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Abstract 

Background: Imaging genetics (IG) studies aim to jointly analyse neuroimaging and genetic data 

with the objective of discovering new genetic variations related to brain features. Most IG studies 

focus on the individual analysis of brain structures. An alternative strategy is to incorporate 

compositional data analysis (CoDA) methods to assess the joint modulation of specific brain 

subregions.  

Objective: The aim of this project was to investigate whether the genetic predisposition to 

specific neurodegenerative disorders (quantified with polygenic risk scores, PRS) was associated 

with the joint modulation of hippocampal subfields volumes (target regions for neurological 

disorders) by assessing the performance of CoDA (Selbal algorithm). 

Methods: A total of 1,071 participants from the ALFA study with available information on 

genetics and neuroimaging data were included. Genetic predisposition to Alzheimer’s Disease 

(AD), Amyotrophic Lateral Sclerosis (ALS) and Progressive Supranuclear Palsy (PSP) was 

estimated by calculating PRS (PRSice v.2). Selbal algorithm was applied to find the hippocampal 

subregions whose joint volumetric variation was most closely related to a higher genetic risk of 

each neurodegenerative condition. Logistic regression models were assessed to test the 

association between the genetic predisposition of each condition and the volumetric combination 

of the hippocampal subfields. Models were adjusted by sex and we also performed sex- and 

hemisphere-stratified models.   

Results: Results showed that a compensatory increase in the average volume of CA3, CA4 and 

hippocampal fissure related to CA1 and hippocampal tail was significantly associated with a 

higher genetic risk of AD. Results also showed that a higher genetic risk of ALS was significantly 

related to a compensatory increase in the CA1 compared to the hippocampal fissure. Results for 

PSP showed that a compensatory increase in the subiculum in comparison to the parasubiculum 

was significantly associated with a higher genetic risk. Moreover, we found different joint 

volumetric modulation of hippocampal substructures associated with higher genetic risk of each 

condition between sex, as well as among hemispheres. 

Conclusion: To our knowledge, this is the first study analysing the relationship between 

cognitively healthy individuals at high genetic risk of AD, ALS, and PSP and the joint volumetric 

variation of hippocampal subfields. Therefore, this work provides a new and innovative 

perspective for IG studies with the aim of improving our understanding of the effects that the 

genetic predisposition to neurodegenerative disorders has on brain structure modulation. 

 

Keywords: Alzheimer’s Disease; Amyotrophic Lateral Sclerosis; Compositional Data Analysis; 

Imaging Genetics; Progressive Supranuclear Palsy; Polygenic Risk Score; Selbal 
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1 Introduction  

Many complex diseases have a genetic component and its study might provide valuable insights 

into the etiology of the disease. Genome-wide association studies (GWAS) have identified 

thousands of genetic variants associated with complex disorders (Loos 2020). However, for 

neurological disorders, the number of genetic variants identified so far is considerably reduced 

(Buniello et al., 2019). One possible reason is the heterogeneity of the clinical diagnosis of these 

disorders, which can be ameliorated by the use of brain-based features (i.e. brain morphology, 

brain physiology, cognitive function) as intermediate phenotypes (Glahn et al., 2007; Matoba et 

al., 2020). Intermediate brain phenotypes derived from neuroimaging sequences not only reduce 

the phenotypic heterogeneity common to many neurodegenerative disorders, but also increase 

detection power (Hashimoto et al., 2015).  

Neuroimaging studies based on neurological-related processes usually focus on specific brain 

structures, one of the most important being the hippocampus, both for its involvement in several 

neurological disorders as well as for its subfields' unique molecular properties (Flores et al., 2015; 

Evans et al., 2018; Vilor-Tejedor et al., 2021). Although hippocampal region is often treated as a 

unitary structure, the hippocampus is composed of multiple subfields with distinct molecular and 

functional properties (Van der Meer et al., 2020). Given the structural and functional 

heterogeneity of the hippocampal subfields, it is reasonable to suggest that each subfield may 

have distinct genetic influences and that some subfields may be more affected than others by the 

individual genetic variation (Elman et al., 2019).  

The impact of genetic variation on these brain features can be assessed in imaging genetics (IG) 

studies. IG studies aim to integrate neuroimaging and genetic data with the objective of 

discovering new genetic variants related to brain features, which in turn explain the risk for 

neurodegenerative disorders. This approach can promote an understanding of the genetic basis of 

neurodegenerative disorders as well as provide insights into the genetic architecture of the brain 

that could be relevant to neurological disorders, brain development and ageing (Elliot et al., 2018, 

Nathoo et al., 2019, Vilor-Tejedor et al., 2018). However, jointly analysing neuroimaging and 

genetic data raises serious challenges for efficiently analysing large-scale data sets with many 

subjects.  

The earliest methods developed were based on candidate genetic variants and specific brain 

features. This type of candidate univariate analysis is based on a standard linear regression relating 

a given brain feature, which is commonly the volume measurement of the brain structure (e.g. 

hippocampal volume) to a given genetic variant (e.g. Single Nucleotide Polymorphisms; SNP). 

This strategy can be extended to the full brain-wide and genome-wide data, resulting in a massive 

number of pairwise univariate analyses (Hibar et al., 2017; Smith et al., 2021). In this case, the 

multiple testing correction problem becomes evident, where very stringent corrections are applied 

to control for false positives along the large number of tests involved in the analysis. This 
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correction decreases the power of the analysis, increasing the difficulty to identify genetic variants 

associated with a brain feature of interest. Therefore, large samples, as well as joint consortia 

efforts are required.  

An alternative strategy to the massive univariate approach are techniques that jointly analyse 

genetic data. These strategies fit regression models separately at each brain feature, considering 

a set of genetic markers simultaneously rather than just a single genetic marker (Dima and Breen 

2015; Yao et al., 2020). Polygenic risk scores (PRS) are extremely useful in this context. PRSs 

combine the individual effect of each genetic variant in a single score that summarizes the genetic 

predisposition of each individual to a specific disorder/condition (Sugrue et al., 2019). 

Commonly, in IG studies, when PRSs are calculated, univariate regression models are then 

adjusted to assess the association between the given PRS and the specific brain feature of interest. 

Finally, another strategy consists of analysing both multivariate neuroimaging and genetic data 

to better capture the complex relationships that may exist between different biological levels 

(Vilor-Tejedor et al., 2018a). An example of this strategy is the application of the multiple 

factorial analysis (MFA) and its extensions (Vilor-Tejedor et al., 2019, Vilor-Tejedor et al., 

2018b). The inclusion of the multivariate perspective provides an improvement in the statistical 

power and predictive capacity in IG studies. However, none of the aforementioned strategies 

consider the joint effect of nearby brain features in the volumetric variation of the target brain 

feature.  

In this work we proposed a new strategy for volumetric analysis in IG studies based on the use of 

compositional data analysis (CoDA) methods. Compositional data consists of a set of 

measurements whose values are restricted by their total sum. In our context, the main brain region 

of interest was the hippocampal structure that can be analysed as the composition of different 

subfields or components (Figure 1.1).  

Figure 1.1.  Hippocampal segmentation. Adapted from Vilor-Tejedor et al., 2021. 
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In CoDA, instead of exploring each component separately, the analysis focuses on the relative 

variation between them. Selbal is a recent approach in CoDA which is based on a model selection 

procedure that looks for the most parsimonious model capable of explaining the association 

between the joint effect of the selected components and a specific phenotype of interest (Calle, 

2019). Thus, by applying the Selbal algorithm, we can select the brain components (hippocampal 

subfields) whose joint volumetric variation, summarized in a single score known as balance, is 

most closely associated with the genetic predisposition to several neurological diseases. 

Therefore, the aim of this final master project was to investigate whether the genetic 

predisposition to specific neurodegenerative disorders (quantified with PRS) was associated with 

the joint modulation of specific hippocampal subfields volumes by assessing the performance of 

the Selbal algorithm.  

2 Material and methods 

2.1 Sample description: AlfaGeneTiCs project 

Individuals from the ALFA cohort (Molinuevo et al., 2016) were invited to take part in the 

AlfaGeneTiCs study. The AlfaGeneTiCs study is composed of 2,280 cognitively unimpaired 

middle-age participants (45-75 years old), most of them Alzheimer’s disease (AD) patient’s 

offspring with a high proportion of APOE-ε4 carriers. They present available information in 

cognition, neuroimaging (magnetic resonance imaging sequences), lifestyle, clinical history and 

blood collection. For this study, 1,071 participants with available information on hippocampal 

subfields quantification were included. 

2.2 Genetic data acquisition: genotyping, quality control and imputation 

DNA samples of AlfaGeneTiCs participants were obtained from whole blood samples by 

applying salting out protocol. DNA was eluted in 800µl of H2O (milliQ) and quantified using 

Quant-iTT PicoGreen® dsDNA Assay Kit (Life Technologies). Integrity of DNA was checked 

in a subset of samples by running a 1% agarose gel. All the samples were within specification. 

DNA concentration for each sample was additionally normalized.  

Genome-wide genotyping was performed using the Illumina Infinium Neuro Consortium 

(NeuroChip) Array (build GRCh37/hg19) (Blauwendraat et al., 2017). 

Quality Control (QC) procedure of the genetic data was conducted with PLINK software  

(Anderson et al., 2010). The following sample quality control thresholds were applied: individuals 

with sample call rate of less than 98%, and exhibing excess of heterozygosity (3 standard 

deviations) were excluded. Moreover, we excluded individuals showing sex discordances. 

Finally, individuals at higher genetic relatedness (at the level of cousin or closer) sharing 

proportionally more than 18.5% of alleles (IBD > 0.185) were also excluded.  

https://pubmed.ncbi.nlm.nih.gov/21085122/
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Once QC on sample level was completed, genetic variants with minor allele frequency 

(MAF<1%), Hardy-Weinberg equilibrium (HWE) p-value < 10−6, and missigness rates > 5% 

were excluded.  

Imputation of genetic variants was performed by using the Michigan imputation server 

(https://imputationserver.sph.umich.edu), using the Haplotype Reference Consortium panel 

(HRC r1.1 2016) (Das et al., 2016; McCarthy et al., 2016) under default parameters and according 

to established guidelines. Assessment and preparation of genetic data was performed in previous 

studies. 

2.3 Acquisition of MRI and hippocampal subfields segmentation 

Radiologists from the ALFA study obtained the volumes for the hippocampal subfields through 

high-resolution 3D-T1-weighted magnetic resonance imaging scans. The left and right 

hippocampus were segmented into twelve subregions: cornu ammonis region 1, 3, 4 (CA1, CA3, 

CA4), fimbria, granular cell and molecular layer of the dentate gyrus (GC-ML-DG), 

hippocampal-amygdalar region (HATA), hippocampal fissure, hippocampal tail, molecular layer, 

parasubiculum, presubiculum and subiculum. Volumes were also quantified globally by summing 

the subfields volumes of both hemispheres. Thus, a total of 36 measures were obtained: 12 for the 

right hemisphere, 12 for the left and 12 for the global volume of the regions. The images were 

pre-processed and determined using Freesurfer version 6 (Iglesias et al, 2015).   

Figure 2.3 shows different snapshots of the volume quantification for the 12 subfields that make 

up the hippocampal region for an individual in the AlfaGeneTiCs project. These snapshots were 

used for visual quality control criteria of hippocampal subfields segmentation performed by a 

specialist. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. T1 images of hippocampal segmentation. From Vilor-Tejedor et al., 2020.  

The final sample of the study is described in (Figure 2.4).   

https://imputationserver.sph.umich.edu/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544723/
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Figure 2.4. Flowchart describing the final sample size. The study sample included 1,071 individuals with 

available hippocampal subfields quantification and demographic data. 

 

2.4 Polygenic risk scores (PRS) computation and validation 

We used PRSice version 2 (Choi et al., 2019) which is an algorithm that computes PRSs by 

summing up all the SNP alleles carried by the participants weighted by the SNP allele effect size 

estimated in a previous GWAS, normalizing the score by the total number of alleles (Figure A11).  

PRSs were computed in representative genetic variants per linkage disequilibrium (LD) block 

(clumped variants), using a cut-off for LD of r2 > 0.1 in a 250-kb window. The clumping 

procedure retained SNPs with the smallest p-value in each 250 kb window, and removed all those 

in LD (r2 > 0.1). PRSs were based on the most recently published GWAS. Further details can be 

found in Supplementary Table A1. 

We computed PRSs for 7 neurodegenerative conditions: AD, AD excluding the APOE gene 

region (chr 19: 45,409,011-45,412,650), amyotrophic lateral sclerosis (ALS), frontotemporal 

dementia, a meta-phenotype including frontotemporal dementia subtypes, Parkinson’s disease 

and progressive nuclear palsy (PSP). All PRSs were Z-standardized and dichotomized by taking 

as threshold the 0.8 quantile in order to compare high vs low genetic risk groups.  

PRSs that did not have a continuous distribution or that presented high values both for skewness 

(|S| > 3) and kurtosis (|K|>10) indexes (Kline, 2011) were excluded for the genetic association 

https://pubmed.ncbi.nlm.nih.gov/31307061/
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models (Figure A1, Table A8). Finally, we included PRSs for AD, ALS and PSP in the genetic 

association models. 

 

2.5 Statistical analysis 

2.5.1 Descriptive analysis 

Descriptive analyses were performed to describe the socio demographic variables of the study 

(age, sex, and years of education). PRSs and hippocampal subfields volumes were also analysed. 

We assessed differences in the hippocampal subfields' mean volume within each sex group, and 

also between right and left hemispheres. We performed the same analyses, assessing the 

hippocampal subfields mean volume differences within each hemisphere, either for the whole 

sample as well as stratifying by sex.  

2.5.2 Compositional data: definition and methods 

Compositional data is defined by a vector of strictly positive real numbers with a constraint or 

non-informative total sum (Calle, 2019).  

𝑥 = [𝑥1, … . , 𝑥𝐷]  ∈  𝑅𝐷  

for 𝑥𝑖 > 0, ∑ 𝑥𝑖
𝐷
𝑖=1 = 𝑘, where k is a constant (e.g. k=1, k=100,…) 

 

In a composition, the value of each component is not informative by itself and the relevant 

information is contained in the ratios between parts. This property implies that two proportional 

compositions are equally informative and this induces equivalence classes of vectors carrying the 

same information. Two vectors are compositionally equivalent if they are proportional. 

To work with compositional methods, the data needs to accomplish different properties: 

permutation invariance, scale invariance and sub-compositional coherence. Permutation 

invariance means that the change in the order of the parts in the composition should not affect 

results. Scale invariance refers to the fact that multiplying all the components by a factor does not 

alter the results of the analysis. Sub-compositional coherence is found when results for a subset 

of the composition are coherent with the results for the whole composition (Calle, 2019). The 

simplest scale invariant function is the log-ratio between components, defined as 𝑙𝑜𝑔(𝑥𝑖 / 𝑥𝑗 ). 

Working with log-ratios is the key aspect of compositional data analysis and is known as the log-

ratio approach (Calle, 2019) (Formulas and examples section, Appendix). 

Some data transformations that are commonly used in CoDA: additive log-ratio (alr), centred log-

ratio (clr) and isometric log-ratio (ilr). The alr transformation applies a log-ratio between each 

component and a reference component. The clr scales each component by the geometric mean of 

the parts and the ilr transformation, that is associated with an orthogonal coordinate system in the 
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simplex. Although all these methods are applied by different authors, they present some 

limitations especially in the context of variable selection (Susin et al., 2020).  

 

Selbal approach 

There is a recent approach in CoDA, the selection of balances (Selbal), defined by a model 

selection procedure that searches for a sparse model that explains the response variable of interest, 

based on the joint change of the specific selected components of the composition (Rivera-Pinto 

et al, 2018). 

Selbal relies on compositional balances, a measure that extends the log-ratio between two 

components to the log-ratio between two groups of components and is defined as follows: Given 

A and B two disjoint subcompositions (subgroups of components) of a composition, the balance 

between A and B is defined as the log-ratio between the geometric mean for each group:  

Balance 𝐵(𝐴,𝐵) = 𝐾 · 𝑙𝑜𝑔(𝑔(𝐴)/𝑔(𝐵)) =  𝐾 ∙ 𝑙𝑜𝑔 
(∏ 𝑋𝑖

 
𝑖 ∈𝐼𝐴  )

1
𝑘𝐴

(∏ 𝑋𝑗 
 
𝑗 ∈𝐼𝐵 )

1
𝑘𝐵

 , 

where g(·) is the geometric mean and K is a normalization constant 

𝐾 =  √
𝑘𝐴  ∙  𝑘𝐵

𝑘𝐴 +  𝑘𝐵
 

The balance can also be written as the difference between the arithmetic means of the log-

transformed values:  

𝐵(𝐴,𝐵) =  
1

𝑘𝐴
 ∙  ∑ 𝑙𝑜𝑔 𝑥𝑖  

 

𝑖 ∈𝐼𝐴

− 
1

𝑘𝐵
 ∙    ∑ 𝑙𝑜𝑔 𝑥𝑗  

 

𝑗 ∈𝐼𝐵

   

  

Selbal is a joint procedure that involves both modelling and variable selection, through forward 

selection. The goal is to determine two sub-compositions A and B whose balance B(A,B) is the 

most associated with the dependent variable Y after adjusting for specific covariates Z according 

to the following linear or logistic regression model:  

𝑌 = 𝛽0 + 𝛽1 𝐵(𝐴,𝐵) + 𝛾𝑍, when Y is continuous 

𝑙𝑜𝑔𝑖𝑡(𝑌) = 𝛽0 + 𝛽1 𝐵(𝐴,𝐵) + 𝛾𝑍, when Y is binary 

Selbal evaluates all possible balances composed of only two components (xi,xj). Each balance is 

tested for association with the response variable. The optimal two-component balance is selected 

and at each step, a new component (i.e. subfield volume) is added to the existing balance until 

there is no additional variable that improves the specific optimization parameter. The maximum 

number of components to be included in the model is defined through a cross-validation (CV) 

procedure (Calle, 2019).  
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Figure 2.5. Graphical representation of the concept balance: possible scenarios and values that the 

balance can take. Positive scores involve larger average volume of subcomponents in group A compared 

to those in group B, while negative scores involve larger average volume of subcomponents in group B 

compared to those in group A. 

 

Finally, a global balance is obtained through the selection of specific components of the 

composition. It results in a one-dimension measure, which can take values from -∞ to +∞. Thus, 

in our study, it can be interpreted as a score that summarizes the average log-transformed volumes 

of two groups of subfields volumes. When the global balance is equal 0, there is a perfect balance 

between both groups of components, which means that the ratio between subfields’ volumes is 

equal 1 (log(1) = 0). When the global balance takes a positive value, the average volume of the 

subregions in the numerator (group A) is larger in comparison to the subregions that are in the 

denominator (group B). When the global balance takes a negative value, the average volume of 

the subregions in the numerator (group A) is lower than the average volume of the subregions 

that are in the denominator (group B) (Figure 2.5). For further details about its application see the 

Toy example in (Susin et al., 2020). 

2.5.3 Selbal implementation in our Imaging Genetic study 

We implemented Selbal to the hippocampal subfields volumes composition with logistic 

regression models, where PRSs were defined as dichotomous outcomes (high/low genetic risk 

group). The selected global balance identified two groups of hippocampal subfields whose 

relative volume was most associated with the genetic predisposition to a specific neurological 

condition. Models were adjusted by sex. We also assessed sex-stratified logistic regression 

models.  

A total of 3 different hippocampal volume compositions were defined. The first composition (𝐶1) 

was the global hippocampal region, where the components were defined by each hippocampal 
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substructure, without distinguishing per hemisphere. Second and third compositions were defined 

for the right (𝐶2) and left (𝐶3) hippocampal regions. Each one of these two compositions were 

defined by 12 components (12 hippocampal substructures). 

  

More formally, compositions were defined as: 

𝐶1 = (𝑋1𝑇 , … . , 𝑋12𝑇) ,  

where 𝑋𝑖𝑇 for 𝑖 ∈ 1, … . , 12, is the total (T) volume of the hippocampal subfield i. 

 

𝐶2 = (𝑋1𝑅, … . , 𝑋12𝑅) ,  

where 𝑋𝑖𝑅 for 𝑖 ∈ 1, … . , 12, is the right hemisphere (R) volume of the hippocampal subfield i. 

 

𝐶3 = (𝑋1𝐿, … . , 𝑋12𝐿) , 

 where 𝑋𝑖𝐿 for 𝑖 ∈ 1, … . , 12, is the left hemisphere (L) volume of the hippocampal subfield i. 

 

Different models were established according to each composition: 

1. How is the genetic predisposition to specific neurological conditions related to the joint 

volumetric variation of hippocampal substructures? 

 

(M1) 𝑙𝑜𝑔𝑖𝑡(𝑃𝑅𝑆𝑖)  =  𝛽0 +  𝛽1 ∙  𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝐴, 𝐵)𝑇𝑜𝑡𝑎𝑙𝑉𝑜𝑙𝑢𝑚𝑒𝑠 + 𝛽2 ∙ 𝑆𝑒𝑥 

 

1.1.  Is this genetic predisposition differentially affecting the joint volumetric variation of 

hippocampal substructures among women and men? 

(M1.1) 𝑙𝑜𝑔𝑖𝑡(𝑃𝑅𝑆𝑖𝑊𝑜𝑚𝑒𝑛)  =  𝛽0 + 𝛽1 ∙  𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝐴, 𝐵)𝑇𝑜𝑡𝑎𝑙𝑉𝑜𝑙𝑢𝑚𝑒𝑠𝑊𝑜𝑚𝑒𝑛 

(M1.2) 𝑙𝑜𝑔𝑖𝑡(𝑃𝑅𝑆𝑖𝑀𝑒𝑛)  =  𝛽0 + 𝛽1 ∙  𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝐴, 𝐵)𝑇𝑜𝑡𝑎𝑙𝑉𝑜𝑙𝑢𝑚𝑒𝑠𝑀𝑒𝑛 

 

2. How is the genetic predisposition to specific neurological conditions related to the joint 

volumetric variation of hippocampal substructures in the right hemisphere? 

(M2)  𝑙𝑜𝑔𝑖𝑡(𝑃𝑅𝑆𝑖)  = 𝛽0 + 𝛽1 ∙  𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝐴, 𝐵)𝑅𝑖𝑔ℎ𝑡𝑉𝑜𝑙𝑢𝑚𝑒𝑠 + 𝛽2 ∙ 𝑆𝑒𝑥 
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2. 1.  Is this genetic predisposition differentially affecting the joint volumetric variation 

of hippocampal substructures in the right hemisphere among women and men? 

(M2.1) 𝑙𝑜𝑔𝑖𝑡(𝑃𝑅𝑆𝑖𝑊𝑜𝑚𝑒𝑛)  =  𝛽0 + 𝛽1 ∙  𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝐴, 𝐵)𝑅𝑖𝑔ℎ𝑡𝑉𝑜𝑙𝑢𝑚𝑒𝑠𝑊𝑜𝑚𝑒𝑛 

(M2.2) 𝑙𝑜𝑔𝑖𝑡(𝑃𝑅𝑆𝑖𝑀𝑒𝑛) = 𝛽0 + 𝛽1 ∙  𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝐴, 𝐵)𝑅𝑖𝑔ℎ𝑡𝑉𝑜𝑙𝑢𝑚𝑒𝑠𝑀𝑒𝑛 

 

3. How is the genetic predisposition to specific neurological conditions related to the joint 

volumetric variation of hippocampal substructures in the left hemisphere? 

(M3) 𝑙𝑜𝑔𝑖𝑡(𝑃𝑅𝑆𝑖)  = 𝛽0 +  𝛽1 ∙  𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝐴, 𝐵)𝐿𝑒𝑓𝑡𝑉𝑜𝑙𝑢𝑚𝑒𝑠 +  𝛽2 ∙ 𝑆𝑒𝑥 

 

3.1.  Is this genetic predisposition differentially affecting the joint volumetric variation 

of hippocampal substructures in the left hemisphere between women and men? 

 

(M3.1) 𝑙𝑜𝑔𝑖𝑡(𝑃𝑅𝑆𝑖𝑊𝑜𝑚𝑒𝑛)  = 𝛽0 + 𝛽1 ∙  𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝐴, 𝐵)𝐿𝑒𝑓𝑡𝑉𝑜𝑙𝑢𝑚𝑒𝑠𝑊𝑜𝑚𝑒𝑛 

(M3.2) 𝑙𝑜𝑔𝑖𝑡(𝑃𝑅𝑆𝑖𝑀𝑒𝑛)  = 𝛽0 + 𝛽1 ∙  𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝐴, 𝐵)𝐿𝑒𝑓𝑉𝑜𝑙𝑢𝑚𝑒𝑠𝑡𝑀𝑒𝑛 

To avoid repetitive tables of results, in the main text we only present the results of model 1. 

Results of models 2 and 3, are described in the Appendix (Figure A9-10).  

 

3 Results 

 

3.1 Descriptive analysis 

The AlfaGeneTiCs sample was defined by 62.5% of women and 37.5% of men with a similar 

mean age of 59 (58.7±6.69 women, 58.8±6.56 men) years old (Table 3.1). Years of education 

were significantly different between both groups. 

Table 3.1. Descriptives of the main covariates of the study differentiating by sex.  
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In Table 3.2 we showed the sample distribution, stratifying by sex, across high and low risk groups 

for each condition. From the total of individuals at high genetic risk of AD, ALS and PSP, women 

represented between 60-65% of them, respectively. The same was observed in the low risk group. 

When we considered the total of women and men in the sample, we saw that both for women and 

men, the number of individuals at high risk was around 20-25%, while the number of individuals 

at low risk was around 75-80%. Women and men were proportionally equally represented in the 

high and low risk groups, although women represented more than 60% of both high and low risk 

group (they also represented more than 60% of the total sample). 

Table 3.2. Descriptives of the main covariates of the study differentiating by high and low genetic risk of 

each condition, and sex. 

 

3.2 Selbal algorithm results 

As mentioned before, in this section we only present the results of the first composition (i.e. total 

volumes). Results of component selection can be found in Figures A6-A8. Moreover, results for 

the right and left hemisphere (second and third composition) can be found in Figures A9-10. 

 

3.2.1 Genetic risk of Alzheimer’s Disease and Hippocampal subfields modulation 

 

When the composition was defined by substructures within the hippocampal region, the global 

balance for the whole sample was defined by CA3, CA4, hippocampal fissure, CA1 and 

hippocampal tail (Figure 3.1a). Results showed that a 10% compensatory increase in the average 

volume of CA3, CA4 and hippocampal fissure compared to CA1 and hippocampal tail was 

significantly associated with an increased genetic risk of AD (OR=1.53 [1.22-1.92]) (Figure 

3.1d). In women, the global balance was defined by CA4 and hippocampal tail (Figure 3.1b). 

Results showed that a 10% compensatory increase in the CA4 region with respect to the 

hippocampal tail was significantly associated with an increased genetic risk of AD (OR=1.45 

[1.08-1.96]) (Figure 3.1d). Finally, in men, the global balance was defined by CA3 and CA1 

(Figure 3.1c). Results showed that a 10% compensatory increase in the CA3 with respect to CA1 
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was significantly associated with an increased genetic risk of AD (OR=1.73 [1.18-2.57]) (Figure 

3.1d). 

 

a) All      b)  Women 

 

c) Men      d) Association analyses results  

 

Figure 3.1. Figure 3.1a, 3.1b and 3.1c display hippocampal subfields in group A and B that define the 

global balance. Boxplots represent the distribution of the balance values for individuals at high (red) and 

low (blue) genetic risk of AD, when the sample is defined by all the individuals (Figure 3.1a), women 

(Figure 3.1b), and men (Figure 3.1c). The density plot is described below. Figure 3.1d the association 

analyses results, which include the balance as explanatory variable.  

  

 

3.2.2 Genetic risk of Amyotrophic Lateral Sclerosis and Hippocampal subfields modulation 

 

When the composition was defined by substructures within the hippocampal region, the global 

balance for the whole sample was defined by CA1 and hippocampal fissure (Figure 3.2a). Results 

showed that a 10% compensatory increase in the CA1 compared to the hippocampal fissure, was 

significantly associated with an increased genetic risk of ALS (OR=1.25 [1.02-1.54]) (Figure 

3.2d). In women, the global balance included the fimbria, HATA and presubiculum (Figure 3.2b). 

Results showed that a 10% compensatory increase in the fimbria, with respect to the HATA and 
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presubiculum, was significantly related to an increased genetic risk of ALS (OR=1.18 [1.02-

1.37]) (Figure 3.2d). No significant results were found in men (Figure 3.2d). 

 

a) All      b)  Women 

 

c)    Men      d)    Association analyses results 

 

 

 

 

 

 

Figure 3.2. Figure 3.2a, 3.2b and 3.2c display hippocampal subfields in group A and B that define the 

global balance. Boxplots represent the distribution of the balance values for individuals at high (red) and 

low (blue) genetic risk of ALS, when the sample is defined by all the individuals (Figure 3.2a), women 

(Figure 3.2b), and men (Figure 3.2c). The density plot is described below. Figure 3.2d the association 

analyses results, which include the balance as explanatory variable.   

 

3.2.3 Genetic risk of Progressive Supranuclear Palsy and Hippocampal subfields modulation 

 

When the composition was defined by substructures within the hippocampal region, the global 

balance for the whole sample (Figure 3.3a), as well as for women (Figure 3.3b), was defined by 

the subiculum and the parasubiculum. Results showed that a 10% compensatory increase in the 

subiculum compared to the parasubiculum, was significantly associated with an increased genetic 

risk of PSP (whole sample; OR=1.38 [1.15-1.65], women; OR=1.34 [1.06-1.7]) (Figure 3.3d). In 

men, the global balance was defined by the molecular layer and the parasubiculum (Figure 3.3c). 

Results showed that a 10% compensatory increase in the molecular layer, compared to the 
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parasubiculum, was significantly associated with an increased genetic risk of PSP (OR=1.46 

[1.11-1,95]) (Figure 3.4c).  

 

a) All      b)    Women 

 

 

 

 

 

 

 

 

      c)   Men      d)   Association analyses results 

 

 

 

 

 

 

 

 

Figure 3.3.  Figure 3.3a, 3.3b and 3.3c display hippocampal subfields in group A and B that define the 

global balance. Boxplots represent the distribution of the balance values for individuals at high (red) and 

low (blue) genetic risk of ALS, when the sample is defined by all the individuals (Figure 3.3a), women 

(Figure 3.3b), and men (Figure 3.3c). The density plot is described below. Figure 3.3d the association 

analyses results, which include the balance as explanatory variable.   

 

4 Discussion and Conclusions 

To our knowledge, this is the first study analysing the relationship between individuals at high 

genetic risk of AD, ALS, and PSP and the joint volumetric variation of hippocampal subfields in 

cognitively healthy individuals.  

We found that a compensatory increase in the average volume of the hippocampal fissure, CA4 

and CA3 compared to CA1 and hippocampal tail was associated with an increased genetic risk of 

AD. Although this is the first study analysing the joint volumetric variation of hippocampal 
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subfields in cognitively healthy individuals at high genetic risk of AD, there is some previous 

evidence of the individual affectation of genetic risk of AD and hippocampal subfields. For 

instance, a recent study performed on 17,161 UK Biobank participants showed that higher PRS-

AD was individually associated with lower volumes in the bilateral whole hippocampus, HATA, 

hippocampal tail, right subiculum, left CA1, CA4, molecular layer, and DG (Foo et al., 2021). 

Murray et al., 2021 also observed associations between PRS-AD and whole 

hippocampal/amygdala volumes, as well as CA1 and fissure. Although we cannot directly 

compare the results obtained in our work with those reported in the univariate studies, the 

coincidence in some significant subfields (i.e. CA1, hippocampal tail, CA4) could reinforce the 

joint analysis of these structures. 

Moreover, we found that a compensatory increase in CA1 volume compared to hippocampal 

fissure was associated with an increased genetic risk of ALS. Although implications of CA1 and 

ALS have been previously described (Machts et al., 2018), few studies have addressed the 

relationship between hippocampal subfields and ALS, providing inconsistent results. For 

instance, Christidi et al., (2019) showed that HATA and CA2/3 were the most affected subfields 

in ALS.  Furthermore, no previous studies have been found evaluating genetic factors associated 

with ALS and the hippocampal region. This is in line with what is expected as it is the motor 

regions of the brain and not the hippocampus that tend to have a more specific involvement in 

ALS (Agosta et al., 2018). However, our results could suggest the involvement of the motor 

neuron system and the joint volumetric variation of hippocampal substructures in ALS, which is 

relatively in line with previous reported studies (Toyoshima et al., 2003; Anderson et al., 1995; 

Gómez-Pinedo et al., 2019). 

Finally, we found that a compensatory increase in the subiculum volume compared to the 

parasubiculum was associated with an increased genetic risk of PSP. Although PSP is mainly 

characterized by the affectation of the basal ganglia and midbrain regions (Mimudo and Yoshira 

2019), there is also scientific evidence of hippocampal degeneration in PSP individuals, affecting 

CA3 and subiculum subfields (Armstrong et al., 2015; Maurer et al., 2017). We did not find 

additional studies relating genetics of PSP and the hippocampal subregions. Nevertheless, atrophy 

of hippocampal subicular structures (i.e. subiculum, parasubiculum...) has been shown as a target 

predictor of cognitive decline and/or dementia progression as in Parkinson's disease, which is 

closely related to PSP (Low et al., 2019, Foo et al., 2017, Uribe et al., 2018).  

Moreover, specific hippocampal subfields combinations were also significantly and differentially 

associated with a higher genetic risk of each neurodegenerative condition according to the 

analysed hippocampal hemisphere. 

 

https://pubmed.ncbi.nlm.nih.gov/12669241/
https://pubmed.ncbi.nlm.nih.gov/12669241/
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Regarding sex-stratified models, we also showed differential significant volumetric variations and 

combinations of hippocampal subfields associated with high genetic risk of AD, ALS and PSP. 

However, although there is a high interest in analysing sex-differences in neurological diseases, 

there are few IG studies assessing these differences on hippocampal subfields. Moreover, existing 

studies were mostly focused on the global hippocampal volume or were based on the univariate 

analysis of hippocampal subfields (Hibar et al., 2018; Foley et al., 2017; Foo et al., 2021). 

 

The application of the Selbal algorithm allowed us to jointly modulate multiple hippocampal 

subregions to discern joint volumetric compensatory relationships of these volumes in individuals 

at high genetic risk of AD, ALS, and PSP. This makes a clear advantage of Selbal over univariate 

brain intermediate studies, not only because of its higher statistical power but also for its easy 

application and biological plausibility. Another advantage of the Selbal approach is its robust 

algorithm based on the log-ratio between components. The log-ratio function avoids spurious 

correlations between components as it provides the same results independently of the total brain 

volume. Moreover, it allows working with data in which the information does not depend on the 

particular units in which it is expressed, as well as maintains the information unaltered even if the 

composition suffers a permutation of the parts. 

 

However, the application of Selbal in this study also presented some limitations. When assessing 

the robustness of the global balance for each condition, we found that the most robust results were 

found for PSP, in which the global balance in all the three sample’s conditions (whole sample, 

women and men), corresponded to the balance most frequently selected in the CV procedure, with 

at least 50% of times of appearance. Moreover, all components that defined the global balance 

were also the most frequently selected in the CV, more than 50% of times. In addition, results 

were not robust in specific situations for AD and ALS, where the global balance did not 

correspond to the balance most frequently selected in the CV or it included components with a 

low rate of appearance in the CV procedure. Thus, results showed that the global balance may not 

be the optimal in some cases. This was also stated as a limitation by the authors of the algorithm 

(Rivera-Pinto et al., 2018). However, although in some scenarios the component selection may 

not be optimal, the algorithm does guarantee a robust selection of the components providing 

additional biological sense in the study. 

 

Therefore, for further studies in the field of IG, it would be interesting to apply this method to 

improve the understanding of brain substructures’ volumetric changes associated with a high 

genetic risk of specific neurological disorders. Working with compositional data in IG studies 

allows minimising the heterogeneity in the MRI data that can occur because of the procedure and 

the technology applied to obtain all the specific brain structures measurements. Working with 
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compositions removes the effect of the total volume measurement, which can vary in minimum 

values across different batches, but may have an effect in further association analyses. Thus, 

cancelling this total effect and working with ratios between components, Selbal not only offers a 

solution to address this issue but also allows assessing the joint modulation of multiple brain 

subregions and its association with specific phenotypes.  

To conclude, this work provides a new and innovative perspective for IG studies with the aim of 

improving our understanding of the effects that genetic predisposition to neurodegenerative 

disorders has on brain structure modulation. 
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6  Appendix 

6.1 Supplemental Tables 

 

Table A1. Supplementary table: GWAS summary statistics of the phenotypes whose PRS have been computed and included in the study. 

 

Disease/Condition 

Description 

Sample 

Size  

N 

Cases 

N 

Controls 

Ethnicity Genomic 

Annotation 

Base GWAS (First 

Author) 

Link Manuscript Access GWAS-Summary (LINK) 

Alzheimer's Disease 455.258 71.880 383.378 Caucasian GRCh37/hg19 Jansen et al., 2020 https://pubmed.ncbi.nlm.nih.gov/32029921/ https://ctg.cncr.nl/software/summary_statistics 

** Alzheimer's Disease ** Alzheimer's Disease, removing the APOE region (chr 19: 45,409,011-45,412,650) for the PRSs computation 

Parkinson's Disease 1.437.688 37.688 1.400.00

0 

Caucasian GRCh37/hg19 Nalls et al., 2019 https://pubmed.ncbi.nlm.nih.gov/31701892/ https://drive.google.com/file/d/1FZ9UL99LAqyW

nyNBxxlx6qOUlfAnublN/view?usp=sharing 

Frontotemporal Dementia 4.131 1.377 2.754 Caucasian GRCh37/hg19 Ferrari et al., 2014 https://pubmed.ncbi.nlm.nih.gov/24943344/ https://ifgcsite.wordpress.com/data-access/ 

** Frontotemporal 

Dementia 

** Frontotemporal Dementia Meta-Analysis (FTD subtypes): 2154 cases and 4308 controls, N=6462 

Amyotrophic Lateral 

Sclerosis 

36.052 12.577 23.475 Caucasian GRCh37/hg19 van Rheenen et al., 

2016 

https://pubmed.ncbi.nlm.nih.gov/27455348/ http://databrowser.projectmine.com/ 

Progressive Supranuclear 

Palsy 

12.308 1.646 10.662 Caucasian GRCh37/hg19 Chen et al., 2018 https://pubmed.ncbi.nlm.nih.gov/30089514/ https://www.niagads.org/ 

https://pubmed.ncbi.nlm.nih.gov/32029921/
https://ctg.cncr.nl/software/summary_statistics
https://pubmed.ncbi.nlm.nih.gov/31701892/
https://drive.google.com/file/d/1FZ9UL99LAqyWnyNBxxlx6qOUlfAnublN/view?usp=sharing
https://drive.google.com/file/d/1FZ9UL99LAqyWnyNBxxlx6qOUlfAnublN/view?usp=sharing
https://pubmed.ncbi.nlm.nih.gov/24943344/
https://ifgcsite.wordpress.com/data-access/
https://pubmed.ncbi.nlm.nih.gov/27455348/
http://databrowser.projectmine.com/
https://pubmed.ncbi.nlm.nih.gov/30089514/
https://www.niagads.org/
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Table A2. Descriptive analysis of hippocampal subfields volumes. 
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Table A3. Descriptive analysis of hippocampal subfields volumes by sex. 
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Table A4. Wilcoxon test results, within women, assessing whether mean values of hippocampal subfields 

volumes were equivalent between hemispheres. 

 

 

 

 

Table A5. Wilcoxon test results, within men, assessing whether mean values of hippocampal subfields 

volumes were equivalent between hemispheres. 
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Table A6. Wilcoxon test results, without differentiating by sex, assessing whether mean values of 

hippocampal subfields volumes were equivalent between hemispheres. 
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Table A7. Wilcoxon test results, assessing whether mean values of hippocampal subfields volumes were 

equivalent between men and women. 
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Table A8. Symmetry analysis: skewness and kurtosis indexes for each PRS. 

 

 

 

 

 

 

 

 

6.2 Supplemental Figures 

 

 

 

 

 

 

 

 
Figure A1. PRSs distribution. 

 

 

 

 

 

 

 

 

 

Figure A2. Included PRSs distribution by sex. 
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Figure A3. Included PRSs correlation. 

 

Figure A4. PRSs distribution of Alzheimer’s Disease, Amyotrophic Lateral Sclerosis and Progressive 

Supranuclear Palsy by risk group. 
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Figure A5. PRSs distribution of Alzheimer’s Disease, Amyotrophic Lateral Sclerosis and Progressive 

Supranuclear Palsy by risk group and sex. 

 

 

a) All      b)   Women 

 

c)   Men 

 

 

 

 

 

 

Figure A6. CV results for AD when working with the first composition (C1): most frequent hippocampal 

subregions and most frequent balances selected in the CV procedure in comparison to the global balance 

obtained from the whole sample. Red cells indicate selected components in the numerator of the balance 

(group A) and blue cells indicate selected components in the denominator of the balance (group B). 

Empty cells indicate components not included. FREQ: frequency.  
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a) All      b)   Women 

 

c)   Men 

 

 

 

 

 

 

 

Figure A7. CV results for ALS when working with the first composition (C1): most frequent 

hippocampal subregions and most frequent balances selected in the CV procedure in comparison to the 

global balance obtained from the whole sample. Red cells indicate selected components in the numerator 

of the balance (group A) and blue cells indicate selected components in the denominator of the balance 

(group B). Empty cells indicate components not included. FREQ: frequency.  
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a) All      b)   Women 

 

c)   Men 

 

 

 

 

 

 

Figure A8. CV results for PSP when working with the first composition (C1): most frequent hippocampal 

subregions and most frequent balances selected in the CV procedure in comparison to the global balance 

obtained from the whole sample. Red cells indicate selected components in the numerator of the balance 

(group A) and blue cells indicate selected components in the denominator of the balance (group B). 

Empty cells indicate components not included. FREQ: frequency.  
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a) AD    b) ALS     c) PSP 

 

 

 

Figure A9. Selbal algorithm results for the second composition (C2): right hippocampal volume. Results 

of the logistic regression models, both general and stratifying by sex. The global balance is defined by the 

ratio between volumes in group A (dark violet; numerator) and volumes in group B (green; denominator). 

 

 

 

 

a) AD    b) ALS     c) PSP 

 

Figure A10. Selbal algorithm results for the third composition (C3): left hippocampal volume. Results of 

the logistic regression models, both general and stratifying by sex. The global balance is defined by the 

ratio between volumes in group A (dark violet; numerator) and volumes in group B (green; denominator). 
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6.3 Supplemental formulas and examples 

 

How the effect of the total measurement is cancelled when working with ratios? 

Example when working with a composition defined by 3 components. 

 

Composition: C = (x1, x2, x3) 

𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡: 𝑥1 + 𝑥2 + 𝑥3 =  ∑ 𝑥𝑗

3

𝑗=1

 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠: 
𝑥1

∑ 𝑥𝑗
3
1

,
𝑥2

∑ 𝑥𝑗
3
1

,
𝑥3

∑ 𝑥𝑗
3
1

 

𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑠: 𝑙𝑜𝑔 ( 
𝑥1

∑ 𝑥𝑗
3
1

) , 𝑙𝑜𝑔 ( 
𝑥2

∑ 𝑥𝑗
3
1

) , 𝑙𝑜𝑔 ( 
𝑥3

∑ 𝑥𝑗
3
1

) 

𝐿𝑜𝑔 − 𝑟𝑎𝑡𝑖𝑜 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑥1 − 𝑥3:
𝑙𝑜𝑔( 

𝑥1

∑ 𝑥𝑗
3
1

)

 𝑙𝑜𝑔( 
𝑥2

∑ 𝑥𝑗
3
1

)

= 

= 𝑙𝑜𝑔(𝑥1) − 𝑙𝑜𝑔(∑ 𝑥𝑗
3
1 )−(𝑙𝑜𝑔(𝑥2) − 𝑙𝑜𝑔(∑ 𝑥𝑗

3
1 ) ) 

= 𝑙𝑜𝑔(𝑥1) − 𝑙𝑜𝑔(∑ 𝑥𝑗
3
1 )−(𝑙𝑜𝑔(𝑥2) + 𝑙𝑜𝑔(∑ 𝑥𝑗

3
1 ) ) 

= 𝑙𝑜𝑔(𝑥1) − 𝑙𝑜𝑔(𝑥2)) 

=𝑙𝑜𝑔 (
𝑥1

𝑥2
) 

 

Selbal results: define the OR for a n-units change when the explanatory variable is in the 

logarithmic scale. 

Logistic model: 𝑙𝑜𝑔𝑖𝑡(𝑌)  = 𝛽0 +  𝛽 · 𝑥, where 𝑥 = 𝐾 ·  𝑙𝑛(𝑧1)  −  𝑙𝑛(𝑧2)  = 𝐾 ·  𝑙𝑛 (
𝑧1

𝑧2
) (balance). 

For one-unit increase of x, the OR is defined by the exp (𝛽). 

For n-units increase of x, the OR is defined by the exp (𝛽 · 𝑛) 

A n-units increase of x means that 𝑥 + 𝑛 = 𝐾 · ( 𝑙𝑛(𝑧1)  −  𝑙𝑛(𝑧2) + 𝑛)  = 𝐾 · (𝑙𝑛 (
𝑧1

𝑧2
) + 𝑛)  

Defining n in the logarithmic scale, we can see that 𝑥 + 𝑛 = 𝐾 · ( 𝑙𝑛(𝑧1)  −  𝑙𝑛(𝑧2) + ln (𝑒𝑛)  = 𝐾 ·

(𝑙𝑛 (
𝑧1

𝑧2
) + ln (𝑒𝑛))   = 𝐾 · (𝑙𝑛 (

𝑧1

𝑧2
) ·  ln (𝑒𝑛)) = 𝐾 · (𝑙𝑛 (

𝑧1· 𝑒𝑛

𝑧2
)). 

Example when we want to observe a 10% increase. 

● 10% of x = 0.1·x 

● a 10% increase = x + 0.1·x = 1.1 

● 𝑒𝑛= 1.1, 𝑛 =  𝑙𝑛(1.1) 

● 𝑂𝑅 = 𝑒𝑥𝑝(𝑛 · 𝛽)  =  𝑒𝑥𝑝 (𝑙𝑛 (1.1)  ·  𝛽)  
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6.4 Bioinformatic pipeline (continues on next page) 

 

In Figure A11, we can observe the workflow needed to compute PRSs. 

Figure A11. Workflow to compute PRSs: from the files needed to compute PRSs to the output file. 
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In Figure A12, we can observe the workflow needed to apply the compositional method: from 

the dichotomisation of the PRSs to the application of the Selbal algorithm. 

Figure A12. Workflow describing the scripts and steps needed to apply the compositional method 

 

R scripts are available under request in https://github.com/PatiGenius/FMP_Omics.  

https://github.com/PatiGenius/FMP_Omics

