reduction (1.99N.m), at the maximum current which is 65A,
the 270KV is a motor constant which specifies the amount of rpm per volt that can
achieve the motor without load, in this case the robot uses a 14.8V battery which
means that can spin at 270 × 14.8 = 3996rpm. Even though all the components
are physically able to manage that amount of current and speed, for safety and
durability purposes, the current is limited to 60A as well as the rpm to 318.27 as a
result the brute power per motor will be lowered to 50W, the equations are specified
below.

(a) Motor D5065 with cage (b) Motor D5065

The power of the motors can be calculated with the following expressions:

Pmec = M × n× 2π
60 (4.1)

Where:
Pmec = Power in W
M = Torque in Nm
n = Speed in rpm

Chapter 4 21
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The maximum power that the motors can achieve at 32V where the rpm are 8640
and the torque is about 1.99 Nm

Pmec = 1.99 × 8640 × 2π
60

Pmec ≈ 1800W

The main restriction applied to the motor is that it can’t go faster than 2m/secs as
it could be dangerous for the competition, so in order to calculate the power of the
motors first is needed to know the speed of the wheels in rpm.

ω = v

r
(4.2)

Where:
ω = angluar speed in sec−1

v = lineal speed in m/s
r = radius of the wheel in m

w = 2
0.03 = 33.333rad

sec

Converted to rad
min

w = 33.333rad
s

× 60s
1min × 1rev

2πrad ≈ 318.27 rev
min

The imposed torque is 1.5 N.m which will give the power of one motor.

Pmec = 1.5 × 318.27 × 2π
60

Pmec ≈ 50W
If the Garrinator have 4 motors the total power should be 4×50w giving as a result
200w, there is no specified efficiency value in the data sheets so to calculate the
electrical power needed won’t be possible. However mechanical power gives us an
order of magnitude and a lower bound that the electrical system should provide.

4.3 Incremental encoder
It is a linear or rotary electromechanical sensor that has two output signals (A and
B), on every change of position will trigger the outputs, depending on the speed will
vary the frequency of the input signal, also depending on the order, if it is triggered
A first then B implies the sensor is spinning one way, if the order is B-A means that
is spinning otherwise.
This sensor does not indicate position, only angular speed and turning direction.
In the Garrinator robot, encoders are integrated with motors, and encoder data is
obtained as explained in the feedback command of ODrive
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4.4 Omni wheels
This kind of wheels have small rollers around the circumference which are perpen-
dicular to the turning direction, this provides an effect that the wheel can be driven
with full force forward and backward, but will also be capable of slide without me-
chanical constraint. Do not confuse them with the Mecanum, since those wheels
have the rollers disposed at 45º from the rim plane, while omni wheel have them at
90º.

(a) Omni wheel

(b) Mecanum wheel

Figure 4.4: Types of holonomic wheels

The chosen wheels for the Garrinator are 60 mm diameter and omnidirectional
type. They are chosen to provide Garrinator with 3 degrees of freedom regarding
motion (forward/backward, rotation and sideways), providing the Garrinator with
maximum manoeuvrability as possible inside a 2D plane. Its diameter has to be at
least 60mm as the motors are 50mm in diameter, this will give the platform a low
profile which won’t allow small pieces go inside or below the motors.
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(a) Omni wheel front view (b) Omni wheel left view

(c) Omni wheel iso view

Figure 4.5: Garrinator wheels
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4.5 Battery

Figure 4.6: ODrive board

The battery is a Li-PO type, which offers 14.8V and have 5200mAh with a 50c of
discharge rate. The discharge rate is a multiplying factor with the capacity, this
operation reveals the amount of current that the battery can give as discharge peak.
In this case, it means that this battery can offer 5.2A× 50 = 260A. With this value
the maximum electrical power that can give "safely" is 14.8V × 260A = 3700w. In
any case this robot is a development project and it is not meant to have a large
autonomy, with the parameters acquired in the section motors the motors should
be able to run 1.38min at full throttle.

4motors× 60A = 240A

5.2A/h
240 = 0.0216h = 78sec

Chapter 4 25
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4.6 ODrive
The ODrive is one of the angular stones in this project. It is the component that will
process the velocity requests from the system and be responsible to give the feedback
in time with great accuracy in both actions. It has been selected because its great
performance, great reviews, and multiple configuration options. Nevertheless the
documentation provided describing the communication protocol is quite poor and
the units that uses are far to be international.
This section will bring some light to work with international units.
As seen in the previous chapter the message to move one motor is:

[v M velocity]

v= velocity command
M= motor to move (0 or 1)
velocity= number of counts/secs
The encoders used in this project are configured with 512 pulses

revolution
there is a relation

between pulses per revolution and counts per revolution.

1 pulses

revolution
= 4 count

revolution

applied to the encoders:

512 pulses

revolution
× 4 = 2048 count

revolution

for example if the system need to move the wheel at 10 rad/s the number of counts/s
is:

10rad
s

× 1 revolution

2π rad
× 2048 count

revolution
= 2259.5count

s

The same happens calling the feedback command:

[f M ]

f= feedback command
M= motor requested (0 or 1)
response = speed of the motor in counts/sec
if the response to the command is 10 count

s
the equivalent in rad/s is:

10count
s

× revolution

2048 counts
× 2π rad

1 revolution
= 0.0306rad

s

4.7 Computer
The computer is a NUC7i7DNH which means that has an intel i7 processor. The
main characteristic is that it is compact and powerful. The Operating system chosen
is Ubuntu 18.04 LTS (Long Term Support) the reason of that is because ROS runs
on aLinux based environment.
The ROS version is Melodic Morenia which is the latest ROS version recommended.
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To finalize the chapter, all the connections between the components are shown in
the figure 4.7.

Figure 4.7: Hardware structure

The Garrinator is a mobile robot property of the robot team from University of
Vic, the robot competes every year in different challenges, where there are some
restrictions, as a dimension (max. 300 x 300 mm), power 24V max. and some more.
The robotic team has some sponsors that help economically to purchase the new
components in order to adapt the Garrinator to the new challenge, that means that
another building restriction is the price of the components as the budget is limited.
Given those restrictions the team aims to find the best components as possible.

Figure 4.8: Garrinator modeled in Creo parametric
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Chapter 5

Software architecture

This chapter will cover the main concepts needed to understand the project and its
functionalities, the major concepts of ROS are inspired by the book Mastering ROS
for Robotics Programming by Jonathan Cacace

5.1 What is ROS?
ROS Robot Operating System is a free, open-source, high-level operating system
focused on robots. It offers hardware abstraction, low level device control, commu-
nication between processes and package management. In addition it has multiple
tools and libraries for building, writing and running code through multiple comput-
ers and code reusing.

5.1.1 Why use ROS and its benefits
High-end capabilities: ROS comes with ready-to-use capabilities. For example,
Simultaneous Localization and Mapping (SLAM) and Adaptive Monte Carlo Local-
ization (AMCL) packages in ROS can be used for performing autonomous navigation
in mobile robots. These capabilities are its best form of implementation, so writing
new code for existing capabilities is like reinventing the wheel.

Tons of tools: ROS has tools that help to debug, visualize and simulate the robot
the more common ones are Rviz and Gazebo.

Support for high-end sensors and actuators: ROS is packed with device drivers
and interface packages of various sensors and actuators in robotics. The high-end
sensors include Laser scanners, Kinect, and so on.

Modularity: When codding a robot with standalone applications may cause that
if any of the main threads crashes the whole robot can stop, but in ROS there are
different nodes for each process and if the node crashes, the system can still work,
in addition ROS provides robust methods to resume operations even if any sensors
or motors are dead.
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5.1.1.1 Nodes

Nodes are the processes that perform computations. Each ROS node is written
using ROS client libraries, it can be written using different languages as C++, and
Python. Also, it can implement different ROS functionalities, such as communica-
tion between nodes, which is particularly useful when different nodes of the robot
must exchange information between them.
One of the aim of ROS nodes is to build simpler processes rather than a large process
with all the functionality. Being a simple structure, ROS nodes are easy to debug.

Messages Nodes communicate with each other using messages. Messages are sim-
ply a data structure containing the typed field, which can hold a set of data, and
that can be sent to another node.

Topic All the messages in ROS are transported through buses that are called topics,
they have a unique name that identifies it. A node can either subscribe in order
to receive the information flowing in the bus or publish a message, so any node
subscribed to this topic will receive it.

5.1.1.2 Services

The services that provide ROS are request/response between nodes. One node can
ask for the execution of a fast procedure to another node; for example, asking for
some quick calculation

Figure 5.1: Communication diagram between nodes
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5.2 Garrinator nodes
This section will cover the ROS nodes, messages and main structure used in this
project as well as how they are configured and interact with each other. Is great to
mention that all the nodes must have the established input/output in order to be a
modular system, so if in the future there will be any change to one or multiple nodes
in the main system is preserved as is, and only is needed to modify the desired node.

5.2.1 Hardware interface
The hardware interface is in charge of moving the actuators and giving feedback
of its status at any moment. In this case it would be the 4 motors attached to
2 ODrive.It is also needed that the units of both actions mentioned above are in
standard units. The functions that have to be implemented are read(), write().
These two methods are the interface through the real robot and the system. In
order to control the wheels they are declared as a joint of one of the three joint
interface types: position, velocity and effort. The project opted for velocity as
it would simplify some calculus and the ODrive is commanded and provides this
velocity data, with the conversions explained before.

Figure 5.2: Hardware interface diagram
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5.2.2 Controller
The controller is the middle process in the teleop chain. It will receive the twist
generated from the teleop node by subscribing to that topic robot/cm_vel and
whenever its values are updated will call a function (callback) that will compute
the new wheel angular velocities in order to satisfy that new robot state. This
computation is done with the inverse kinematics model explained in chapter 3. Once
there are computed, they are sent to the hardware interface to apply the changes.

Figure 5.3: Controller diagram

5.2.3 Teleop
This node will be in charge to receive the state of the joystick, every time it have
a different position. With the new joystick state, it computes a new robot tiwst to
the system. The values that give the joystick are between 1 and -1, by multiplying a
constant 2 will ensure that the max value that the system is able to produce is 2m/s.
Furthermore as a joystick have multiple buttons and two sticks, it is configured that
the left stick will produce the components vx and vy while the right one does the
wz.

Figure 5.4: Teleop node diagram
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To conclude this chapter the connection between the nodes could be simplified as
the figure 5.4. Even though it could look quite simple, its complexity is outstanding
for a newbie, even more when all the parameters, functions and protocols are quite
ambiguous and with lack of practical examples.

Figure 5.5: Garrinator ROS structure
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Results

The figure 6.1 shows the Garrinator modeled with URDF files, which are the ones
that use ROS, also it is possible to observe all the coordinates axis of every com-
ponent, the issues happened here where wrong magnitude units of the stl files, the
URDF ROS interpreter reads the units as meters, while they were meant to be mm.
After some corrections the proportions of the Garrinator went back to normal.

(a) Garrinator URDF front view

(b) Garrinator URDF top view

Figure 6.1: Garrinator URDF
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Other issues that appeared developing the project were, the difficulty to write an
appropriate hardware interface node, send an ASCII string through the USB is more
complex in Linux than in other Operating systems. As it is needed to open and con-
figure the port in order to start transmitting commands.

The final physical build of the Garrinator can be appreciated in fig 6.2

(a) Garrinator physical front view

(b) Garrinator physical top view

Figure 6.2: Garrinator final build
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In order to startup the system it will be needed the next procedure: Plug-in the
battery to the ODrive power connector and let them calibrate. Plug-in the other
battery to the Garrinator computer and turn it on. Later connect the computer
and the user computer to the same wi-fi network, open an ssh terminal and establish
connection from user computer to the Garrinator, this will allow the user access to
the Linux terminal of the robot. Turn on the joystick and wait until the middle led
stay still this means there is Bluetooth connection between the robots computer and
the joystick. Launch the package Omni4 Controller with the Linux terminal and
wait until it finish loading the controller. At this point the Garrinator is ready to
be teleoperated.
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Chapter 7

Conclusions

The conclusion of this project is that all the objectives have been achieved, the
power train of the mobile robot is formed by 4 omniwheels with brushless motors,
everything is programmed inside the Robot Operating System (ROS), using the
language C++, and the last but not least the robot is able to be teleoperated with
a joystick via Bluetooth. Leading a system which is highly modular, because all
the components of software and hardware are now just little modules (ROS nodes),
that can be replaced if they are needed, but the system won’t be affected, also it is
robust as the ROS system can continue functioning even if some nodes malfunction.
On the other hand this project has been a challenge from the beginning, but with
hard work and guidance from the tutors its been possible, personally I’ve enjoyed
doing it, sometimes it could be somewhat frustrating, but by dealing with errors
and learning from them, I’ve learnt a lot of the ROS basis, also is good to mention
that ROS has a quite sharp learning curve so it is more difficult at the beginning
than at the end. I’m proud of the results achieved.
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Appendix A

Code Git repository

The code used in this project is uploaded in the repository of the GitHub platform,
following the next structure:

• Description package

– Launch folder with launch file.
– Macros of the wheels with the 10 rollers.
– Mesh folder with STL files.
– Rviz configuration.

• Garri teleop package.

– Launch folder with launch file.
– Source folder with node code.

• Hardware interface package.

– Config folder with yaml configuration file.
– Launch folder with launch file.
– folder with header files.
– Source folder with the node and the hardware interface code.

• Omni 4 controller package

– Config folder with yaml configuration file.
– Launch folder with launch file.
– folder with header files.
– Source folder with the node and the hardware interface code.
– Controller plugin file to save the library.

Link: https://github.com/JavierRubia/Garrinator
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