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Abstract

Background: Imaging genetics (IG) studies aim to jointly analyse neuroimaging and genetic data
with the objective of discovering new genetic variations related to brain features. Most IG studies
focus on the individual analysis of brain structures. An alternative strategy is to incorporate
compositional data analysis (CoDA) methods to assess the joint modulation of specific brain
subregions.

Objective: The aim of this project was to investigate whether the genetic predisposition to
specific neurodegenerative disorders (quantified with polygenic risk scores, PRS) was associated
with the joint modulation of hippocampal subfields volumes (target regions for neurological
disorders) by assessing the performance of CoDA (Selbal algorithm).

Methods: A total of 1,071 participants from the ALFA study with available information on
genetics and neuroimaging data were included. Genetic predisposition to Alzheimer’s Disease
(AD), Amyotrophic Lateral Sclerosis (ALS) and Progressive Supranuclear Palsy (PSP) was
estimated by calculating PRS (PRSice v.2). Selbal algorithm was applied to find the hippocampal
subregions whose joint volumetric variation was most closely related to a higher genetic risk of
each neurodegenerative condition. Logistic regression models were assessed to test the
association between the genetic predisposition of each condition and the volumetric combination
of the hippocampal subfields. Models were adjusted by sex and we also performed sex- and
hemisphere-stratified models.

Results: Results showed that a compensatory increase in the average volume of CA3, CA4 and
hippocampal fissure related to CA1 and hippocampal tail was significantly associated with a
higher genetic risk of AD. Results also showed that a higher genetic risk of ALS was significantly
related to a compensatory increase in the CA1 compared to the hippocampal fissure. Results for
PSP showed that a compensatory increase in the subiculum in comparison to the parasubiculum
was significantly associated with a higher genetic risk. Moreover, we found different joint
volumetric modulation of hippocampal substructures associated with higher genetic risk of each
condition between sex, as well as among hemispheres.

Conclusion: To our knowledge, this is the first study analysing the relationship between
cognitively healthy individuals at high genetic risk of AD, ALS, and PSP and the joint volumetric
variation of hippocampal subfields. Therefore, this work provides a new and innovative
perspective for IG studies with the aim of improving our understanding of the effects that the

genetic predisposition to neurodegenerative disorders has on brain structure modulation.

Keywords: Alzheimer’s Disease; Amyotrophic Lateral Sclerosis; Compositional Data Analysis;
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Glossary

AD: Alzheimer’s Disease

alr: Additive log-ratio

ALS: Amyotrophic Lateral Sclerosis

AUC: Area Under the Curve

CAL: Cornu Ammonis 1

CAZ3: Cornu Ammonis 3

CA4: Cornu Ammonis 4

clr: centered log-ratio

CoDA: Compositional Data Analysis

CV: Cross-Validation

DEV: Deviance

FTD: Frontotemporal dementia
GC-ML-DG: Granular Cell and Molecular Layer of the Dentate Gyrus
GWAS: Genome-Wide Association Studies
HATA: Hippocampal Amygdala Transition Area
HWE: Hardy-Weinberg Equilibrium

IG: Imaging Genetics

ilr: isometric log-ratio

LD: Linkage Disequilibrium

MAF: Minor Allele Frequency

MFA: Multiple Factor Analysis

MRI: Magnetic Resonance Imaging



MSE: Mean Squared Error

PRS: Polygenic Risk Score

PSP: Progressive Supranuclear Palsy
QC: Quality Control

Selbal: Selection of balances

SNP: Single Nucleotide Polymorphism



1  Introduction

Many complex diseases have a genetic component and its study might provide valuable insights
into the etiology of the disease. Genome-wide association studies (GWAS) have identified
thousands of genetic variants associated with complex disorders (Loos 2020). However, for
neurological disorders, the number of genetic variants identified so far is considerably reduced
(Buniello et al., 2019). One possible reason is the heterogeneity of the clinical diagnosis of these
disorders, which can be ameliorated by the use of brain-based features (i.e. brain morphology,
brain physiology, cognitive function) as intermediate phenotypes (Glahn et al., 2007; Matoba et
al., 2020). Intermediate brain phenotypes derived from neuroimaging sequences not only reduce
the phenotypic heterogeneity common to many neurodegenerative disorders, but also increase
detection power (Hashimoto et al., 2015).

Neuroimaging studies based on neurological-related processes usually focus on specific brain
structures, one of the most important being the hippocampus, both for its involvement in several
neurological disorders as well as for its subfields' unique molecular properties (Flores et al., 2015;
Evans et al., 2018; Vilor-Tejedor et al., 2021). Although hippocampal region is often treated as a
unitary structure, the hippocampus is composed of multiple subfields with distinct molecular and
functional properties (Van der Meer et al., 2020). Given the structural and functional
heterogeneity of the hippocampal subfields, it is reasonable to suggest that each subfield may
have distinct genetic influences and that some subfields may be more affected than others by the
individual genetic variation (Elman et al., 2019).

The impact of genetic variation on these brain features can be assessed in imaging genetics (IG)
studies. 1G studies aim to integrate neuroimaging and genetic data with the objective of
discovering new genetic variants related to brain features, which in turn explain the risk for
neurodegenerative disorders. This approach can promote an understanding of the genetic basis of
neurodegenerative disorders as well as provide insights into the genetic architecture of the brain
that could be relevant to neurological disorders, brain development and ageing (Elliot et al., 2018,
Nathoo et al., 2019, Vilor-Tejedor et al., 2018). However, jointly analysing neuroimaging and
genetic data raises serious challenges for efficiently analysing large-scale data sets with many
subjects.

The earliest methods developed were based on candidate genetic variants and specific brain
features. This type of candidate univariate analysis is based on a standard linear regression relating
a given brain feature, which is commonly the volume measurement of the brain structure (e.g.
hippocampal volume) to a given genetic variant (e.g. Single Nucleotide Polymorphisms; SNP).
This strategy can be extended to the full brain-wide and genome-wide data, resulting in a massive
number of pairwise univariate analyses (Hibar et al., 2017; Smith et al., 2021). In this case, the
multiple testing correction problem becomes evident, where very stringent corrections are applied

to control for false positives along the large number of tests involved in the analysis. This
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correction decreases the power of the analysis, increasing the difficulty to identify genetic variants
associated with a brain feature of interest. Therefore, large samples, as well as joint consortia
efforts are required.

An alternative strategy to the massive univariate approach are techniques that jointly analyse
genetic data. These strategies fit regression models separately at each brain feature, considering
a set of genetic markers simultaneously rather than just a single genetic marker (Dima and Breen
2015; Yao et al., 2020). Polygenic risk scores (PRS) are extremely useful in this context. PRSs
combine the individual effect of each genetic variant in a single score that summarizes the genetic
predisposition of each individual to a specific disorder/condition (Sugrue et al., 2019).
Commonly, in IG studies, when PRSs are calculated, univariate regression models are then
adjusted to assess the association between the given PRS and the specific brain feature of interest.
Finally, another strategy consists of analysing both multivariate neuroimaging and genetic data
to better capture the complex relationships that may exist between different biological levels
(Vilor-Tejedor et al., 2018a). An example of this strategy is the application of the multiple
factorial analysis (MFA) and its extensions (Vilor-Tejedor et al., 2019, Vilor-Tejedor et al.,
2018b). The inclusion of the multivariate perspective provides an improvement in the statistical
power and predictive capacity in IG studies. However, none of the aforementioned strategies
consider the joint effect of nearby brain features in the volumetric variation of the target brain
feature.

In this work we proposed a new strategy for volumetric analysis in IG studies based on the use of
compositional data analysis (CoDA) methods. Compositional data consists of a set of
measurements whose values are restricted by their total sum. In our context, the main brain region
of interest was the hippocampal structure that can be analysed as the composition of different

subfields or components (Figure 1.1).

Figure 1.1. Hippocampal segmentation. Adapted from Vilor-Tejedor et al., 2021.



In CoDA, instead of exploring each component separately, the analysis focuses on the relative
variation between them. Selbal is a recent approach in CoDA which is based on a model selection
procedure that looks for the most parsimonious model capable of explaining the association
between the joint effect of the selected components and a specific phenotype of interest (Calle,
2019). Thus, by applying the Selbal algorithm, we can select the brain components (hippocampal
subfields) whose joint volumetric variation, summarized in a single score known as balance, is
most closely associated with the genetic predisposition to several neurological diseases.

Therefore, the aim of this final master project was to investigate whether the genetic
predisposition to specific neurodegenerative disorders (quantified with PRS) was associated with
the joint modulation of specific hippocampal subfields volumes by assessing the performance of

the Selbal algorithm.

2  Material and methods

2.1  Sample description: AlfaGeneTiCs project

Individuals from the ALFA cohort (Molinuevo et al., 2016) were invited to take part in the
AlfaGeneTiCs study. The AlfaGeneTiCs study is composed of 2,280 cognitively unimpaired
middle-age participants (45-75 years old), most of them Alzheimer’s disease (AD) patient’s
offspring with a high proportion of APOE-e4 carriers. They present available information in
cognition, neuroimaging (magnetic resonance imaging sequences), lifestyle, clinical history and
blood collection. For this study, 1,071 participants with available information on hippocampal

subfields quantification were included.

2.2 Genetic data acquisition: genotyping, quality control and imputation

DNA samples of AlfaGeneTiCs participants were obtained from whole blood samples by
applying salting out protocol. DNA was eluted in 800ul of H20 (milliQ) and quantified using
Quant-iTT PicoGreen® dsDNA Assay Kit (Life Technologies). Integrity of DNA was checked
in a subset of samples by running a 1% agarose gel. All the samples were within specification.
DNA concentration for each sample was additionally normalized.

Genome-wide genotyping was performed using the Illlumina Infinium Neuro Consortium
(NeuroChip) Array (build GRCh37/hg19) (Blauwendraat et al., 2017).

Quality Control (QC) procedure of the genetic data was conducted with PLINK software
(Anderson et al., 2010). The following sample quality control thresholds were applied: individuals
with sample call rate of less than 98%, and exhibing excess of heterozygosity (3 standard
deviations) were excluded. Moreover, we excluded individuals showing sex discordances.
Finally, individuals at higher genetic relatedness (at the level of cousin or closer) sharing

proportionally more than 18.5% of alleles (IBD > 0.185) were also excluded.


https://pubmed.ncbi.nlm.nih.gov/21085122/

Once QC on sample level was completed, genetic variants with minor allele frequency
(MAF<1%), Hardy-Weinberg equilibrium (HWE) p-value < 10—6, and missigness rates > 5%
were excluded.

Imputation of genetic variants was performed by using the Michigan imputation server
(https://imputationserver.sph.umich.edu), using the Haplotype Reference Consortium panel
(HRC r1.1 2016) (Das et al., 2016; McCarthy et al., 2016) under default parameters and according
to established guidelines. Assessment and preparation of genetic data was performed in previous

studies.

2.3 Acquisition of MRI and hippocampal subfields segmentation

Radiologists from the ALFA study obtained the volumes for the hippocampal subfields through
high-resolution 3D-T1-weighted magnetic resonance imaging scans. The left and right
hippocampus were segmented into twelve subregions: cornu ammonis region 1, 3, 4 (CAL, CA3,
CA4), fimbria, granular cell and molecular layer of the dentate gyrus (GC-ML-DG),
hippocampal-amygdalar region (HATA), hippocampal fissure, hippocampal tail, molecular layer,
parasubiculum, presubiculum and subiculum. VVolumes were also quantified globally by summing
the subfields volumes of both hemispheres. Thus, a total of 36 measures were obtained: 12 for the
right hemisphere, 12 for the left and 12 for the global volume of the regions. The images were
pre-processed and determined using Freesurfer version 6 (Iglesias et al, 2015).

Figure 2.3 shows different snapshots of the volume quantification for the 12 subfields that make
up the hippocampal region for an individual in the AlfaGeneTiCs project. These snapshots were
used for visual quality control criteria of hippocampal subfields segmentation performed by a

specialist.

Parasubiculum
Il Presubiculum
Il subiculum
I ca1
I cas

CA4
| cc-pbG
HATA
Fimbria
I Hippocampal fissure

Hippocampal tail

Figure 2.3. T1 images of hippocampal segmentation. From Vilor-Tejedor et al., 2020.

The final sample of the study is described in (Figure 2.4).
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Figure 2.4. Flowchart describing the final sample size. The study sample included 1,071 individuals with
available hippocampal subfields quantification and demographic data.

2.4 Polygenic risk scores (PRS) computation and validation

We used PRSice version 2 (Choi et al., 2019) which is an algorithm that computes PRSs by
summing up all the SNP alleles carried by the participants weighted by the SNP allele effect size
estimated in a previous GWAS, normalizing the score by the total number of alleles (Figure A11).
PRSs were computed in representative genetic variants per linkage disequilibrium (LD) block
(clumped variants), using a cut-off for LD of r2 > 0.1 in a 250-kb window. The clumping
procedure retained SNPs with the smallest p-value in each 250 kb window, and removed all those
in LD (r2 > 0.1). PRSs were based on the most recently published GWAS. Further details can be
found in Supplementary Table Al.

We computed PRSs for 7 neurodegenerative conditions: AD, AD excluding the APOE gene
region (chr 19: 45,409,011-45,412,650), amyotrophic lateral sclerosis (ALS), frontotemporal
dementia, a meta-phenotype including frontotemporal dementia subtypes, Parkinson’s disease
and progressive nuclear palsy (PSP). All PRSs were Z-standardized and dichotomized by taking

as threshold the 0.8 quantile in order to compare high vs low genetic risk groups.

PRSs that did not have a continuous distribution or that presented high values both for skewness

(IS| > 3) and kurtosis (JK|>10) indexes (Kline, 2011) were excluded for the genetic association


https://pubmed.ncbi.nlm.nih.gov/31307061/

models (Figure Al, Table A8). Finally, we included PRSs for AD, ALS and PSP in the genetic

association models.

2.5  Statistical analysis

2.5.1 Descriptive analysis

Descriptive analyses were performed to describe the socio demographic variables of the study
(age, sex, and years of education). PRSs and hippocampal subfields volumes were also analysed.
We assessed differences in the hippocampal subfields' mean volume within each sex group, and
also between right and left hemispheres. We performed the same analyses, assessing the
hippocampal subfields mean volume differences within each hemisphere, either for the whole

sample as well as stratifying by sex.

2.5.2 Compositional data: definition and methods
Compositional data is defined by a vector of strictly positive real numbers with a constraint or
non-informative total sum (Calle, 2019).

x =[x, ...,xp] € RP

forx; > 0, Y.P_, x; = k, where k is a constant (e.g. k=1, k=100,...)

In a composition, the value of each component is not informative by itself and the relevant
information is contained in the ratios between parts. This property implies that two proportional
compositions are equally informative and this induces equivalence classes of vectors carrying the
same information. Two vectors are compositionally equivalent if they are proportional.

To work with compositional methods, the data needs to accomplish different properties:
permutation invariance, scale invariance and sub-compositional coherence. Permutation
invariance means that the change in the order of the parts in the composition should not affect
results. Scale invariance refers to the fact that multiplying all the components by a factor does not
alter the results of the analysis. Sub-compositional coherence is found when results for a subset
of the composition are coherent with the results for the whole composition (Calle, 2019). The
simplest scale invariant function is the log-ratio between components, defined as log(x; / x; ).
Working with log-ratios is the key aspect of compositional data analysis and is known as the log-

ratio approach (Calle, 2019) (Formulas and examples section, Appendix).

Some data transformations that are commonly used in CoDA: additive log-ratio (alr), centred log-
ratio (clr) and isometric log-ratio (ilr). The alr transformation applies a log-ratio between each
component and a reference component. The clr scales each component by the geometric mean of

the parts and the ilr transformation, that is associated with an orthogonal coordinate system in the



simplex. Although all these methods are applied by different authors, they present some

limitations especially in the context of variable selection (Susin et al., 2020).

Selbal approach

There is a recent approach in CoDA, the selection of balances (Selbal), defined by a model
selection procedure that searches for a sparse model that explains the response variable of interest,
based on the joint change of the specific selected components of the composition (Rivera-Pinto
et al, 2018).

Selbal relies on compositional balances, a measure that extends the log-ratio between two
components to the log-ratio between two groups of components and is defined as follows: Given
A and B two disjoint subcompositions (subgroups of components) of a composition, the balance

between A and B is defined as the log-ratio between the geometric mean for each group:

=
Balance Bz = K - log(g(A)/g(B)) = K - log TietaX )%,
(Ijerp X j)*B
where g(-) is the geometric mean and K is a normalization constant
kA " kB

kK= |22
ko + kg

The balance can also be written as the difference between the arithmetic means of the log-

transformed values:

1 1
B =—-Zlo X — — - ZIO X;
(AB) K g Xi kg g Xj

i€IA jEIB

Selbal is a joint procedure that involves both modelling and variable selection, through forward
selection. The goal is to determine two sub-compositions A and B whose balance B(A,B) is the
most associated with the dependent variable Y after adjusting for specific covariates Z according

to the following linear or logistic regression model:

Y =By + B;Bagp) +vZ, when'Y is continuous
logit(Y) = Bo + B1Bap) +vZ, when'Y is binary

Selbal evaluates all possible balances composed of only two components (xi,xj). Each balance is
tested for association with the response variable. The optimal two-component balance is selected
and at each step, a new component (i.e. subfield volume) is added to the existing balance until
there is no additional variable that improves the specific optimization parameter. The maximum
number of components to be included in the model is defined through a cross-validation (CV)
procedure (Calle, 2019).



Balance=K-log(A/B)

NEGATIVE BALANCE (<0) NEUTRAL BALANCE (=0) POSITIVE BALANCE (>0)

A<B A=B A>B

Log (<1) Log (1) Log (> 1)

A B
B B A
T L A
—
—

- 00 + 00

Figure 2.5. Graphical representation of the concept balance: possible scenarios and values that the
balance can take. Positive scores involve larger average volume of subcomponents in group A compared
to those in group B, while negative scores involve larger average volume of subcomponents in group B
compared to those in group A.

Finally, a global balance is obtained through the selection of specific components of the
composition. It results in a one-dimension measure, which can take values from - to +o0. Thus,
in our study, it can be interpreted as a score that summarizes the average log-transformed volumes
of two groups of subfields volumes. When the global balance is equal 0, there is a perfect balance
between both groups of components, which means that the ratio between subfields’ volumes is
equal 1 (log(1) = 0). When the global balance takes a positive value, the average volume of the
subregions in the numerator (group A) is larger in comparison to the subregions that are in the
denominator (group B). When the global balance takes a negative value, the average volume of
the subregions in the numerator (group A) is lower than the average volume of the subregions
that are in the denominator (group B) (Figure 2.5). For further details about its application see the
Toy example in (Susin et al., 2020).

2.5.3 Selbal implementation in our Imaging Genetic study

We implemented Selbal to the hippocampal subfields volumes composition with logistic
regression models, where PRSs were defined as dichotomous outcomes (high/low genetic risk
group). The selected global balance identified two groups of hippocampal subfields whose
relative volume was most associated with the genetic predisposition to a specific neurological
condition. Models were adjusted by sex. We also assessed sex-stratified logistic regression
models.

A total of 3 different hippocampal volume compositions were defined. The first composition (C;)

was the global hippocampal region, where the components were defined by each hippocampal



substructure, without distinguishing per hemisphere. Second and third compositions were defined

for the right (C,) and left (C;) hippocampal regions. Each one of these two compositions were
defined by 12 components (12 hippocampal substructures).

More formally, compositions were defined as:

Cy = (Xy7s e X127)

where X;r fori € 1,....,12, is the total (T) volume of the hippocampal subfield i.

C, = (Xer ----:X12R) )

where Xz fori € 1,....,12, is the right hemisphere (R) volume of the hippocampal subfield i.

C3 = (X1ps o X121)

where X;; fori € 1,....,12, is the left hemisphere (L) volume of the hippocampal subfield i.

Different models were established according to each composition:

1. How is the genetic predisposition to specific neurological conditions related to the joint

volumetric variation of hippocampal substructures?

(M1) logit(PRSi) = Bo + P1 - Balance(A, B)rotavoiumes + B2 - Sex

1.1. Is this genetic predisposition differentially affecting the joint volumetric variation of
hippocampal substructures among women and men?

(Ml-l) logit(PRSiWomen) = ,80 + .81 ’ Balance(A:B)TotalVolumesWomen

(M1.2) logit(PRSiMen) = Bo+ B1- Balance(A'B)TotalVolumesMen

2. How is the genetic predisposition to specific neurological conditions related to the joint

volumetric variation of hippocampal substructures in the right hemisphere?

(M2) logit(PRSi) = Bo + By - Balance(4, B)rightvotumes + B2 * Sex



2. 1. Is this genetic predisposition differentially affecting the joint volumetric variation

of hippocampal substructures in the right hemisphere among women and men?
(M2.1) logit(PRSiwomen) = Bo+ Bi1 - Balance(4, B)RightVolumesWomen

(MZ-Z) logit(PRSiMen) = ﬁO + ﬁl ' Balance(A: B)RightVolumesMen

3. How is the genetic predisposition to specific neurological conditions related to the joint

volumetric variation of hippocampal substructures in the left hemisphere?

(M3) logit(PRSi) = By + By - Balance(A, B) eftvoiumes + Bz - Sex

3.1. Is this genetic predisposition differentially affecting the joint volumetric variation

of hippocampal substructures in the left hemisphere between women and men?

(M3.1) logit(PRSiwomen) = Bo+ B1 * Balance(A:B)LeftVolumesWomen

(M3-2) logit(PRSiMen) = .80 + ,81 ' Balance(A: B)LerolumestMen

To avoid repetitive tables of results, in the main text we only present the results of model 1.

Results of models 2 and 3, are described in the Appendix (Figure A9-10).

3  Results

3.1 Descriptive analysis
The AlfaGeneTiCs sample was defined by 62.5% of women and 37.5% of men with a similar
mean age of 59 (58.7+6.69 women, 58.8+6.56 men) years old (Table 3.1). Years of education

were significantly different between both groups.

Table 3.1. Descriptives of the main covariates of the study differentiating by sex.

Total Women Men P-value

N=1071  N=670 (62.5%) N=401 (37.5%) (Wilcoxon test)

Age 58.7 (£6.64)  58.7 (+6.69) 58.8 (+6.56) 0.765
Education 13.5 (£3.54)  13.3 (+£3.56) 13.9 (+£3.47) 0.004
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In Table 3.2 we showed the sample distribution, stratifying by sex, across high and low risk groups
for each condition. From the total of individuals at high genetic risk of AD, ALS and PSP, women
represented between 60-65% of them, respectively. The same was observed in the low risk group.
When we considered the total of women and men in the sample, we saw that both for women and
men, the number of individuals at high risk was around 20-25%, while the number of individuals
at low risk was around 75-80%. Women and men were proportionally equally represented in the
high and low risk groups, although women represented more than 60% of both high and low risk
group (they also represented more than 60% of the total sample).

Table 3.2. Descriptives of the main covariates of the study differentiating by high and low genetic risk of
each condition, and sex.

High risk | Low risk

Women Men p-value Women Men p-value
N=670 (62.5%) N=401 (37.5%) N=670 (62.5%) N=401 (37.5%)

Age 58.7 (+6.43) 58.9 (+6.36) 0.712 59.1 (+6.76) 59.3 (+6.67) 0.636
Education 13.5 (+3.53) 13.9 (+3.45) 0.165 13.2 (+3.56) 14.0 (£3.47) <0.001
Disease: 0.759 0.934

AD 133 (62%) 82 (38%) 537 (63%) 319 (37%)

ALS 165 (63%) 96 (37%) 505 (62%) 305 (38%)

PSP 141 (65%) 75 (35%) 529 (62%) 326 (38%)

3.2 Selbal algorithm results

As mentioned before, in this section we only present the results of the first composition (i.e. total
volumes). Results of component selection can be found in Figures A6-A8. Moreover, results for

the right and left hemisphere (second and third composition) can be found in Figures A9-10.

3.2.1  Genetic risk of Alzheimer’s Disease and Hippocampal subfields modulation

When the composition was defined by substructures within the hippocampal region, the global
balance for the whole sample was defined by CA3, CA4, hippocampal fissure, CAl and
hippocampal tail (Figure 3.1a). Results showed that a 10% compensatory increase in the average
volume of CA3, CA4 and hippocampal fissure compared to CALl and hippocampal tail was
significantly associated with an increased genetic risk of AD (OR=1.53 [1.22-1.92]) (Figure
3.1d). In women, the global balance was defined by CA4 and hippocampal tail (Figure 3.1b).
Results showed that a 10% compensatory increase in the CA4 region with respect to the
hippocampal tail was significantly associated with an increased genetic risk of AD (OR=1.45
[1.08-1.96]) (Figure 3.1d). Finally, in men, the global balance was defined by CA3 and CAl
(Figure 3.1c). Results showed that a 10% compensatory increase in the CA3 with respect to CA1
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was significantly associated with an increased genetic risk of AD (OR=1.73 [1.18-2.57]) (Figure
3.1d).
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Figure 3.1. Figure 3.1a, 3.1b and 3.1c display hippocampal subfields in group A and B that define the
global balance. Boxplots represent the distribution of the balance values for individuals at high (red) and
low (blue) genetic risk of AD, when the sample is defined by all the individuals (Figure 3.1a), women
(Figure 3.1b), and men (Figure 3.1c). The density plot is described below. Figure 3.1d the association
analyses results, which include the balance as explanatory variable.

3.2.2  Genetic risk of Amyotrophic Lateral Sclerosis and Hippocampal subfields modulation

When the composition was defined by substructures within the hippocampal region, the global
balance for the whole sample was defined by CA1 and hippocampal fissure (Figure 3.2a). Results
showed that a 10% compensatory increase in the CA1 compared to the hippocampal fissure, was
significantly associated with an increased genetic risk of ALS (OR=1.25 [1.02-1.54]) (Figure
3.2d). In women, the global balance included the fimbria, HATA and presubiculum (Figure 3.2b).

Results showed that a 10% compensatory increase in the fimbria, with respect to the HATA and
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presubiculum, was significantly related to an increased genetic risk of ALS (OR=1.18 [1.02-

1.37]) (Eigure 3.2d). No significant results were found in men (Eigure 3.2d).
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Figure 3.2. Figure 3.2a, 3.2b and 3.2c display hippocampal subfields in group A and B that define the
global balance. Boxplots represent the distribution of the balance values for individuals at high (red) and
low (blue) genetic risk of ALS, when the sample is defined by all the individuals (Figure 3.2a), women
(Figure 3.2b), and men (Figure 3.2c). The density plot is described below. Figure 3.2d the association
analyses results, which include the balance as explanatory variable.

3.2.3  Genetic risk of Progressive Supranuclear Palsy and Hippocampal subfields modulation

When the composition was defined by substructures within the hippocampal region, the global
balance for the whole sample (Figure 3.3a), as well as for women (Figure 3.3b), was defined by
the subiculum and the parasubiculum. Results showed that a 10% compensatory increase in the
subiculum compared to the parasubiculum, was significantly associated with an increased genetic
risk of PSP (whole sample; OR=1.38 [1.15-1.65], women; OR=1.34 [1.06-1.7]) (Figure 3.3d). In
men, the global balance was defined by the molecular layer and the parasubiculum (Figure 3.3c).
Results showed that a 10% compensatory increase in the molecular layer, compared to the

13



parasubiculum, was significantly associated with an increased genetic risk of PSP (OR=1.46

[1.11-1,95]) (Figure 3.4c).
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Figure 3.3. Figure 3.3a, 3.3b and 3.3c display hippocampal subfields in group A and B that define the
global balance. Boxplots represent the distribution of the balance values for individuals at high (red) and
low (blue) genetic risk of ALS, when the sample is defined by all the individuals (Figure 3.3a), women
(Figure 3.3b), and men (Figure 3.3c). The density plot is described below. Figure 3.3d the association
analyses results, which include the balance as explanatory variable.

4  Discussion and Conclusions

To our knowledge, this is the first study analysing the relationship between individuals at high
genetic risk of AD, ALS, and PSP and the joint volumetric variation of hippocampal subfields in

cognitively healthy individuals.

We found that a compensatory increase in the average volume of the hippocampal fissure, CA4
and CA3 compared to CAL and hippocampal tail was associated with an increased genetic risk of

AD. Although this is the first study analysing the joint volumetric variation of hippocampal
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subfields in cognitively healthy individuals at high genetic risk of AD, there is some previous
evidence of the individual affectation of genetic risk of AD and hippocampal subfields. For
instance, a recent study performed on 17,161 UK Biobank participants showed that higher PRS-
AD was individually associated with lower volumes in the bilateral whole hippocampus, HATA,
hippocampal tail, right subiculum, left CA1, CA4, molecular layer, and DG (Foo et al., 2021).
Murray et al., 2021 also observed associations between PRS-AD and whole
hippocampal/amygdala volumes, as well as CAl and fissure. Although we cannot directly
compare the results obtained in our work with those reported in the univariate studies, the
coincidence in some significant subfields (i.e. CA1, hippocampal tail, CA4) could reinforce the

joint analysis of these structures.

Moreover, we found that a compensatory increase in CA1 volume compared to hippocampal
fissure was associated with an increased genetic risk of ALS. Although implications of CAl and
ALS have been previously described (Machts et al., 2018), few studies have addressed the
relationship between hippocampal subfields and ALS, providing inconsistent results. For
instance, Christidi et al., (2019) showed that HATA and CA2/3 were the most affected subfields
in ALS. Furthermore, no previous studies have been found evaluating genetic factors associated
with ALS and the hippocampal region. This is in line with what is expected as it is the motor
regions of the brain and not the hippocampus that tend to have a more specific involvement in
ALS (Agosta et al., 2018). However, our results could suggest the involvement of the motor
neuron system and the joint volumetric variation of hippocampal substructures in ALS, which is
relatively in line with previous reported studies (Toyoshima et al., 2003; Anderson et al., 1995;
Gbémez-Pinedo et al., 2019).

Finally, we found that a compensatory increase in the subiculum volume compared to the
parasubiculum was associated with an increased genetic risk of PSP. Although PSP is mainly
characterized by the affectation of the basal ganglia and midbrain regions (Mimudo and Yoshira
2019), there is also scientific evidence of hippocampal degeneration in PSP individuals, affecting
CA3 and subiculum subfields (Armstrong et al., 2015; Maurer et al., 2017). We did not find
additional studies relating genetics of PSP and the hippocampal subregions. Nevertheless, atrophy
of hippocampal subicular structures (i.e. subiculum, parasubiculum...) has been shown as a target
predictor of cognitive decline and/or dementia progression as in Parkinson's disease, which is
closely related to PSP (Low et al, 2019, Foo et al.,, 2017, Uribe et al., 2018).
Moreover, specific hippocampal subfields combinations were also significantly and differentially
associated with a higher genetic risk of each neurodegenerative condition according to the

analysed hippocampal hemisphere.
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Regarding sex-stratified models, we also showed differential significant volumetric variations and
combinations of hippocampal subfields associated with high genetic risk of AD, ALS and PSP.
However, although there is a high interest in analysing sex-differences in neurological diseases,
there are few IG studies assessing these differences on hippocampal subfields. Moreover, existing
studies were mostly focused on the global hippocampal volume or were based on the univariate

analysis of hippocampal subfields (Hibar et al., 2018; Foley et al., 2017; Foo et al., 2021).

The application of the Selbal algorithm allowed us to jointly modulate multiple hippocampal
subregions to discern joint volumetric compensatory relationships of these volumes in individuals
at high genetic risk of AD, ALS, and PSP. This makes a clear advantage of Selbal over univariate
brain intermediate studies, not only because of its higher statistical power but also for its easy
application and biological plausibility. Another advantage of the Selbal approach is its robust
algorithm based on the log-ratio between components. The log-ratio function avoids spurious
correlations between components as it provides the same results independently of the total brain
volume. Moreover, it allows working with data in which the information does not depend on the
particular units in which it is expressed, as well as maintains the information unaltered even if the

composition suffers a permutation of the parts.

However, the application of Selbal in this study also presented some limitations. When assessing
the robustness of the global balance for each condition, we found that the most robust results were
found for PSP, in which the global balance in all the three sample’s conditions (whole sample,
women and men), corresponded to the balance most frequently selected in the CV procedure, with
at least 50% of times of appearance. Moreover, all components that defined the global balance
were also the most frequently selected in the CV, more than 50% of times. In addition, results
were not robust in specific situations for AD and ALS, where the global balance did not
correspond to the balance most frequently selected in the CV or it included components with a
low rate of appearance in the CV procedure. Thus, results showed that the global balance may not
be the optimal in some cases. This was also stated as a limitation by the authors of the algorithm
(Rivera-Pinto et al., 2018). However, although in some scenarios the component selection may
not be optimal, the algorithm does guarantee a robust selection of the components providing

additional biological sense in the study.

Therefore, for further studies in the field of IG, it would be interesting to apply this method to
improve the understanding of brain substructures’ volumetric changes associated with a high
genetic risk of specific neurological disorders. Working with compositional data in 1G studies
allows minimising the heterogeneity in the MRI data that can occur because of the procedure and

the technology applied to obtain all the specific brain structures measurements. Working with
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compositions removes the effect of the total volume measurement, which can vary in minimum
values across different batches, but may have an effect in further association analyses. Thus,
cancelling this total effect and working with ratios between components, Selbal not only offers a
solution to address this issue but also allows assessing the joint modulation of multiple brain
subregions and its association with specific phenotypes.

To conclude, this work provides a new and innovative perspective for 1G studies with the aim of
improving our understanding of the effects that genetic predisposition to neurodegenerative

disorders has on brain structure modulation.
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6  Appendix
6.1 Supplemental Tables

Table Al. Supplementary table: GWAS summary statistics of the phenotypes whose PRS have been computed and included in the study.

Alzheimer's Disease 455.258 71.880 383.378 Caucasian GRCh37/hg19 Jansen et al., 2020 https://pubmed.ncbi.nim.nih.gov/32029921/  https://ctg.cncr.nl/software/summary_statistics

** Alzheimer's Disease ** Alzheimer's Disease, removing the APOE region (chr 19: 45,409,011-45,412,650) for the PRSs computation

Parkinson's Disease 1.437.688 37.688 @ 1.400.00 Caucasian GRCh37/hgl9 Nalls et al., 2019 https://pubmed.ncbi.nim.nih.qov/31701892/ | https://drive.google.com/file/d/1FZ9ULI9LAgyW
0 nyNBxxIx6qOUIfAnubIN/view?usp=sharing

Frontotemporal Dementia 4.131 1.377 2.754 Caucasian GRCh37/hg19 Ferrari et al., 2014 https://pubmed.ncbi.nlm.nih.gov/24943344/ https://ifgcsite.wordpress.com/data-access/

** Frontotemporal ** Frontotemporal Dementia Meta-Analysis (FTD subtypes): 2154 cases and 4308 controls, N=6462

Dementia

Amyotrophic Lateral 36.052 12.577 @ 23.475  Caucasian GRCh37/hg19 van Rheenen et al., https://pubmed.ncbi.nim.nih.gov/27455348/ http://databrowser.projectmine.com/

Sclerosis 2016

Progressive Supranuclear 12.308 1.646 10.662 Caucasian GRCh37/hgl9 Chen et al., 2018 https://pubmed.ncbi.nim.nih.gov/30089514/ https://www.niagads.org/

Palsy
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Table A2. Descriptive analysis of hippocampal subfields volumes.

Hemisphere H Mean Max Min SD
Total H
CAl 1187.23 1819.86 872.20 127.81
CA3 339.79  525.08  240.63 43.63
CA4 45233 648.88  2098.90 44.76
Fimbria 171.32  324.50 64.23 30.68
GC-ML-DG 532,26 748.38  350.51 52.82
HATA 116.04  179.12 71.96 14.29
Hippocampal-fissure | 339.98 514.15  213.66 42.56
Hippocampal_tail 1061.23  1506.08 725.59 123.81
Molecular_layer HP || 1053.14 1506.60 767.00 102.08
Parasubiculum 124.52  193.77 76.53 17.20
Presubiculum 509.26 823,97  411.87 68.47
Subiculum 800.85 114042 594.21 90.02
Left H
CA1 580.83  884.52 408.91 64.66
CA3 174.84 27829  106.91 22.68
CA4 22530  319.11  139.15 24.05
fimbria 83.56 157.92 32.90 16.86
GC-ML-DG 264.44  380.75 162.51 28.23
HATA 56.55 90.68 31.23 7.98
hippocampal-fissure 169.53  250.72 98.99 24.59
Hippocampal _tail 532.61  782.96  304.41 66.31
Molecular_layer_HP 523.25  736.22  372.33 52.86
Parasubiculum 63.20 97.98 35.27 9.85
Presubiculum 309.98  422.07 209.38 37.28
Subiculum 401.77  590.77  202.85 48.58
Right ||
CAl 606.40  941.80  420.25 70.03
CA3 184.96  300.42 116.83 25.13
CA4 227.03  331.96  156.62 24.00
Fimbria 87.77 176.53 27.21 17.81
GC-ML-DG 267.82 390.45  181.47 28.22
HATA 59.49 38.43 30.02 8.05
Hippocampal-fissure | 170.45  284.25  105.55 23.81
Hippocampal_tail 528.62  761.09  333.53 65.57
Molecular_layer _ HP 529.80  770.38  382.54 53.08
Parasubiculum 61.32 101.14 27.47 9.48
Presubiculum 289.28  431.49 189.07 35.63
Subiculum 399.08 568.53  282.07 45.85
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Table A3. Descriptive analysis of hippocampal subfields volumes by sex.

Women Men
Hemisphere Mean Max Min SD Mean Max Min SD
Total H
CAl 1145.99 1468.38 87220 110.09 | 1256.13 1819.86 983.01 125.77
CA3 346.83  476.82  240.63  36.41 | 381.45  525.08 284.56  46.08
CA4 439.18  564.22  298.90 39.78 | 47429 648.88 368.84 44.03
Fimbria 164.52  288.74 64.23 27.39 | 182.69 32450 87.79 32.50
GC-ML-DG 516.76  655.96 35051 46.85 | 558.15 T48.38 430.86 52.14
HATA 112,10  150.51 72.09 12.65 122.62 179.12  71.96 14.46
Hippocampal-fissure | 328.63 480.42 213.66 40.01 | 358.94 514.15 257.14 39.88
Hippocampal tail 1034.89 148841 v25.59 115.75 | 1105.24 1506.08 790.00 124.49
Molecular_layer HP 1021.08 128593 7v67.00 9043 | 1106.71 1506.60 8&78.50  97.97
Parasubiculum 11945  170.00 76.53 14.45 133.00 193.77  79.96 18.08
Presubiculum 579.74  T789.25  411.87 61.20 | 631.87  823.97 428.67 G67.60
Subiculum 772.01  1040.79 59421  80.59 | 849.03 114042 629.24 §84.23
Left I
CA1 559.54  T54.27 408.91 55.56 | 616.39 884.52 459.21 63.21
CA3 169.07  236.59 106.91 19.51 184,46 278.29 120.01 24.31
CA4 219.33 20722 13915 2223 | 23527 319.11 163.75 23.70
fimbria 80.21 154.39 35.30 15.13 | 80.15 157.92 3290 18.10
GC-MIL-DG 257.38 34255 162,51  26.03 | 276.23  380.75 189.04 27.54
HATA 54.71 80.39 31.75 7.11 59.63 90.68  31.23 8.40
hippocampal-fissure || 163.06  250.72 98.99 23.03 | 180.35 240.83 11745 23.32
Hippocampal_tail 522,63 T8296 30441 63.82 | 549.28 THh3.66 34297 67.11
Molecular_layer HP 507.09 645.64 37233 47.20 | 550.26 736.22 400.57 50.65
Parasubiculum 60.41 93.45 35.27 §.52 67.85 97.98 37.24 10.16
Presubiculum 300.00 40512  209.38 3422 | 326.656 42207 227.08 36.26
Subiculum 386.92 539.74 20285 43.68 | 426.58 590.77 320.77 46.19
Right H
CA1 586.45 766.47 42025 61.38 | 639.74 04180 46944  70.97
CA3 177.76  263.79 116.83  21.00 196.98 30042 136.26  26.83
CA4 219.85  288.63 156.62  20.89 | 239.03 33196 186.12 24.10
Fimbria 84.31 144.22 27.21 16.38 | 93.54 176.53  39.67 18.62
GC-ML-DG 259.38 33520 181.47 2447 | 281.92 39045 220.18 28.46
HATA 57.39 78.33 30.02 7.27 63.00 8843 3345 8.07
Hippocampal-fissure | 165.57 234.26  105.55 22.82 | 17859 28425 11574 23.21
Hippocampal tail 512.26  719.94 33353 60.05 | 555.96 T761.09 380.46 65.37
Molecular_layer_HP 513.99  652.08 38254 47.23 | 55644  T70.38 433.60 5L.73
Parasubiculum 59.04 88.00 27.47 8.12 65.15 101.14  40.56 10.33
Presubiculum 279.74  394.54 189.07  31.55 | 305.22 43149 196.99 36.37
Subiculum 385.10 51993 28207 41.57 | 42245 568.53 293.67 43.10
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Table A4. Wilcoxon test results, within women, assessing whether mean values of hippocampal subfields
volumes were equivalent between hemispheres.

Left hemisphere Right hemisphere T P-value Mean volume (left) Mean volume (right) P.adj
Left_CA1 Right_CA1 167785 0.000 550,539 586.452 0.0000000
Left_CA3 Right_CA3 171261 0.000 169.073 177.756 0.0000000
Left_CA4 Right_CA4 220388  0.566 219.333 219.846 0.6174545
Left_fimbria Right_fimbria 189733 0.000 80.207 84.312 0.0000000
Left_GC.ML.DG Right_ GC.ML.DG 214047 0.142 257.377 250.382 0.1704000
Left_HATA Right_ HATA 177792 0.000 54,700 57.387 0.0000000
Left_hippocampal fissure Right_hippocampal fissure 211495  0.067 163.061 165.573 0.0893333
Left_Hippocampal tail Right_Hippocampal tail 246223 0.002 522.628 512.259 0.0040000
Left_molecular layer HP  Right_molecular layer HP 205932  0.000 507.087 513.092 0.0150000
Left_parasubiculum Right_parasubiculum 242761 0.010 60.411 59.036 0.0150000
Left_presubiculum Right_presubiculum 208585 0.000 200.997 279.741 0.0000000
Left_subiculum Right_subiculum 227977 0.619 386.919 385.005 0.6190000
Table A5. Wilcoxon test results, within men, assessing whether mean values of hippocampal subfields
volumes were equivalent between hemispheres.

Left hemisphere Right hemisphere T P-value Mean volume (left) Mean volume (right) P.adj
Left_CA1 Right_CA1 65632 0.000 616.304 630.741 0.0000000
Left_CA3 Right_CA3 50125  0.000 184.465 196.985 0.0000000
Left_CA4 Right_CA4 74452 0.070 235.266 239.028 0.1050000
Left_fimbria Right_fimbria 69368  0.001 §9.152 03.535 0.0020000
Left_GC.ML.DG Right_GC.ML.DG 72274 0.013 276.231 281.921 0.0222857
Left_ HATA Right_HATA 61809  0.000 59.626 62.998 0.0000000
Left_hippocampal fissure Right_hippocampal fissure 83725 0.311 180.346 178.593 0.3110000
Left_Hippocampal_tail Right_Hippocampal_tail 76813 0.274 549.281 555.057 0.2980001
Left_molecular layer HP  Right_molecular layer HP 75772  0.158 550.263 556.444 0.2106667
Left_parasubiculum Right_parasubiculum 02320  0.000 67.852 65.146 0.0000000
Left_presubiculum Right_presubiculum 107344  0.000 326.651 305.223 0.0000000
Left_subiculum Right_subiculum 84300 0224 426.579 422.452 0.2688000
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Table A6. Wilcoxon test results, without differentiating by sex, assessing whether mean values of
hippocampal subfields volumes were equivalent between hemispheres.

Left hemisphere Right hemisphere T P-value Mean volumes (left) Mean volumes (right) P.adj

Left_CA1 Right_CA1 693032  0.000 580.827 606.404 0.0000000
Left_CA3 Right_CA3 TOTETS  0.000 174.836 184.956 0.0000000
Left_CA4 Right_CA4 593907  0.154 225.208 227.028 0.1843000
Left_fimbria Right_fimbria 636324 0.000 53.556 87.765 0.0000000
Left GC.ML.DG Right GC.ML.DG 608317  0.014 264.436 267.821 0.0210000
Left_ HATA Right HATA 692830  0.000 56.550 50.488 0.0000000
Left_hippocampal fissure Right_hippocampal fissure 583807  0.391 169.533 170.448 0.3910000
Left_Hippocampal_tail Right_Hippocampal_tail 540160  0.080 532.607 528.620 0.1186667
Left_molecular_layer_ HP ~ Right_molecular layer HP 611918  0.007 523.253 520.887 0.0120000
Left_parasubiculum Right_parasubiculum 512047  0.000 63.197 61.324 0.0000000
Left_presubiculum Right_presubiculum 392927 0.000 309.977 280.282 0.0000000
Left_subiculum Right_subiculum 559631  0.332 401.768 399.083 0.3621818
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Table A7. Wilcoxon test results, assessing whether mean values of hippocampal subfields volumes were
equivalent between men and women.

Region T P-value Mean volume (men) Mean volume (women) P.adj
Left_CA1 202310 0 616.394 559.539 0
Left_CA3 183886 0 184.465 169.073 0
Left_CA4 184963 0 235.266 219.333 0
Left fimbria 175055 0 89.152 80.207 0
Left_ GC.ML.DG 185296 0 276.231 257.377 0
Left HATA 181724 0 59.626 54.709 0
Left_hippocampal fissure 188785 0 180.346 163.061 0
Left_Hippocampal tail 165786 0 549.281 522.628 0
Left_molecular_layer_ HP 197689 0 550.263 507.087 0
Left_parasubiculum 191467 0 67.852 60.411 0
Left_presubiculum 189659 0 326.651 299.997 0
Left_subiculum 197650 0 426.579 386.919 0
Right CA1 192149 0 639.741 586.452 0
Right CA3 189981 0 196.985 177.756 0
Right CA4 194517 0 239.028 219.846 0
Right fimbria 173570 0 03.535 84.312 0
Right GC.ML.DG 194289 0 281.921 259.382 0
Right HATA 187566 0 62.998 57.387 0
Right_hippocampal.fissure 176919 0 178.593 165.573 0
Right_Hippocampal_tail 185402 0 555.957 512.259 0
Right_molecular_layer HP 195171 0 556.444 513.992 0
Right_parasubiculum 181563 0 65.146 50.036 0
Right_presubiculum 189261 0 305.223 279.741 0
Right_subiculum 198629 0 422,452 385.005 0
Total CA1 200554 0 1256.135 1145.992 0
Total CA3 192244 0 381.449 346.829 0
Total CA4 193238 0 474.294 439.179 0
Total fimbria 180769 0 182.687 164.519 0
Total GC.ML.DG 193197 0 558.152 516.758 0
Total HATA 190592 0 122.624 112.097 0
Total_hippocampal.fissure 189778 0 358.939 328.634 0
Total_Hippocampal_tail 177773 0 1105.238 1034.887 0
Total_molecular_layer HP 198618 0 1106.707 1021.080 0
Total_parasubiculum 193094 0 132.998 119.447 0
Total_presubiculum 193419 0 631.874 579.738 0
Total_subiculum 201089 0 §49.031 772.014 0
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Table A8. Symmetry analysis: skewness and kurtosis indexes for each PRS.

Skewness Kurtosis
AD 1.1618955 5.442688
AD_NOAPOE | 0.3221473 3.790309
ALS -0.3546688 1.913275
FTD -0.7406105 2.553113
META -0.4049775 2.561518
PKSON 8.2353697 | 100.743339
PSP -0.6724381 2.627844

6.2  Supplemental Figures

Standardized PRSs

[=] w ] ] = 4 o
< g 2 £ & g &
=T = s
g o
E Diseases
Figure Al. PRSs distribution.
5.0-
25- -
@
3
0.0-
A
]
[y
1 -25-
3
F 50-
&
25- =
3
s
0.0-
25-
2
Diseases

Figure A2. Included PRSs distribution by sex.
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Figure A3. Included PRSs correlation.
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Figure A4. PRSs distribution of Alzheimer’s Disease, Amyotrophic Lateral Sclerosis and Progressive
Supranuclear Palsy by risk group.
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Figure A5. PRSs distribution of Alzheimer’s Disease, Amyotrophic Lateral Sclerosis and Progressive
Supranuclear Palsy by risk group and sex.

a) All b) Women
PR Total_Hippocampal_tail
Total_CA3
Total_Hippocampal_tail Total_hippocampal.fissure
Total_CA4 Total_CA4
Total_hippocampal.fissure Total_CA3
Total_GC.ML.DG FREQ

Total_subiculum

FREQ

c) Men

Total_CA1

Total_CA3

Total_CA4

Total_GC.ML.DG

Total_molecular_layer_HP
FREQ

Figure A6. CV results for AD when working with the first composition (C1): most frequent hippocampal
subregions and most frequent balances selected in the CV procedure in comparison to the global balance
obtained from the whole sample. Red cells indicate selected components in the numerator of the balance
(group A) and blue cells indicate selected components in the denominator of the balance (group B).
Empty cells indicate components not included. FREQ: frequency.
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a) All

Total_CA1

b) Women

Total_hippocampal fissure

Total_fimbria

Total_HATA

Total_presubiculum | 12
Total_GC.ML.DG | 16 -:
FREQ - 0.42 0.12 0.1 Total HATA | 4
FREQ 0.28 0.14 0.1
c) Men
% | Global | BAL1 | BAL2 | BAL3
Total_hippocampal fissure | 64
Total_CA1 | 34
Total_GC.ML.DG | 26
Total_molecular_layer_HP | 22
Total_ HATA | 20
Total_subiculum | 14
FREQ - - 0.32 0.14 01

Figure A7. CV results for ALS when working with the first composition (C1): most frequent

Total_CA1

Total_fimbria

Total_CA4

52

Total_presubiculum

30

Total_molecular_layer_HP

20

hippocampal subregions and most frequent balances selected in the CV procedure in comparison to the

global balance obtained from the whole sample. Red cells indicate selected components in the numerator

of the balance (group A) and blue cells indicate selected components in the denominator of the balance
(group B). Empty cells indicate components not included. FREQ: frequency.
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a) All b) Women

% | Global BAL1 | BAL2 | BAL3 % Global BAL 1 BAL2 | BAL3

Total_parasubiculum | 92 Total_subiculum | 66

Total_subiculum | 72 Total_parasubiculum | 52

Total_molecular_layer_HP | 16 Total_presubiculum | 38

Total_CA1 | 10 Total_CA4 | 14

FREQ FREQ - - 0.5 0.16 0.12

c) Men

Yo Global BAL 1 BAL 2 BAL 3

Total_parasubiculum | 90

Total_molecular_layer_HP | 50
Total_subiculum | 44

Total_presubiculum | 4
FREQ - - 0.5 04 0.04

Figure A8. CV results for PSP when working with the first composition (C1): most frequent hippocampal
subregions and most frequent balances selected in the CV procedure in comparison to the global balance
obtained from the whole sample. Red cells indicate selected components in the numerator of the balance
(group A) and blue cells indicate selected components in the denominator of the balance (group B).
Empty cells indicate components not included. FREQ: frequency.
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a) AD b) ALS c) PSP

All Women Men All Women Men All Women Men

Right_CA1 - - Right_CA1 Right_molecular_layer HP -
Right_GC.ML.DG . .
Right_Hippocampal_tail - Right_presubiculum -
Right_HATA - ‘ ‘
OR* 155 1.43 29 Right_subiculum
Right_hippocampalfissure _
IC_OR* 116,208 112,185 13736 . . ‘ Or 13 138 133
Right_Hippocampal_tail
IC_OR* 1.13,1.51 1.09,1.76 1.06,1.68
p-value 0003 0005 0001  pight subiculum - -
OR*: OR when the joint volumetric variation increases by 10% g+ 112 127 1.26 pvalue 0 0008 0.014
OR*: OR when the joint volumetric variation increases by 10%
IC_OR* 0.89,1.42 1.07,1.5 0.97,1.64
p-value 0333 0.007 0084

OR*: OR when the joint volumetric variation increases by 10%

Figure A9. Selbal algorithm results for the second composition (C2): right hippocampal volume. Results
of the logistic regression models, both general and stratifying by sex. The global balance is defined by the
ratio between volumes in group A (dark violet; numerator) and volumes in group B (green; denominator).

a) AD b) ALS c) PSP

All Women Men All Women Men All Women  Men

Left_CA4
Left_CA3 Left_CA4
- Left_hippocampal fissure

Left_hippocampal.fissure Left HATA - Left_molecular_layer_HP
Left_Hippocampal_tail Left_hippocampal fissure _ Left_parasubiculum
OR* 1.24 12 1.58 OR* 1.25 147 136 Left_presubiculum .

Left_subiculum

IC_OR* 1.07,1.43 1.021.42 112,225 IC_OR* 1.06,148 1092 098,188
OR* 127 127 148
p-value 0.004 0.031 0.01 p-value 0.008 0.012 0066
IC_OR* 1.08,1.49 1.02,1.59 1.12,1.98
OR*: OR when the joint volumetric variation increases by 10% OR*: OR when the joint volumetric variation increases by 10%
p-value 0.004 0.036 0.007

OR*: OR when the joint volumetric variation increases by 10%

Figure A10. Selbal algorithm results for the third composition (C3): left hippocampal volume. Results of
the logistic regression models, both general and stratifying by sex. The global balance is defined by the
ratio between volumes in group A (dark violet; numerator) and volumes in group B (green; denominator).
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6.3  Supplemental formulas and examples

How the effect of the total measurement is cancelled when working with ratios?

Example when working with a composition defined by 3 components.

Composition: C = (x1, x2, x3)

3
Total measurement: x1 + x2 + x3 = Z X;
j=1

x1 x2 x3

ixj’zij'zij

L thms: | (xl)l (x2>l <x3)
ogarithms:log| os—|,log| ==—|,log| ==—
ij ixj %xj

log( ’3“ >
. Xixj
Log — ratio between components x1 — x3: — 28

log<

Proportions:

X2
3
lej

= log(x1) — log (%3 x))—(log (x2) — log(3}x,))
= log(x1) - log (%3 1)—(log (x2) + log (T3 x;) )

=log(x1) — log(x2))

00 (2)

Selbal results: define the OR for a n-units change when the explanatory variable is in the

logarithmic scale.
Logistic model: logit(Y) =)+ B-x,wherex =K - In(zl) — In(z2) =K- In (j—;) (balance).

For one-unit increase of x, the OR is defined by the exp(B).

For n-units increase of x, the OR is defined by the exp(f - n)

A n-units increase of x means that x + n = K - (In(z1) — n(z2) +n) = K- (In (%) +n)

Defining n in the logarithmic scale, we can see that x + n = K - (In(z1) — In(z2) + In(e™) =K -

(In (%) +In(e™) =K-(In (%) ~In(e™) =K-(In (Zl. en)).

z2

Example when we want to observe a 10% increase.

e 10%ofx=0.1-x

e al0%increase =x+0.1:x=1.1

e ¢e¢"=11n = In(l.])

e OR =exp(n-f) =exp(In(l.l) - B)
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6.4

Bioinformatic pipeline (continues on next page)

In Figure A11, we can observe the workflow needed to compute PRSs.

Files needed to compute  ppgice v1.2

PRSs +  Script PRSice_v2.R: a wrapper for the
PRSice executable and for plotting
* PRSice_linux

Execution scripts (.sh)

Execution code: main

Target data: Raw genotype data of target

phenotype
Files:

e | ae0 | san

Targer: input file containing genetic data from the study

ALFAgenetics
Imputed data

steps and parameters

--base base_data.txt \

Rscript /nfs/users2/rg/nvilortejedor/PRS_Project/scripts/PRSice_v2.R --dir . \
—-prsice /nfs/users2/rg/nvilortejedor/PRS_Project/scripts/PRSice_linux \

sample.
Thread: limited to available core in the system.
Clump-r2: threshold for clumping (by default lati

--target /nfs/users2/rg/nvilortejedor/ALFA-GHAS/HRC_Imputation/ALFAbatchl_N=918/ALFAb1. impQC.rs \l 0f 0.1)

--thread 16 \
--clump-r2 0.1 \
--fastscore T \
--no-regress \

--bar-levels 0.00000005,0.000005,0.0001,0.001,0.01,0.05,0.1,0.2,0.5,1 \

Fast score: if TRUE, only calculates PRSs in thresholds
indicated in bar-levels
No regress: we do not perform any regression model

ubuntu between the phenotype and the PRS. Simply output all
--perm 10000 \
-Zall:score \ PRSs.
--out base data gwas results Bar-levels: thresholds of signifi
Perm: number of permutations to calculate the empirical
p-value.
All-score: calculate PRSs for all thresholds
Out: the output file name.
Al: effect allele
Input files - < PRS. — S; x G.‘j
1 732809 T C rs12131618 ©8.2571 ©.088426 0.978021 ] M;
l 1 768448 G A rs12562034 0.1702 ©.088242 0.064331 J
," S; : summary statistic for the effective allele (effect size GWAS) i
Base_data.txt The most recent GWAS for each phenotype ! Gy : number of the effective allele observed in the sample i
M 'y : number of alleles included in the PRS of the jt" individual )
Output file 7 '

PR P —
FID llDPt Se-06 Pt_0.6001 Pt_0.001 Pt_0.01 Pt_0.05 Pt_0.1 Pt_0.2 Pt 0.5 Pt_1

) 2 202186250009_RO1(02
3

1 202186250009_RO1CO1  -0.00136644944  -0.000501005068 -0.0041713093  -0.00354366839 -0.00155197258 -0.00129608675 -0.00101401154  -0.000736673537 -0.00047
0.000118842426 @ 4 -8 76 -8 -0.00128896865 -0.00100632723  -0.000732243049 -0.00047
)_RO2001  0.00153474934 9.00125098285 -0 -0.00343064771  -0.00157423791 -0.00129506667 -0.00101391272 -0.000736409055 -0.00047

Base_data_gwas_results.txt

PRS:s selected for the lyses: those

PRSs calculated under different thresholds (SNPs significance obtained in the GWAS)
Iculated under the threshold 5.10~%

Figure A11. Workflow to compute PRSs: from the files needed to compute PRSs to the output file.
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In Figure A12, we can observe the workflow needed to apply the compositional method: from
the dichotomisation of the PRSs to the application of the Selbal algorithm.

1. Analysis PRSs
Select PRSs

3.2.2-MergePRS_TFM_5¢8.R

Dichotomise PRSs

4.6-
Function_GenerateBinaryP
RS.R

2. Application selbal algorithm

Apply selbal

ApplySelbal.R

3. Analysis selbal results

Analysis selbal results

AnalyseSelbal. R

+ Select the PRSs of interest,
under a specific threshold of
significance, together with the
“ID” column to be able to
merge with other information
of the subjects.

« Standardize the scores .

* Merge with other information
of interest (covariates).

+ Define two functions to
dichotomise the PRSs and
analyse the results

Functions
a) DichotomisePRS
b) AnalysisPRSbin

Define a function to apply the
selbal algorithm in different cases,
depending on whether we stratify
by sex, define different
compositions, adjust by
covariates..

Analyse the results of the selbal
application and create tables and

graphical visualisations to describe

the results.

All files within the directory
“base_data™ that contains a specific
pattern indicating that it is a .txt file
for a concrete PRS.

Ete squipo + Eicritorio » ALFAGenetics + PRSIE » base,dets

bace_data_gas_sesults SCORES AT ALL

ase_data_guas_sesults SCORES AT ALL
- base_dota_gwas_results SCORES AT ALL

A .txt file containing other clinical
and epidemiological information: age,
sex, APOE status, volumes

measurements.

DichotomisePRS... a
PRSpath = path where the .txt of interest is
located.

Thresvalue = threshold to dichotomise.
Txtpath= path for the new generated .txt
file.

AnalysisPRSbin &
Diseasebin= label PRS_disease_bin(e.g.
“PRS_AD_bin".

Txtpath= path .txt file of interest with
binary PRSs.

Thresvalue= threshold to dichotomise (0.8).5 AN
i Boxplot PRSs, boxplot stratifying

: by sex, number of individuals

Disease = label “disease™ (e.g. “AD™).
DiseasePRS= label “PRS_disease™ (e.g.
“PRS_AD").

D [ .

The .txt file containing binary PRSs
together with all the covariates
information.

.Rdata objects saved from the
application of the selbal algorithm.

20210720_ALFA_PRS_TFM_Se-
8_COVSVolHip.txt

A .txt file which merges all the
information: hippocampal
subfieds volumes, covariables and
desired standardized PRSs.

... 20210720_ALFA_PRS_TFM_BIN_

Se-8_COVSVolHip.txt

A list ining different el

within each PRS group....

RDATA

A list ining different el
accuracy graph, number of variables
included in the balance, variables
which are included in the numerator
or denominator, mean AUC, ROC
plot, and other plots. Results saved
in .RData objects.

Tables and graphics summarising
the results.

Figure A12. Workflow describing the scripts and steps needed to apply the compositional method

R scripts are available under request in https://github.com/PatiGenius/FMP_Omics.
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