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Codon frequency is modulated by

proteic selection, resulting in a coding

profile in Archaea and Yeast

Abstract

Codons as fragments of the genetic code articulate both nucleotidic and proteic constraints.

If codon usage bias is now admitted to be mainly influenced by GC content, codon

frequencies in general may display a more subtle compromise between base composition and

selection at proteic level. In order to investigate the existing non-GC content factors of codon

frequencies, we compared coding sequences (CDS) of 280 Archaea plus S. cerevisiae genomes

to their randomized version (same base-composition and same length). Through dedicated

counts we identified several CDS vs random patterns in Archaea some of which reflecting

probable or evident proteic constraint : in particular, the systematic enrichment of CDS in

negatively charged amino acids, and the strong constraint existing on codons having a T in

second position, which, on the basis of hydrophobic cluster analysis attests a folding

constraint. The sum of these patterns constitutes a coding profile that enables to accurately

classify about 99% of individual archaea sequences between CDS and randomized CDS. In

S. cerevisiae, whose coding profile shares similarities with Archeae of close GC content,

phylostratigraphic methods allowed to investigate the coding profile of CDS based on their

relative age. This analysis reveals that contrary to other genes, the youngest genes (only

found in S. cerevisiae) as a whole do not have a strong coding profile. This can be explained

by their relative shortness in comparison with other genes. But even when taking length

into account, a clear enrichment of misclassified sequences appears in the youngest S.

cerevisiae genes. This enrichment may reflect an insufficient proteic optimization operated

by selection.

Introduction

The very existence of a genetic code

implies, as any code, the transmission of

information between at least two parties.

Thus, genetic code lies between two

biological objects : the genome, and the

proteome. Codons as the interpretation

units of genetic code are largely studied

from a codon usage bias point of view.

Indeed, all amino acids but tryptophan and

methionine are encoded by more than one

codon [1]. This genetic code degeneracy

allows the existence of synonymous

mutations and so synonymous codons.

When counting these synonymous codons

in a given genome, genomic region, or gene,

it appears a codon usage bias e.i an

unbalanced count between some codons

and their synonyms.

Codon bias studies revealed its correlation

with tRNA abundance and translational

efficiency, offering many valuable
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perspectives [2]. Although it has been

suggested that codon bias was mainly

influenced by tRNA abundance, it is now

clear that codon bias is mostly shaped by

GC content [3]. Genome wide GC content is

indeed highly correlated with codon bias

and necessarily causative of it since

genome-wide GC content is also highly

correlated with non-coding genome GC

content. Thus, under a single codon bias

perspective we observe a main GC content

cause with primarily translational

consequences.

Yet, if we aim to fully acquire knowledge

about codon usage, we need to consider it

as it is : a conceptual articulation between

a triplet of nucleotides and an amino-acid

(through tRNA). As a direct consequence

the frequency of the 64 codons is not

imposed by base composition (which

according to the second Chargaff ’s parity

rule can be fairly represented by GC

content among double stranded DNA

genomes [4]). Codon frequencies, as we

observe them, are the result of both

nucleotide and protein constraints. Even

models that aim to predict codon bias (only

between synonymous codons) from genome

GC content show limitations, especially in

certain phyla [3]. But when considering the

entire codon table it clearly appears that

some codons or groups of codons undergo

strong non-GC constraints (as an

illustration see in the Results section :

figure 7).

Now, considering that the codon

frequencies of coding sequences (CDS)

result from :

then

with CF corresponding to Codon

Frequencies. Thus to isolate non-GC

constraints one needs to access codon

frequencies resulting from purely GC

constraints. For this study we used 280

Archaea genomes which provided CDS

bearing both GC and non-GC constraints.

So we needed to obtain sequences only built

on the GC constraint, in order to compare

them with CDS and by contrast, to consider

nonGC constraints affecting the CDS.

1st base
2nd base

3rd base
T C A G

T

TTT
Phe

CTT

Ser

ATT
Tyr

GTT
Cys

T

TTC CTC ATC GTC C

TTA

Leu

CTA ATA
Stop

(Ochre)
GTA

Stop

(Opale)
A

TTG CTG ATG
Stop

(Ambre
GTG Trp G

C

TCT CCT

Pro

ACT
His

GCT

Arg

T

TCC CCC ACC GCC C

TCA CCA ACA
Gln

GCA A

TCG CCG ACG GCG G

A

TAT

Ile

CAT

Thr

AAT
Asn

GAT
Ser

T

TAC CAC AAC GAC C

TAA CAA AAA
Lys

GAA
Arg

A

TAG Met CAG AAG GAG G

G

TGT

Val

CGT

Ala

AGT
Asp

GGT

Gly

T

TGC CGC AGC GGC C

TGA CGA AGA
Glu

GGA A

TGG CGG AGG GGG G

table 1 : Standard DNA codon table, adapted from

https://en.wikipedia.org/wiki/DNA_and_RNA_codon_tables
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This is why in this study we compared the

DNA coding sequences (CDS) of 280

archeal genomes with their randomized

nucleotidic sequences, which conserved the

exact same base composition and length as

the original sequences.

Material and methods

Access to sequences

The fasta files containing the original CDS

of the 280 archaeal genomes as well as the

S. cerevisiae genome used for this study

were generated with ORFmine [5].

“ORFmine is an open-source package that

aims at extracting, annotating, and

characterizing the fold potential and the

structural properties of all Open Reading

Frames (ORF) encoded in a genome

(including coding and noncoding

sequences).”

The fasta file containing the original CDS

sequences and the fasta file containing the

randomized CDS are available for S.

cerevisiae and three example Archaea

genomes at :

https://drive.google.com/drive/folders/1h5iw

wB_v4C-rYl_7kd-OBXJaNogrvDQP?usp=s

haring.

Codon counts were performed with the help

of the coRdon R package [6].

Sequence classification

Sequence classifications were done using

the XGBoost implementation of

Scikit-learn. The choice of this algorithm is

based on both its predicting performance,

its convenience and its speed in

reproducing the result.

Features used were the mean base content,

the mean relative frequency of each codon,

amino acids, and same-base, same-position,

and XYN groups of codons as described in

the Results section.

Stop codon frequencies were removed from

codon count prior to any other computation,

since a typical CDS sequence should

always possess only one stop codon.

All available sequences were used for each

model, which implies half CDS and half

randomized CDS. Apart from 10 K-fold

cross validations, 80% of data was used for

training and 20% for testing.

Although it was possible to slightly

improve them with some hyperparameters

tuning, the current results can be

reproduced with a default setting.

Accuracies followed by a standard deviation

(sd) value refer to 10-fold cross-validation

results.

Finally, the count of misclassified

sequences for S. cerevisiae was done by

gathering the tested sequences of all

10-fold cross-validation.

Genomic phylostratigraphy

Genomic phylostratigraphy is based both

on a phylogenetic tree and an homologous

sequence detection method. The relative

distance of the species on the tree to the

species of interest is used to assign each

homologous sequence its relative “age” (or

“genomic phylostrata”). Here the dated

genes used come from Wilson et al (2017)

[7], in which the authors applied a BLASTp

search on Saccharomyces Genome

Database (E-value threshold : 0.001 NCBI

non-redundant protein sequences (nr)

database.
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Phylostratum Gene shared among Number of genes

10 Saccharomyces cerevisiae 1092

9 Saccharomycetaceae 347

8 Saccharomycetales 366

7 Saccharomyceta 71

6 Ascomycota 140

5 Dikarya 77

4 Fungi 290

3 Opisthokonta 127

2 Eukaryota 1579

1 Cellular_Organisms 2592

0 No assignation 11

table 2 : A key to the phylostratum numbers used for CDS datation.

Others

The fisher exact test p-value was computed

with the stats R package [8].

All R and python scripts used written for

this study are available at :

https://github.com/SnoopBZH/FMP.

Results

Systematic CDS deviation

from random at AA and codon

table levels

Although correlated with GC content,

amino acid frequencies in CDS can not be

fully explained by a simple base frequency

input. Figure 1 illustrates how the amino

acid distribution deviates from what is

expected by chance. Furthermore, the

randomized CDS IQR wideness highlights

how much amino acids are sensitive to GC

content variation.
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figure 1 : Fore each amino acid, the distribution of its mean frequency (one value per genome) among

the CDS of 280 Archeae genomes (left boxplot) and their randomized version (right boxplot)

figure 2 : Difference of mean frequency between CDS and randomized CDS. Values were transformed

into an exponential  scale.
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Figure 2 represents for each codon its

difference of mean frequency between CDS

and randomized CDS (represented in an

exponential scale). Prior to other

considerations this representation points

out that the codon table (and so the genetic

code) is far to be randomly organized,

especially in that ensuring the repartition

of the first two codon bases allows a lot of

base variability at the third position. The

present tendencies are diluted in a wide

range of GC contents. Indeed, even if the

difference between a CDS and its

randomized version attests of the nonGC

component of codon frequencies, these

nonGC constraints may vary according to

the GC content, for example to maintain a

given amino acid at a certain level. Each of

the 64 codons genome mean frequency

correlation between CDS and randomized

CDS can be found in the Supplementary

Material section. It confirms that as

expected, many codons can be depleted in

CDS at a given GC content level while

enriched at another level.

CDS vs random patterns

trough codons grouping

The codon heatmap hotspots (Figure 2)

point out the opportunity of studying the

differential usage of several groups of

codons among CDS and randomized CDS.

In this sense, in addition with AA

frequency and codon frequency we

performed three additional counts based on

two different codon grouping :

First, when summing all the codons

sharing a given base at a given triplet

position, we performed two counts : the

same-position count is the relative

frequency of each of the four bases

(T/C/A/G) at a given codon position. For

example “1T = 0.15” means that 15% of

codons start with a T. Then the same-base

count is the relative frequency of a given

base across the three positions. “T1 = 0.25”

means that 25% of T bases are found at the

first position of the codons. Then, the XYN

count refers to the sum of codons sharing

the same first two bases (e.g. GAT, GAC,

GAA and GAG.

First of all, the same-base count reveals

how for each of the four possible bases, the

third position constitutes an adjustment

variable in comparison with the first two

positions which are much more constrained

since they mainly bear the amino acid

property (see table 1 and figure 4).

Then, 1T comparison between CDS and

randomized CDS shows a systematic

depletion in CDS that grows with AT

content. This signal is mainly due to the

presence in the TNN column of six codons :

- The three stop codons because of the

necessity to have a minimum

number of amino acid residues

encoded in each CDS, the three stop

codons are dramatically less

frequent than they should be by

chance (e.i. in their randomized

version). As an illustration, in a

genome with 50% GC content,

generating by chance a sequence of

100 residues before a stop is (from

the binomial law)
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figure 3 : Correlation between the same-position count in CDS vs randomized CDS.

figure 4 : Correlation between the same-position count in CDS vs randomized CDS.
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figure 5 : For codons sharing the same first two bases, correlation between the sum of their mean

relative frequency among CDS vs this sum in randomized CDS.

- Then, three other codons : the Cys

(known as an alpha-helix breaker)

encoding codons, and Trp (which is a

very large residue, little used in

protein structures) codon clearly

participate in the 1T pattern.

These last three codons with the opale stop

codon also explain the TGN pattern in

figure 5. These TGN codons associated with

the four CGN Arg-encoding codons largely

influence the 2G contrast between CDS and

randomized CDS.

This pattern can be translated in the G2

pattern (figure 4) which possesses the

smallest CDS range. Interestingly, the

codon table is built in such a way that the

CDS G1 which presents a complementary

tendency with CDS G2, contains many

codons that are increased in CDS and four

clearly CDS biased amino acids (Val ,Ala,

Asp, Glu). As a consequence of these G2 vs

G1 opposed tendencies, Gly is very

constrained in CDS since its four codons

are GGN.

G1 (opposed to G2 and G3) and 1G

(opposed to 1T, 1C, and 1A), are notably

influenced by the four GAN codons, which

are especially increased in CDS. These

codons are encoding Asp and Glu which are
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the two negatively charged amino acids. An

hypothesis about this enrichment is that

negatively charged amino acids could have

a translational efficiency purpose : the exit

tunnel of the ribosome being also

negatively charged, they could facilitate the

translation and exit of the nascent peptide.

Placed at the protein surface, they could be

a way to avoid non-specific interactions

with the ribosome which is the most

abundant macromolecule of the cell and

with nucleic acids in general [9].

2T pattern reflects a protein

structure constraint

Hydrophobic amino acids play a crucial role

in the formation of proteins secondary

structures [10]. Given the fact that the

NTN (2T) column of the codon table

contains five hydrophobic amino acids, the

bias in this column might impact the

protein capacity to fold to a 3D structure

(i.e. its foldability potential). In order to

verify this hypothesis, we computed the

Hydrophobic Cluster Analysis (HCA) score

of translated sequences [11]–[14] :

Hydrophobic amino acids clusters of a

given sequence are described as associated

with regular secondary structures which

are characteristic of folded protein domains

[15]. Parts of the sequence that link these

clusters (referred as linkers) are associated

with loops of disordered regions. The

sequence of hydrophobic clusters and

linkers can be summarized in a foldability

score (HCA score).

The NTN (2T) column contains 16 out of

the 19 codons encoding the amino acids

used to define HCA clusters (the remaining

3 codons encode Tyr and Trp and mostly

have low frequencies among CDS). Figure 6

shows that despite the GC content

variation, the CDS HCA score is restricted

in a small range of fold potential, while

random sequences HCA score is very

sensitive to the variation of the genome GC

content. In addition, for each bin, the CDS

IQR is thinner than the random one,

emphasizing the idea of a non-GC

constraint. This pattern is consistent with

the NTN frequency distribution against GC

content as represented in figure 7. As the

HCA score also depends on the size and

number of hydrophobic clusters of a

sequence, we verified that these two

parameters are also maintained in CDS

despite GC content variation (see

Supplementary Material). At the end, CDS

sequences display a constrained (summed)

NTN codons frequency in order to maintain

their foldability.
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figure 6 : Distribution of the HCA score of sequences for 10 GC content bins.

figure 7 : Distribution of the NTN frequency of sequences for 10 GC content bins.
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The sum of patterns (CDS vs

random CDS) as a coding

profile

Taken all together, these patterns seem to

define a “coding profile” by contrast with

random (figure 8, figure 9). This profile is

quite clear at genomes level. But is that

profile strong enough to discriminate

between a single CDS and a random

sequence of same length and base

composition ?

The use of an Extreme Gradient Boosting

classification model, trained with the

previously described inputs : base

frequencies, individual codon frequency,

XYN count and same-base and

same-position count, allows to accurately

classify 98.90% of CDS or randomized CDS

among Archaea, with one model trained per

genome (280 models in total, mean number

of sequences : 2461). A similar result is

obtained when building 10 models of 28

archeal genomes each of similar GC

content (mean bin accuracy : 99.13%), and

with a single model built with all the 280

archeal genomes (accuracy : 99.00% (sd

0.42%)). This indicates that despite

displaying different CDS vs randomized

CDS patterns, these genomes share a

similar coding profile once their contrasted

codon bias originated in their different GC

content is taken into account.

figure 8 : The same-position distribution is an aspect of the coding profile in Archaea CDS.
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figure 9 : The same-base distribution is an aspect of the coding profile in Archaea CDS.

The coding profile of S.

cerevisiae is not found in

youngest CDS

Additionally, the coding profile described

for archaea genomes is extendable to the

eukaryote model Saccharomyces cerevisiae,

which shows pattern similarities with an

Archaea genome of equivalent GC content.

S. cerevisiae genome GC content being

about 38%, we tried to predict its CDS or

randomized CDS using the model that was

built on the 28 archaea of the 36.6-40.1%

GC content bin, which produced 87.39% of

accurate predictions.
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figure 10 : The same-base distribution of S. cerevisiae sequences shows that the coding profile is

perceptible event at the individual sequences scale.

figure 11 : If the other ages distribution is similar to the overall XYN distribution, the XYN distribution

of S. cerevisiae sequences of age 10 is radically less contrasted. Here is displayed the GAN frequency as

an illustration.
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The quality of the annotation and the

phylogeny of Yeast is the opportunity to

look at the influence of gene age on its CDS

coding profile. Indeed, if we consider that

the age of most S. cerevisiae genes can be

approximated by the position of the most

phylogenetically distant species sharing an

orthologue, then we can examine the

hypothetical impact of a gene’s age on its

related coding profile (see Materials and

Methods).

Here we segregated the genes of S.

cerevisiae ranging from 0 (found in more

than 10 neighbour species) to 10 (only

found in S. cerevisiae).

When building a specific classification

model for S. cerevisiae we obtained 96.11%

(sd 0.46%) of accurate predictions. Looking

at the misclassified sequences, it appears

that 435 out of 560 errors were made on

CDS of age 10.

An obvious reason for that is that the

youngest CDS are way shorter than older

ones, hence lowering the associated

statistical power. However, size does not

seem to be the only factor of this weaker

coding profile among young CDS. More

than two third of misclassified CDS of age

10 had a size between 200 and 500

nucleotides (71.4%). For this length range,

the length distribution of misclassified

sequences is roughly similar between age

10 and the other ages (wilcoxon test

p-value : p-value = 0.1075). Among all CDS

contained in this length range, 431 out of

2696 sequences were misclassified, while

for CDS of age 10 in this range 324

sequences were misclassified out of 1453

sequences, giving a Fisher exact test of

p-value of 3.288e-05 (one-sided). In other

words, if the youngest CDS do not have yet

a clear coding profile because of their size,

we can hypothesize that at least some of

them have also not been optimized enough

by selection at the protein level to acquire

such a profile.

Conclusion

GC content alone is far from being

sufficient to explain codon frequencies even

at the genome level in Archaea and S.

cerevisiae. By contrast with random

sequences of same GC content and length,

CDS of these species displays several

patterns that have a clear proteic origin.

Other non-GC influences might be found

through these patterns, from which we

could learn more about proteic structural

constraints or the CDS shaping in general.

Taken all together, these patterns form a

coding profile that makes a CDS

distinguishable from a random sequence in

a very large majority of cases. However, the

youngest CDS of S. cerevisiae as a whole do

not display a strong coding profile. The

study of underlying causes, including their

average size, as well as the possibility that

they did not endure enough optimization

that could be seen through the mentioned

patterns is now crucial in order to better

understand how new coding sequences

arise.
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