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Abstract 9 

In this review we describe patterns and mechanisms by which habitat complexity is crucial for the functioning of 10 

shallow lakes and ponds, and for  the abundance and diversity of biological communities in these ecosystems. Habitat 11 

complexity is affected by processes acting  at different spatial scales, from the landscape scale to the ecosystem level 12 

(i.e., morphometric attributes)  generate different complexities, determining the potential for organisms to succeed and 13 

processes to occur such as energy and nutrient transfer, fluxes of greenhouse gases, among others. At the local scale, the 14 

three major habitats, pelagic, littoral, and benthic, are characterised by different degrees of structural complexity and a 15 

particular set of organisms and processes. Direct and indirect effects of changes in within-lake habitat complexity can 16 

either hinder or promote regime shifts in these systems. We also review several anthropogenic pressures 17 

(eutrophication, urbanisation, introduction of exotic species, and climate change) that decrease lake resilience through 18 

changes in habitat complexity and strategists for habitat complexity restoration. Overall, we emphasize the need to 19 

preserve and restore habitat complexity as key challenges to account for ecosystem integrity, maintenance of 20 

local/regional biodiversity, and provision of crucial ecosystem services (e.g., biodiversity, self-purification, and carbon 21 

sequestration). 22 
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Introduction 62 

Shallow lakes and ponds provide a myriad of ecosystem services (Millennium Ecosystem Assessment, 2005), 63 

many of which depend, directly or indirectly, on habitat complexity. Physical and chemical processes, as well as 64 

ecosystem properties such as nutrient cycling and food web structure, are also strongly affected by habitat complexity. 65 

As in most, if not all ecosystems, the abundance and diversity of different shallow lake biological communities typically 66 

increases with habitat complexity.The conceptual framework behind this pattern is that structural complexity potentially 67 

increases the availability of resources (food, shelter, substrate) and of habitats/microhabitats, creating new niches and 68 

supporting a higher number of taxa than similar systems with lower structural complexity. Niche partitioning allows 69 

species co-existence within a given area due to reduced interspecific competition (Pianka 2000). Thus, structural 70 

complexity influences interspecific relationships, reducing and stabilizing biotic interactions and facilitating food web 71 

compartmentalization. The latter, in turn, increases community persistence and the co-existence of a larger number of 72 

species (Stouffer & Bascompte, 2011), impacting ecosystem integrity and ecological functions and processes like 73 

carbon sequestration and fluxes, nutrient cycling and translocation, among others. 74 

Traditionally, limnological research  focused on the biological communities and ecological processes 75 

happening in the spatially homogeneous water column of large, deep, nutrient poor lakes (Wetzel, 2001). However, 76 

most lakes in the world are small and shallow (Wetzel, 1990; Downing et al., 2006). Millions of water bodies smaller 77 

than 1 km2 occur on the planet, and small lakes and ponds (between 0.001 and 0.1 km2) represent most of the world’s 78 

lacustrine area (Downing et al., 2006). A shift of focus from the pelagic to incorporate other habitats such as the littoral 79 

and benthic zones has given empirical support to several ecological theories (e.g., Scheffer et al., 1993) and has 80 

highlighted the importance of habitat complexity for the overall functioning of these ecosystems (e.g.,Vadeboncoeur et 81 

al., 2001; Vander Zanden & Vadeboncoeur, 2020).  Several aspects connected to complexity are clearly identifiable in 82 

aquatic ecosystems (Tokeshi & Arakaki, 2012). This explains that intensive research in the last 30 years has contributed 83 

to understanding the connection between habitat complexity and the structure and functioning of shallow lake and pond 84 

communities.  85 

Habitat complexity has been defined in various ways but, following Tokeshi & Arakaki (2012), here it will be 86 

interpreted as all different characteristics of structure, therefore including the spatial scale, size, density, spatial 87 

arrangement and diversity (heterogeneity) of structural elements in an ecosystem. Habitat complexity in lakes and 88 

ponds is affected by processing occurring at different spatial scales leading to a concomitant variation in the nature of 89 

the structural elements that generate complexity (Tokeshi & Arakaki, 2012).  90 
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In this review, we aim at synthesizing the importance of habitat complexity for the functioning of shallow 91 

lakes and ponds. Shallow lake and pond integrity rely on biodiversity, which is affected by spatial complexity and 92 

connectivity, and largely sustained by within system habitat complexity, in particular by the presence, diversity, and 93 

density of aquatic plants. A large part of this review deals with aquatic plants, since macrophytes are the most important 94 

structural element creating habitat complexity in these ecosystems. We then focus on the connection between habitat 95 

complexity and biodiversity and several ecosystem services, as well as on the major current anthropogenic direct and 96 

indirect threats to complexity and its restoration potential. Finally, we propose some lines for future research that 97 

emerged from the review. 98 

Shallow lake habitats and habitat complexity 99 

The structure of biological communities is defined by interactive processes (speciation, drift, selection and 100 

dispersal) operating at different spatial scales, from regional processes that regulate the movement of organisms and 101 

materials (e.g., nutrients, seeds, water) and of information (genetic variation) (Vellend, 2010), to biotic and abiotic local 102 

factors, including system morphometry, patterns of disturbance, and habitat complexity. At the local scale, i.e., inside a 103 

lake, three major zones or habitats are typically considered: the ‘pelagic’, the ‘benthic’ and the ‘littoral’ zones, each 104 

characterised by particular communities (Fig. 1). Among other characteristics, each habitat typically has different 105 

degrees of structural complexity. Particularly in shallow lakes and ponds, information (genetic variation), matter, and 106 

energy are widely exchanged between these habitats (Schindler & Scheuerell, 2002), in direction and degree often 107 

determined by the level of complexity within each of them.   108 

The pelagic or water column is the least complex zone in terms of physical structure (Fig. 1). This habitat is 109 

mostly inhabited by plankton, with quite restricted movement capacity. The success of zooplankton grazing on 110 

phytoplankton, and of fish predation on zooplankton depend, among other factors, on the probability of encounter and 111 

mutual recognition of consumers and prey. Under turbid water conditions some prey may minimize predation. 112 

However, under clear water conditions, the poor complexity in the pelagic habitat prevents the use of physical refuges 113 

by prey that have no other option than moving to avoid being eaten. Consequently, the likelihood of over-exploitation 114 

of prey resources by predators and grazers can potentially be high in this habitat (Scheffer & De Boer, 1995) 115 

The benthos or lake bottom can vary quite largely in its degree of complexity. Lake depth, water colour, and 116 

the amount of suspended matter determine whether light reaching the bottom is enough to allow photosynthesis by 117 

benthic vegetation and, with them, an increase in physical complexity generated by these biological elements. Thus, 118 

turbid lakes and ponds often lack primary production of importance in the benthic zone, and most of its complexity is a 119 
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result of the variability in sediment particle sizes and accumulated debris from other lake habitats or from the 120 

surrounding terrestrial environment. Sediment physical characteristics, besides lake trophic state and the outcome of 121 

biotic interactions, largely determine the densities and taxonomic richness of macroinvertebrates to a large extent (Free 122 

et al., 2009). Benthic complexity, given by sediment structure, the development of periphyton and submerged plants, or 123 

by structure-generating animals such as sessile mussels, can either facilitate or hinder sediment resuspension by wind or 124 

by benthic-dwelling organisms and fish. Even sandy sediments are only intermittently disturbed by water movements if 125 

they are covered by large abundances of microalgae (such as diatoms) (Moss, 1998).  126 

The littoral zone contributes disproportionately to the overall biodiversity and ecosystem processes in lakes, 127 

mostly in shallow (e.g., Carpenter & Lodge, 1986; Scheffer et al., 1993; Jeppesen et al., 1998) but also in deep lakes 128 

(Hampton et al., 2011). The littoral zone, defined as the lake area shallow enough as to allow the growth of submerged 129 

plants, typically represents the highest habitat complexity in most lakes and ponds (Fig. 1). This complexity is mostly 130 

given by aquatic macrophytes of different life forms and by debris, and, often to a lesser extent, by abiotic structures 131 

such as rocks and stones. In large shallow lakes, sheltered bays and archipelagos offer a favourable environment for the 132 

development of different macrophyte species that may generate different habitat complexities, such as reeds and water 133 

lilies or free-floating plants, besides the typically more resistant submerged plants (Andersson, 2001). Lakes with a 134 

larger shoreline development would expectedly host higher species richness than simple-shaped systems. This would be 135 

the consequence of several processes, such as a stronger interaction with the surrounding terrestrial ecosystem, which 136 

act as a source of structure such as debris, besides nutrients, organic matter, and organisms. In turn, on wind-exposed 137 

shores, particularly in large lakes, scarce or negligible aquatic plants can grow (with consequent loss of associated 138 

biota) due to constant sediment resuspension or erosion caused by wave action (Chambers, 1987; Crisci et al., 2017). 139 

Also, longer fetches lead to stronger wave action that may promote the formation of coarse, rocky littoral habitats, 140 

offering new spawning, nursery, or feeding habitats for many species that may not be present in otherwise smaller lakes 141 

(Jackson et al., 2001), such as the maintenance of fish diversity and fisheries (Sass et al., 2006; Kauffmann et al., 2014). 142 

Long shorelines have been related to an important growth of aquatic and amphibian plants in the land-water transition 143 

(Anderson, 2001). This would be particularly expected in small lakes, since the perimeter: surface ratio is comparatively 144 

higher than in large lakes. Riparian vegetation, be it fully terrestrial or amphibian, generates different types and number 145 

of structural elements (e.g., roots, branches, debris of different sizes) and can modify physical aspects of the shore, such 146 

as bank erosion, water depth and shoreline development.  147 

Along natural lake shorelines, emergent aquatic plants are the most common life-form, often constituting the 148 

wetlands associated with shallow lakes and ponds. In highly turbid lakes, or very large lakes, emergent plants may drive 149 
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key lake processes such as the redistribution of sediment particles, thus affecting water clarity, sedimentation, and 150 

resuspension rates with associated effects on the release of the internal phosphorus loading (Horppila & Nurminen, 151 

2002; 2005). Structural complexity can explain more of the spatial distribution of juvenile fishes in the littoral area of 152 

temperate lakes (e.g., roach, Rutilus rutilus (Linnaeus, 1758), and perch, Perca fluviatilis (Linnaeus, 1758)) than several 153 

other factors, including the biomass of potential food items (Lewin et al., 2004). A comparison of the use of different 154 

habitat complexities in the littoral zone (i.e., woody debris, reeds, and areas of different substratum size) by fish in a 155 

shallow temperate lake suggested a strong diel component, with a predominant occurrence of fish in complex habitats 156 

during the day and a partial migration of zooplanktivorous fish towards the less complex open habitats at night (Lewin 157 

et al., 2004). In ponds and in shallow lakes with gentle slopes and with sufficient light reaching the bottom, the littoral 158 

zone can extend further out from the shore into the lake with development of higher aquatic plants over large sections or 159 

the entire basin.  160 

 161 

Habitat complexity in the alternative equilibria hypothesis and other ecological theories 162 

The paramount importance of habitat complexity was captured in the alternative stable states or alternative 163 

equilibria hypothesis for shallow lakes (Scheffer et al., 1993). In a nutshell, this hypothesis stated that shallow lakes, 164 

over the same wide range of nutrient concentrations, may present contrasting regimes, dominated by either 165 

phytoplankton, with turbid water, or by submerged plants, with clear water. Biological and physical-chemical feedback 166 

mechanisms related to the presence or absence of submerged macrophytes cause a hysteresis effect maintaining, 167 

respectively, the clear water (with typically moderate to high complexity) or the turbid water (with low complexity) 168 

regime (e.g., Balls et al., 1989; Scheffer et al., 1993). The original idea later expanded as to include other potentially 169 

alternative regimes, such as the dominance of free-floating plants in the high end of nutrient concentrations (Scheffer et 170 

al., 2003). Although competition for resources between submerged plants and phytoplankton, and their contrasting 171 

reinforcing effects on water clarity lie at the core of the alternative equilibria hypothesis, several feedback mechanisms 172 

are directly linked to the physical structure or complexity created by each dominant primary producer. 173 

The structural complexity promoted by each dominant regime, i.e., submerged plants, free-floating plants, or 174 

phytoplankton, varies enormously in terms of identity, density, diversity, size, and spatial arrangement of structural 175 

elements. In particular, the spatial structure typically created by submerged plants can decrease the likelihood of 176 

catastrophic shifts between alternative states (or regimes) when nutrient loading increases (van Nes & Scheffer, 2005). 177 

Predator–prey interactions and trophic cascades are crucial for the maintenance of each regime (Genkai-Kato, 2007). 178 

Habitat complexity, generated by submerged plants, can stabilise trophic interactions and modify expected outcomes of 179 
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trophic cascades by acting as anti-predation refuge for several keystone species or groups. The high structural 180 

complexity given by submerged plants typically leads to a decrease in the foraging ability of predators, being 181 

piscivorous fishes (Persson & Eklöv, 1995), zooplanktivorous fishes (Schriver et al., 1995) or macroinvertebrates 182 

(Warfe & Barmuta, 2004), and to an increase in the total abundance and mean size of their respective prey. Predation-183 

driven changes in prey community structure (biomass, density, and body-size distribution) are therefore mediated by 184 

habitat structure (Crowder & Cooper, 1982).  185 

In temperate shallow lakes, submerged plants thus often facilitate the survival of large-bodied cladoceran 186 

zooplankton that can graze on phytoplankton (Timms & Moss, 1984) by offering a daytime refuge against visual 187 

predatory fish (Lauridsen & Lodge, 1996; Lauridsen & Buenk, 1996). The refuge effect for zooplankton often depends 188 

on complexity attributes, such as the plant architecture (e.g., Nurminen & Horppila, 2002; Meerhoff et al., 2006, 189 

2007a), plant bed size or density (Lauridsen et al., 1996; Burks et al., 2001), and percent of the lake volume inhabited 190 

by the submerged plants (Schriver et al., 1995) (reviewed by Burks et al., 2002). Habitat complexity thus decreases the 191 

likelihood of over-exploitation of prey (Scheffer & De Boer, 1995), and increases the resilience of littoral communities 192 

to fish predation (Kornijów et al., 2016), leading to the overall promotion of biodiversity associated with the clear 193 

water, submerged- plant dominated regime in shallow lakes and ponds (Thomaz & Bini, 1998; Agostinho et al., 2003; 194 

Declerck et al., 2005; Scheffer et al., 2006; Teixeira-de Mello et al., 2009; Thomaz & Cunha, 2010).  195 

The positive effects of submerged plants on water clarity described above seem less evident in warm regions 196 

(e.g., Bachmann et al., 2002; Jeppesen et al., 2007; Meerhoff et al., 2007 a; Kosten et al., 2011). Even with abundant 197 

submerged macrophytes, a higher phytoplankton biomass at a given nutrient concentration occurred in shallow lakes in 198 

the subtropical state of Florida (USA) than in Danish temperate lakes, according to comparative studies using a large 199 

database (Jeppesen et al., 2007; Jeppesen et al., 2020). In particular, the refuge capacity of submerged plants for 200 

zooplankton depends on local trophic dynamics and on climate-related community structure, with plant refuges being 201 

far less effective in warm and Mediterranean climates (Iglesias et al., 2007; Meerhoff et al., 2007 a; González-Sagrario 202 

& Balserio, 2010; Tavsanoğlu et al., 2012) due to the typical association of small fishes (Teixeira de Mello et al., 2009) 203 

and macroinvertebrate predators (González-Sagrario et al., 2009; González-Sagrario & Balseiro, 2010) to aquatic 204 

plants, reducing their refuge capacity. 205 

Under high nutrient concentrations and mild or high temperatures, free-floating plants may also constitute an 206 

alternative regime to submerged plants (Scheffer et al., 2003), and also to phytoplankton dominance (Roijackers et al., 207 

2004; de Tezanos Pinto & O´Farrell, 2014). Free-floating plants cover a large range in size, from very small taxa, such 208 

as the genera Azolla and Lemnas pp, medium-sized taxa, such as Salvinias pp (water fern), and large-sized taxa, such as 209 
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Pistia stratiotes L. (water lettuce) and Pontederia crassipes Mart. (water hyacinth, formerly Eichhornia crassipes 210 

(Mart.) Solms), the latter two being more common in warm areas (Sculthorpe, 1967). In contrast to submerged plants, 211 

that grow inside the water column and are mostly anchored to the sediments, free-floating plants grow on the water 212 

surface and are freely moved by currents, waves, and winds. The habitat complexity generated by this kind of plants is 213 

indeed lower than that of submerged plants, but depends on the area covered and on the plant size. Large free-floating 214 

plants have a dense and potentially long root network, and their shoots and leaves can shade the water column when the 215 

area covered is large enough, thus limiting the growth of both submerged plants and phytoplankton (de Tezanos Pinto et 216 

al., 2007). Massive covers of free-floating plants thus decrease habitat complexity by reducing the biomass of 217 

submerged plants (mostly due to competition for light). Their impacts on aquatic biodiversity are quite contrasting to 218 

those of submerged plants, largely due to the often anaerobic or anoxic conditions created under dense mats of free-219 

floating plants. Massive covers of free-floating plants are usually followed by a simplification of food webs (Moi et al., 220 

2021) and a general impoverishment of biodiversity, including fish and macroinvertebrates (Meerhoff et al., 2003), 221 

zooplankton (Fontanarrosa et al., 2010), phytoplankton (O´Farrell et al., 2009), submerged plants (Janes et al., 1996), 222 

waterfowl, and often fish kills. Besides, the role of large free-floating plants as a potential anti predation refuge for 223 

zooplankton seems weaker than that of submerged plants, according to comparative studies (Meerhoff et al., 2003; 224 

2006; 2007a, b). The also floating but rooted plant, P. azurea Sw. (formerly Eichhornia azurea (Kunth)), has, in 225 

contrast, been shown in experimental studies to act as refuge for macroinvertebrates against fish predation in tropical 226 

areas (Padial et al., 2009). 227 

Relevance of plant architecture for the generation of habitat complexity 228 

As stated above, aquatic plants are the most important generators of habitat complexity in shallow lakes and 229 

ponds. Emergent, floating-leaved, submerged, and free-floating plants represent different life strategies and promote 230 

different habitat complexities due to variations in plant architecture, typical location within a lake, and their occupation 231 

of the water column.The average size and interstitial spaces (filling spaces) along vertical and horizontal axes, i.e., the 232 

space-size heterogeneity, is one of the most relevant drivers of taxonomical richness in aquatic environments (St. Pierre 233 

& Kovalenko, 2014). Different macrophyte life forms differ in space-size heterogeneity, which can lead to contrasting 234 

complexities and explain their different effects on biodiversity and ecosystem processes. Comparative studies on the 235 

effects of emergent and floating-leaved plants (Nurminen & Horppila, 2002; Horppila & Nurminen, 2005) and of 236 

submerged and free-floating plants (Janes et al., 1996; Meerhoff et al., 2003; 2006; 2007 a, b; Netten et al., 2010) have 237 

highlighted the importance of plant architecture for biodiversity and several processes at the community level as was 238 

discussed above. Studies that have manipulated habitat complexity by keeping surface area constant have found, for 239 
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instance, that macroinvertebrates respond to habitat structure independently of surface area (Warfe et al., 2008). 240 

Similarly, in a study where artificial macrophytes with three levels of complexity (from low to high) but with constant 241 

mass and surface area were introduced in experimental set-ups in a lake, microfaunal (mainly rotifers) abundance and 242 

richness were generally greater on the most complex substrata (Lucena-Moya & Duggan, 2011). Different architectures 243 

of aquatic plants, leading to different complexities (measured through fractal geometry), significantly affected taxon 244 

richness and total densities of tropical invertebrates, although other variables such as plant identity and area were also 245 

relevant (Thomaz et al., 2008). Moreover, a field experiment conducted in a series of temperate and subtropical shallow 246 

lakes manipulating the spatial arrangement of the same amount and type of plastic structure mimicking aquatic plants of 247 

different life forms (i.e., free-floating and submerged) found dramatic differences in the habitat use, richness, biomass 248 

and density of most aquatic organisms (Meerhoff et al., 2007 a, b; Teixeira-de Mello et al., 2009; Brucet et al., 2010; 249 

Clemente et al., 2019). Such field experiments also revealed that some of the effects generated by habitat complexity 250 

differed in different climates, likely due to climate-related differences in the assemblage of fishes (Meerhoff et al., 2007 251 

a; Teixeira-de Mello et al., 2009) (Fig. 2).   252 

Taniguchi et al. (2003) suggested that the diversity or heterogeneity of habitable space, more than the quantity 253 

of habitable space or food resources created by complexity, was the factor leading to higher taxonomic richness. In a 254 

comparative study, these authors found that the abundance of macroinvertebrates on natural plants did not differ 255 

between simple and complex forms, whereas on artificial plants more invertebrates occurred on complex than on simple 256 

forms (Taniguchi et al., 2003). The heterogeneity or diversity of filling space at different scales promotes species co-257 

existence by dividing the surface area into a large number of structural surfaces and microhabitats (Tokeshi & Arakaki, 258 

2012), thus generating different niches for competitor, prey, and predator organisms. Space-size heterogeneity (i.e., 259 

variable size spaces) permits the co-existence of organisms with a wide range of body sizes, potentially increasing the 260 

number of pathways for resource utilization and stabilizing interspecific interactions (Kovalenko et al., 2012; Thomaz 261 

& Cunha, 2010). The spatial segregation of different cohorts due to habitat complexity reduces the strength of 262 

competition and intraguild predation (examples for fish species in Thomaz & Cunha, 2010). Equally important, space-263 

size heterogeneity reduces the encounter rates between prey and predators, thus reducing forage efficiency and 264 

stabilizing trophic food webs. The reduction of  intra- and interspecific interactions between functional subgroups (e.g., 265 

large versus small omnivores) allows the compartmentalization of community structure, leading to lower connectedness 266 

and a stabilization of the food web (Stouffer & Bascompte, 2011; Kovalenko et al., 2012). A mathematical model 267 

suggested that predator-prey interactions are unstable at low and high levels of habitat complexity, conditions where 268 

populations are prone to extinction or declining (Jana & Bairagi, 2014). Field studies have demonstrated that the 269 
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increase of biodiversity with increasing space-size heterogeneity is the highest at intermediate complexity levels (St. 270 

Pierre & Kovalenko, 2014); for example, highly complex habitats set limitations for fish movement and efficient 271 

foraging, thus reducing fish growth (Thomaz & Cunha, 2010 and references therein).  272 

Habitat complexity and ecosystem processes 273 

Ecosystem processes can be directly or indirectly affected by habitat complexity. Submerged rooted plants can 274 

reduce sediment resuspension and therefore abiotic turbidity (Fig. 3) (Madsen et al., 2001) and concomitantly nutrient 275 

release may decrease (Horppila & Nurminen, 2003). On the other hand, plant respiration and accumulation, and 276 

decomposition of settled organic matter can promote changes in the redox conditions towards anoxia and decreased 277 

exchange of oxygen with the water column; thus, potentially increasing phosphorus release (Stephen et al., 1997) from 278 

the sediments within plant stands (Fig. 3). In contrast, under low complexity conditions, sediment resuspension 279 

promotes the release of nutrients and other accumulated substances to the water column regardless of oxygen 280 

concentration, increasing the availability of resources and particularly of reactive phosphorus for pelagic organisms, 281 

such as phytoplankton, bacterioplankton, and free-floating plants if present. The release of phosphorus from the 282 

sediments (called internal load) often takes place in summer in temperate shallow lakes (Søndergaard et al., 2003) and 283 

potentially can occur all year round in warm lakes and ponds where anaerobic and anoxic conditions are more frequent.  284 

Some greenhouse gases (GHG) can be generated in the sediments under anoxic conditions and be released by 285 

diffusion or also by ebullition in the case of methane, or being transformed or released by the activity of benthic fauna 286 

(Colina et al., 2021). Thus, the structural complexity of this particular habitat is crucial not only for the benthic biota but 287 

also for the cycling of nutrients, GHG fluxes, and the overall linkage with other habitats. Rooted submerged plants may, 288 

however, also oxygenate the sediment, decreasing methane (CH4) production and promoting its consumption, leading to 289 

an overall decrease in CH4 emissions (Davidson et al., 2018; Davidson et al., 2015). Experimental studies have shown 290 

that under free-floating plant mats, in contrast, CH4 production can be boosted by high organic matter production 291 

especially under anaerobic conditions; but also, a large amount of the CH4 produced may become oxidized due to the 292 

reduced gas exchange under the dense mats of plants, combined with a high activity of the rhizosphere microbiome 293 

(Kosten et al., 2016). Local conditions may thus strongly modify CH4 emissions in lakes and ponds dominated by free-294 

floating plants. In turn, emergent macrophytes can play an important role in CH4 emissions and are superior with 295 

respect to submerged and floating-leaved macrophytes in promoting CH4 efflux. Due to their system of interconnected 296 

internal gas lacunas, emergent plants act as chimneys transporting methane from the sediments to the atmosphere 297 

(Laanbroek, 2010). Littoral areas of shallow lakes could also emit nitrous oxide (N2O) if they receive excessive levels 298 
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of reactive nitrogen. Submerged macrophytes seem to contribute more to the total N2O emissions than other macrophyte 299 

types (Zhu et al., 2015). In contrast, shallow lakes dominated by abundant submerged plants can release less CO2 than 300 

similar clear water lakes with scarce plants, such as during initial phases of a restoration process. The efflux of CO2 is 301 

expectedly lower, or even often negative, in lakes dominated by phytoplankton (Jeppesen et al., 2016). 302 

The empirical evidence strongly supports the idea that, more than the species identity and effects related to 303 

plant physiology and metabolism (such as the production of allelochemicals), it is the structural complexity given by the 304 

different macrophyte life- forms that affects lake functioning the most.  305 

 306 

Current threats to shallow lakes: changes in habitat complexity and its impacts on ecosystem services 307 

Freshwater ecosystems are hotspots of biodiversity (Dudgeon, 2019) as they harbour about 6% of global 308 

biodiversity and even up to 35% of total vertebrate diversity, sustaining high numbers of endemic species (Rinke et al., 309 

2019). Freshwater ecosystems are amongst the most impacted ecosystems in the world (Dudgeon et al., 2005; Carpenter 310 

et al., 2011; Rinke et al., 2019). Besides supporting a disproportionate share of biodiversity, shallow lakes and ponds 311 

provide a wide range of critical benefits for humanity (regulating, provisioning, supporting, or cultural services), such 312 

as flood control, food and water provision, water filtration, and carbon sequestration. The provision of these different 313 

ecosystem services depends on lake integrity, which in turn is determined by the combination of species inhabiting a 314 

lake and the dominant regime (Janssen et al., 2021).  315 

A shift from submerged macrophyte to phytoplankton dominance, regimes that support the highest and lowest 316 

biodiversity, respectively, affects the quantity and type of ecosystem services provided. A lake with high habitat 317 

complexity, i.e.dominated by submerged macrophytes, supply ca. 86% of regulating and 63% of cultural potential 318 

services, while a low habitat complexity lake, i.e., dominated by phytoplankton, deliver few services, mostly restricted 319 

to provisioning ones (42%) (Janssen et al., 2021).  320 

Habitat destruction or degradation is one of the main causes of the loss of biodiversity in freshwater 321 

ecosystems (Collen et al., 2014; Dudgeon, 2019; Millennium Ecosystem Assessment, 2005; IPBES, 2019). Several 322 

global threats but also local activities at the catchment or lake level can strongly affect habitat complexity and, 323 

consequently, ecosystem functioning (Table 1). The primary direct causes of habitat complexity degradation include 324 

land conversion, eutrophication and pollution, infrastructure development, water withdrawal, introduction of invasive 325 

exotic species, and uses such as aquaculture, energy production, and reception of sewage. Below, some of the current 326 
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threats to shallow lakes and ponds are summarised, in particular focusing on their direct and indirect impacts on habitat 327 

complexity and the associated changes on the provision of ecosystem services.  328 

Eutrophication and other agriculture-driven impacts 329 

The Millennium Ecosystem Assessment (2005) emphasized that regulating services are likely the most 330 

valuable ones. The buffering and control effect of lake margin wetlands is an important regulating service (self-331 

purification), boosted by littoral macrophytes, periphyton, and riparian vegetation (Bayley et al., 2013; Walton et al., 332 

2020). Overgrazing by livestock, drainage of wetlands and aquatic ecosystems to gain land for crop fields and 333 

rangelands (Moomaw et al., 2018; Hoffmann et al., 2020), and intensive land use cause physical habitat destruction or 334 

simplification of the lakeshore and the riparian and floodplain vegetation (Bayley et al., 2013; Jabłońska et al. 2020; 335 

Hughes &Vadas, 2021). Riparian and wetland vegetation are lost or have strongly diminished in many locations, with a 336 

concomitant decrease and impoverishment of habitat complexity at the landscape and ecosystem levels (Bayley et al., 337 

2013; Hughes &Vadas, 2021).  338 

Together with habitat fragmentation, eutrophication is the most widely spread impact on shallow lakes and 339 

ponds and is largely associated to productive uses in the catchments. Not least due to the loss of wetlands and riparian 340 

areas, agriculture has strongly modified lake surroundings and changed the flow of organic matter and nutrients to water 341 

bodies. Eutrophication may occur as a gradual process. In the early phases, eutrophication usually promotes an increase 342 

in density, diversity, and size of structural elements (such as emergent, submerged, or free-floating macrophytes), which 343 

may increase complexity with positive effects on the richness and abundance of manybiological communities. Due to a 344 

sustained external input of nutrients, many lakes and ponds have generated widespread and productive stands of 345 

emergent macrophytes along the margins and submerged as well as floating-leaved plants within the lake. At advanced 346 

phases of the eutrophication process, habitat complexity likely decreases or disappears with the collapse of submerged 347 

plants in the most eutrophic and hypertrophic shallow lakes due to out shading by phytoplankton and/or epiphytes 348 

which are no longer controlled by their respective grazers (Phillips et al., 1978; Jones & Sayer, 2003; Phillips et al., 349 

2016). The system is then characterised by a high phytoplankton biomass resulting in highly turbid waters and often 350 

blooms of potentially toxic cyanobacteria, and lower biodiversity (Moss et al., 1990). Overgrowth by reeds has become 351 

a serious problem in many large temperate eutrophic lakes since the late 1960s (Andersson, 2001). In warm regions, 352 

large free-floating plants can also respond with a dramatic increase in biomass and rapid reproduction, potentially 353 

covering large areas and promoting the collapse of submerged plants due to out shading (de Tezanos Pinto & O´Farrell, 354 

2014).  355 
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Thus, eutrophication produces a simplification of habitat complexity and consequently, diversity loss, 356 

homogenization towards nutrient-tolerant species and reduction of refuge, nursing, and feeding areas. As pointed out in 357 

Kovalenko et al. (2012), the initially positive effect of increased complexity is likely to level off when eutrophication 358 

increases the density of more uniform structures even further (Tokeshi & Arakaki, 2011). For example, once established 359 

in meso-eutrophic lakes, non-native shade-tolerant Elodea species can quickly replace native species and form a dense 360 

and close canopy (Zehnsdorf et al., 2015). The uniformity of small structures thus increases, but the lake become 361 

“homogenously diverse”(sensu Hutchinson, 1961). In this sense, the analysis of macrophyte fossil and contemporary 362 

data from connected lakes indicates that eutrophication has reduced macrophyte and invertebrate diversity  over space 363 

and time, promoting homogenization of the assemblages (Salgado et al., 2018).  364 

Some ecosystem processes can also be affected by the eutrophication-driven decrease in habitat complexity 365 

(Table 1). Shallow eutrophic-hypereutrophic (i.e., phytoplankton-dominated) lakes can often behave as sinks of CO2, 366 

especially those that are very productive (Pacheco et al., 2014; Jeppesen et al., 2016; Morales-Williams et al., 2020; 367 

Zagarese et al., 2021) and have low watershed-to-lake area and lack watershed wetland cover (Morales-Williams et al., 368 

2020). Instead, efflux of CO2 can prevail in eutrophic lakes with a high watershed-to-lake area and high nitrogen 369 

loading (Morales-Williams et al., 2020). Eutrophication is, however,an important driver of CH4 and N2O emissions 370 

(Zhu et al., 2015; Beaulieu et al., 2021; Sun et al., 2021). Eutrophication can often promote carbon sequestration in 371 

open areas of shallow lakes, but overall, most frequently contributes to net emission of GHG. Other agriculture-related 372 

effects may also includethe removal of riparian vegetation and water consumption or drainage. As the bulk of 373 

sequestered carbon by wetlands is in the soils rather than in the plant biomass, wetland and lake drainage allows the 374 

oxidation of soil organic matter boosting the release of CO2 into the atmosphere (Moomaw et al., 2018). Thus, draining 375 

shallow lakes, ponds, and lake margin wetlands cause the loss of several ecosystem services, especially the crucial ones 376 

related to food and water provision, and self-purification and carbon sequestration (regulating services), and contribute 377 

to global emission of GHG. 378 

Urbanisation 379 

Urbanisation competes with agriculture for land, exerting extra pressures on transitional natural ecosystems 380 

such as floodplains and wetlands. Chemical pollution, habitat destruction through landfilling, drainage and water 381 

regulation, and sealing of soils with consequent changes in hydrological cycles are immediate environmental 382 

consequences of urbanisation on aquatic ecosystems. As lakes shorelines are urbanised, the land–water interface 383 

degrades (Kaufmann et al., 2014). Even under conditions of relatively modest disturbance, the effects of residential 384 
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development are strongly localised near to shores, leading to large changes in habitat complexity and associated biota 385 

(Hampton et al., 2011). At the local scale, property owners often reduce tree, shrubs, and reed densities along shorelines 386 

and remove natural structures from the littoral zone of lakes, leading to a dramatic reduction of fish richness and 387 

fisheries (provisioning service) (Sass et al., 2006). Extensive and intensive shoreline human activities simplify habitat 388 

structure and increase the richness and abundance of tolerant fish and bird species, reducing the richness of sensitive 389 

taxa and of native taxa in general (Kaufmann et al., 2014). 390 

Urban lakes are typically shallow, highly artificial, and often hypertrophic, and yet receive more attention by 391 

the public than most rural, natural lakes and ponds (Birch & McCaskie, 1999), due to their important aesthetic, 392 

recreational, and cultural value. In extreme cases, urban water bodies are polluted by industrial waste,domestic sewage 393 

and drainage systems. Such ecosystems are also extremely simplified in both their structural and biological 394 

complexities with a consequent loss of recreational and conservation value (Scasso et al., 2001). Large oscillations 395 

between enormous fish biomass and massive fish kills are often common due to anoxia under warm weather conditions 396 

(Iglesias et al., 2011). Strong interventions are normally needed to recover ecosystem functions and cultural services, 397 

and the reconstruction of habitat complexity is among the most recommended measures (Moss et al., 1996; Birch & 398 

McCaskie, 1999; Scasso et al., 2001). 399 

Invasive species 400 

Many exotic species exert a large variety of impacts on native communities, some of which occur through 401 

direct changes in habitat complexity, such as complexity increase, decrease, or transformation, or through direct or 402 

indirect biological interactions such as predation, herbivory, competition, hybridisation, and the transmission of 403 

pathogens to native biota (Carpenter et al., 2011).  Despite their generally positive effect on biodiversity and ecosystem 404 

function, many macrophyte species of different life forms have become invasive and are considered weeds across the 405 

world. Submerged plants such as Egeria densa Planch., Elodea canadensis Michx., Hydrilla verticillata (L.f.) Royleand 406 

Myriophyllum aquaticum (Vell.) Verdc. have become a serious nuisance in many lakes and ponds, and so have large 407 

free-floating plants such as Salvinia molesta D.S. Mitch., P. stratiotes and P. crassipes, to mention just a few (Bolpagni, 408 

2021).  409 

Environmental heterogeneity is typically associated with high diversity of native macrophytes. As with the 410 

early phases of eutrophication, initial arrival of an exotic species may increase habitat complexity by adding density and 411 

diversity of structural elements, whereas the establishment phase of such exotic species may end up in habitat 412 

homogenization with the development of extensive monocultures (Zehnsdorf et al., 2015). Changes in native 413 
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macrophyte composition, increased architectural similarity in the plant mats, and a general decline in biodiversity at 414 

local and regional levels, are often recorded after the expansion of an exotic plant (e.g., Michelan et al., 2010).Thus, the 415 

systems may shift from a status of high habitat complexity (with environmental and space-size heterogeneity) at early 416 

phases of  colonization to one of low habitat complexity due a decrease of species richness and the dominance of 417 

similar space-sizes (i.e., filling spaces) at the establishment phase when the system ends up homogenized (Salgado et 418 

al., 2018). Several anthropogenic changes (e.g., eutrophication, channelization) can favour exotic macrophytes that 419 

reduce local-scale diversity via competitive exclusion (Muthukrishnan et al., 2018; Salgado et al., 2019); on the 420 

contrary, connectivity at the watershed level and dense native plant cover may prevent biotic homogeneization (Salgado 421 

et al., 2021). Particularly, connected lakes act as sources of macrophyte species providing resistence to the invader 422 

species and counteracting the homogenization produced by the exotic plants (Salgado et al., 2021). For example, in a 423 

survey of 1,102 Minnesota (USA) shallow lakes, the presence of invasive macrophytes did not impact species richness, 424 

however, it was associated with greater similarity in the plant community composition (i.e., biotic homogenization), 425 

eroding spatial and temporal ecological distinctiveness across the landscape (Muthukrishnan & Larkin, 2020); thus 426 

reducing the overall complexity level of lakes. Regarding biotic interactions, Grutters et al. (2015) found that the 427 

replacement of native by structurally similar non-native vegetation was unlikely to affect predator-prey interactions in 428 

an important way. These authors proposed that changes in predator-prey interactions via aquatic plant invasions may 429 

only occur when the invading plants are very different in density, growth form and rigidity compared to native plants. 430 

Invasions by macrophytes such as P.crassipes may strongly modify underwater structural heterogeneity. 431 

Originally from the Caspian and Black seas, the zebra mussel (Dreissena polymorpha (Pallas, 1771)) can 432 

reproduce and grow extremely fast, potentially covering the lake bottom or any other hard surfaces in relatively short 433 

times. Zebra mussel increases structural complexity in the sediments, thereby facilitating other benthic 434 

macroinvertebrates by offering substrate and refuge from predation at initial phases of colonisation (Stewart et al., 435 

1998). It can also lead to the collapse of native mussels due to competition for space and resources. Zebra mussels can 436 

filter huge volumes of water (sometimes the whole lake volume several times a day), increasing water transparency and 437 

thus opening a window of opportunity for submerged plants to grow (reviewed in Jeppesen et al., 2012). The effects of 438 

the invasion by this mussel are therefore contradictory; while it promotes the loss of native fauna also an overall 439 

increase in habitat complexity can be expected due to the physical changes that occur after invasion. In contrast, other 440 

invasive species such as the red swamp crayfish (Procambarus clarkii Girard 1852) can promote a shift from a clear 441 

water state to a turbid water, low biodiversity state due to the consumption and mechanical destruction of aquatic plants 442 
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(Gherardi & Acquistapace, 2007) and the consequent changes in sediment characteristics and loss of feeding grounds 443 

and habitat for other species.  444 

Many species of fish are also invasive and may cause serious problems to the colonised environment, by, 445 

again, a variety of physical and biological effects that affect habitat complexity, such as the disturbance of sediments 446 

and uprooting of plants by benthivorous species and the consumption of plants by herbivorous fishes. Rather than 447 

altering habitat complexity, the modulating effects provided by macrophytes on trophic dynamics (see above) 448 

maybelost when invasive predators are involved. As found for the piscivore peacock bass (Cichla kelberi Kullander & 449 

Ferreira, 2006) in tropical regions, aquatic plants provide very limited protection to native prey probably due to the 450 

highly aggressive nature of this fish, and therefore vegetated habitats are unlikely to buffer the decline in biodiversity 451 

caused by this species (Kovalenko et al., 2010).  452 

Invasive species could affect multiple ecosystem functions and significantly impact or change the properties of 453 

invaded (or newly created) communities, thus opening new trophic paths (Bolpagni, 2021; and references therein). As a 454 

result, invaders could either increase or decrease ecosystem services depending on how they affect different atributes of 455 

habitat heterogeneity and trophic interactions. 456 

Climate change 457 

Expectedly, climate change can affect habitat complexity through a series of direct and indirect processes. This 458 

topic is subject of intensive research, and we are only starting to identify the pieces of the puzzle (e.g., Netten et al., 459 

2010; Kosten et al., 2011; Moss et al., 2011; Meerhoff et al., 2012, Short et al., 2016). Climate change, through 460 

warming and higher frequency of droughts/floods and storms or cyclones, affects water level and nutrient loading and 461 

concentrations through increasing (precipitations, storms) or decreasing (dry periods) runoff from the basins. The 462 

chances for shallow lakes and ponds to recover from stochastic disturbances (e.g., storms, hurricanes) is related with 463 

antecedent lake conditions (e.g., turbidity, trophic state, macrophyte cover) which shape lake resistance and resilience 464 

(Havens et al., 2016; Thayne et al., 2021). 465 

Given their contrasting effects on habitat complexity, biodiversity, and ecosystem processes, it is key to 466 

understand the responses of the main aquatic primary producers (e.g., phytoplankton, benthic algae, submerged and 467 

floating plants) to changes in the climate regime and climate variability. The interaction of the factors affected by 468 

climate change can directly and indirectly control plant growth, and can have overall opposing effects (Havens et al., 469 

2016; Ersoy et al., 2020). Climate change can affect the competition between phytoplankton and aquatic plants and lead 470 

to dramatic changes in habitat complexity. Phytoplankton and particularly cyanobacteria seem to be favoured by 471 
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climate warming (e.g., Paerl & Huisman, 2008; Paerl & Paul, 2012; Kosten et al., 2012; Davidson et al., 2015). In 472 

addition, heatwaves, hurricanes, and low lake water levels due to increased temperature/dry periods, often lead to the 473 

collapse of aquatic plants and to high phytoplankton and cyanobacteria productivity in systems with high nutrient 474 

loading (Rigosi et al., 2014; Havens et al., 2016; Ersoy et al., 2020), maintaining the lake in a poor complexity, low 475 

biodiversity, and turbid water regime.  476 

Under eutrophic conditions, warming may favour not only phytoplankton but also free-floating macrophytes 477 

(Short et al., 2016). Because of increasing winter minimum air temperatures, tropical and subtropical free-floating 478 

plants will probably expand their biogeographic distribution polewards (Bolpagni, 2021). This would imply dramatic 479 

changes in habitat complexity and negative impacts on lake and pond trophic dynamics (e.g., Meerhoff et al., 2007 a; de 480 

Tezanos Pinto & O’Farrell, 2014), besides the already described negative effects on general biodiversity and water 481 

quality (Fig. 3). In contrast, submerged macrophytes may increase under low nutrient loads, moderate water levels, and 482 

rising temperaturesas predicted by models and mesocosm experiments (Davidson et al., 2015; Coopers et al., 2020; 483 

Ersoy et al., 2020). According to field studies in north temperate lakes, earlier start of growing seasons due to climate 484 

warming would result in greater biomass and distribution of submerged macrophytes (Rooney & Kalff, 2000). A 485 

potentialenhancement of submerged plants would increase the amount and likely the diversity of structural elements 486 

within a lake ecosystem. Emergent macrophytes seem more affected by hydrological alterations (Short et al., 2016).  487 

Climate change promotes a range of potentially interacting processes (i.e., nutrient loads, water level, 488 

temperature, light climate) that will favour the dominance of a particular primary producer, with direct consequences on 489 

habitat structure and complexity. Climate warming, in particular, can also interact with the expansion of exotic species 490 

(Rahel & Olden, 2008). Identification of climate impacts on habitat heterogeneity and the formulation of a generalized 491 

and global pattern is thus complicated, not least because climate change affects different regions in different manners 492 

and intensities and interacts with other anthropogenic impacts and activities.  493 

Restoration of degraded lakes via enhancement of habitat complexity 494 

Artificial manipulation of structural complexity is one of the restoration measures often applied in degraded 495 

ecosystems (Cooke et al., 2005). Trees, rocks, and stones have been introduced to increase heterogeneity in streams and 496 

rivers, often accompanying re-meandering of stream channels (Hoffmann et al., 2020). Although habitat coupling 497 

between terrestrial and aquatic ecosystems is critical for maintaining diverse and productive riparian and stream and 498 

river ecosystems (Naiman et al., 2000), lake ecologists seldom incorporate riparian habitats into models of ecosystem 499 

dynamics and management (Schindler & Scheuerell, 2002). Shoreline habitats degraded by urban development and loss 500 
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of riparian vegetation are, however, often reconstructed in a variety of ways, including the transplantation of emergent 501 

plants and the addition of rock riprap or retaining walls to control erosion and recreate littoral complexity (although 502 

such artificial structures can be homogeneously complex). Artificial reefs (made up of wooden branches) have been 503 

tested in Amazonian floodplain lakes, finding that although overall diversity was not enhanced, rare species occurred 504 

more frequently in the more complex habitats (Yamamoto et al., 2014). Comparative studies in lakes with manmade 505 

littoral complexity have shown that fish species richness is positively correlated with local habitat complexity (being 506 

higher in riprap sites). However, the structure of the fish assemblage, assessed as the proportion of intolerant or tolerant 507 

species, responds to cumulative effects of small habitat modifications (Jennings et al., 1999). In urban shallow lakes and 508 

ponds, restoration strategies also include promoting larger pond sizes, modifying pond margins with indentation, 509 

constructing different-angled slopes and with large drawdown zones, permitting hydroperiods to mimic natural changes, 510 

and eliminating non-native or invasive species while promoting the presence of aquatic plants (emergent, submersed, or 511 

floating) (Oertli & Parris, 2019). 512 

Submerged macrophytes can return after the implementation of restoration measures that increase water 513 

clarity; however, restored shallow lakes typically have a different community composition with fewer species compared 514 

with the situation 20-100 years before eutrophication worsened, according to a review by Bakker et al. (2013). 515 

Sometimes submerged vegetation may not return naturally even when clear water conditions have been re-established 516 

(Marklund et al., 2002; Lauridsen et al., 2003). Since the early 1990’s, the reintroduction of aquatic plants is thus one of 517 

the recommended measures to speed up the recovery of eutrophic lakes once nutrient loading has been reduced (Moss, 518 

1990; Moss et al., 1996; Jeppesen et al., 2012). For this purpose, plants are often transplanted or spread as seeds and 519 

propagules (Moss et al., 1996). Studies in temperate European shallow lakes (e.g., Lauridsen et al., 2003; Hilt et al., 520 

2006; Chaichana et al., 2011) have shown higher survival and number of plants and longer total shoot length when they 521 

are introduced in enclosures that prevent waterfowl access. Most of the experiences of aquatic plant introduction so far 522 

are from temperate lakes, but examples from subtropical and tropical areas are increasing. For instance, in subtropical 523 

China, several studies suggest that transplantation of submerged plants, even exotic ones, as a restoration tool might be 524 

successful, as long as plants are protected against fish herbivory (Chen et al., 2009; Ye et al., 2011; Zhang et al., 2016; 525 

Bai et al., 2020; Gao et al., 2020). In other cases, macrophyte transplantation is combined with fish removal and /or 526 

introduction of mussels (Yu et al., 2016; Gao et al., 2017; Zeng et al., 2017). The establishment and protection of plants 527 

as a lake restoration method, alone and in combination with other approaches, will remain an important measure in the 528 

future, although many unsolved issues remain, such as how to assure long term effects (Jeppesen et al., 2012). For 529 

example, the continuous control of omnivorous and herbivorous fish is recommended in warm lakes to protect 530 
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submerged macrophytes (Yu et al., 2016). These or other measures are likely not useful for all lakes since there might 531 

be conflicts between biodiversity conservation and other uses (such as irrigation, navigation, aquaculture, etc.).  532 

Sometimes, artificial macrophytes have been used when natural plants do not respond as fast as required. 533 

Although direct chemical effects (e.g., uptake of nutrients and excretion of allelopathic substances that potentially 534 

control phytoplankton) will not occur, the generation of physical complexity can lead to strong changes in the lake 535 

function by affecting trophic interactions, and the stability of the water column and decrease of incoming light. 536 

Artificial plants may initially help to create and stabilise a clear water state by serving as a daytime refuge for 537 

zooplankton against predation by fish, as well as substrate for plant-associated macroinvertebrates (Skov & Berg, 1999; 538 

Boll et al., 2012). A cover by artificial plants of just 3-5% of the lake area can double zooplankton densities, as found in 539 

a shallow temperate lake in Denmark (Schou et al., 2009). Artificial recreation of habitat structural complexity seems, 540 

however, not sufficient to mimic the whole array of effects associated with natural habitat complexity. Interestingly, in 541 

streams where restoration efforts have been more widely applied than in lentic systems, restoring habitat heterogeneity 542 

has seldom promoted an increase in macroinvertebrate diversity (as shown in a meta-analysis by Palmer et al., 2010), 543 

indicating that the ultimate processes behind the effects of habitat complexity on biodiversity and fauna abundance have 544 

not been completely elucidated (Kovalenko et al., 2012). The advantage of using artificial structures is that they can be 545 

introduced all year round and are much less sensitive to environmental conditions and grazing by herbivorous fishes and 546 

waterfowl, although unfortunate cases of waterfowl consuming plastic structures, likely trying to catch the associated 547 

macroinvertebrates, have occurred (M. Meerhoff pers. obs.). The potential release of chemical substances and micro 548 

and nanoplastics from the artificial plants should also be thoroughly analysed and weighted against the potential 549 

benefits. 550 

The examination of the effectiveness of several active restoration measures has resulted in different outcomes: 551 

ecosystem and submerged macrophyte recovery,no improvement, or initial improvement and then a return to eutrophic 552 

conditions (McCrackim et al., 2017). On top of that, restored lakes and ponds in warm regions recover more slowly than 553 

those in cold areas (Jeppesen et al., 2007; 2012). Thus, under any restoration scenario, it is still key to decrease the 554 

nutrient load to aquatic ecosystems (Moss et al., 2011; McCrackim et al., 2017; Hoffmann et al., 2020). 555 

Future directions 556 

In this section we review a series of topics that, in our view, deserve deeper studies due to their potential 557 

impact on our understanting on shallow lakes and pond functioning, and on conservation or restoration strategies.  558 
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1.Space-size heterogeneity and food web stability. Heterogeneity in space-filling offers a variation of refuge 559 

sizes that might decouple trophic interactions and promote the compartmentalization of food webs; as pointed out by 560 

Kovalenko et al., (2012). This is still a line of research not yet sufficiently explored. 561 

2. Relevance of different atributes of habitat complexity to sustain biodiversity.The exact mechanism by which 562 

habitat complexity impacts taxon richness or density, and with those, impact ecosystem processes, is still not fully 563 

elucidated despite that several experimental studies have addressed the topic. For instance, space-size heterogeneity 564 

(i.e., variation in space sizes) has been highlighted as more important for macroinvertebrate taxonomic richness than 565 

overall complexity, and than other complexity attributes, plant biomass, and density of stems (St. Pierre & Kovalenko, 566 

2014). 567 

3. Interacting effects of habitat complexity and food web structure. Interestingly, habitat complexity interacts 568 

with lake characteristics such as water transparency (Snickars et al., 2004; Pekcan-Hekim et al., 2010) and trophic web 569 

characteristics. Rennie & Jackson (2005) demonstrated that small-scale variation in littoral microhabitat complexity 570 

shapes patterns of macroinvertebrate distribution but also that such effects were systematically different in the presence 571 

or absence of fish (i.e., greater complexity promoted higher density of invertebrates only in the presence of fish), 572 

suggesting that habitat complexity effects are mediated through top-down mechanisms. Climate-related differences in 573 

trophic web structure should also be considered here. 574 

4. Habitat complexity and fluxes of greenhouse gases (GHG). In this growing field of investigation,studies 575 

have yielded contradictory results about the role of different lake zones with contrasting habitat complexity on GHG 576 

fluxes (e.g., Zhu et al., 2015; Kosten et al., 2016; Janssen et al., 2021). Habitat complexity may interact with nutrient 577 

loads and with trophic structure of lakes and ponds, among other factors, thus influencing net GHG influx or efflux 578 

(Zhu et al., 2015; Morales-Williams et al., 2021). Thus, it is necessary to understand the mechanisms that may 579 

transform different lake zones (littoral, benthic, or pelagic) or whole ecosystems under different regimes with 580 

contrasting habitat complexity on "hotspots" of GHG emissions and its connection to whole lake budget. 581 

5. Connection between habitat complexity and spatial complexity at the landscape level. Despite historically 582 

being treated as relatively discrete microcosms (Forbes, 1887), shallow lakes and ponds are open ecosystems that are 583 

inseparable from their catchments (Moss, 1998). The importance of spatial complexity at the catchment and landscape 584 

level for regional but also for local richness has been recently highlighted (Fahrig, 2013), not least through interactive 585 

effects with in-lake habitat complexity. In pondscapes, individual pond size and isolation (habitat patchiness), together 586 
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with the presence of emergent vegetation (within-lake complexity), can, for instance, significantly influence waterfowl 587 

diversity, as found in a series of Mediterranean ponds (Paracuellos &Tellería, 2004). Connectedness in heterogeneous 588 

landscapes may lead to high local biodiversity and resilience via a spatial insurance effect (Loreau et al., 2003). 589 

However, higher richness at the regional level may be expected when the lakes and ponds in a waterscape show 590 

different degrees of connectivity, due to stochastic events, ecological interactions, and different in-lake complexity 591 

(Scheffer et al., 2006). 592 

 593 

Conclusions 594 

Organizational elements that promote habitat complexity differ across spatial scales from the landscape to 595 

within-lake microhabitats; nevertheless, all organizational elements and certain characteristics (e.g., lake connectivity, 596 

number, size and shape, shoreline development, within-lake complexity, etc.) contribute to determining ecosystem 597 

processes, functions, and services. Despite the importance of the effects produced by the physical structure of aquatic 598 

plants, there are no standardised methods to measure plant complexity, limiting comparisons among different plant 599 

species and among ecosystems (reviewed in Kovalenko et al., 2012). Besides, determining the effects strictly associated 600 

with habitat complexitycan be difficult as different potentially explanatory variables are often highly associated, as is 601 

the case of plant cover and lake trophic state (Declerck et al., 2005).  602 

Several anthropogenic threats to lake and pond complexity often operate simultaneously at different spatial 603 

scales, promoting habitat destruction or alteration and/or decoupling between lakes and their riparian areas or with other 604 

aquatic systems. Some of such threats against habitat integrity occur at the landscape level (e.g., disruption of natural 605 

hydrological cycles through channelization and dam construction, changing or preventing connectivity among lake and 606 

pond systems), while others affect the lake and within-lake microhabitat levels. In addition, lake and within-lake 607 

microhabitats are severely affected by the destruction of riparian vegetation and lake/pond shore margins, point or 608 

diffuse nutrient pollution, drainage or water overexploitation, introduction of exotic species and/or fluctuations in water 609 

levels induced by climate change. Eutrophication, largely due to nutrient inputs from agricultural areas, despite not 610 

being a linear process, most often ends up with a major loss in complexity with negative implications for biodiversity, 611 

nutrient cycles, and emissions of greenhouse gases. Climate change impacts on habitat complexity largely depends on 612 

antecedent lake conditionswhich, on the other hand, may contribute to lake resilience and resistance to climatic 613 

disturbances such as storms, hurricanes, drought and flood periods. The loss or degradation of riparian and littoral 614 

vegetation of shallow lakes and ponds translates into an alteration of ecosystem functions, such as heavily reduced 615 
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capacity to provide food, refuge and nursing areas for aquatic and amphibious species, recycle nutrients and purify 616 

water, sequester carbon, flood and hazards mitigation, and soil formation. 617 

The recognition of these impacts has promoted the implementation of mitigation measures to improve habitat 618 

quality, targeting at different components and spatial scales (e.g., nutrient transport and drainage control, re-619 

establishment of riparian and buffer zones, restoration of shallow lakes, reconstruction of ghost ponds). Particularly, 620 

large re-establishment of wetland buffer zones is an effective action to reduce N and P pollution in agricultural 621 

catchments. Its implementation seems mostly related to policy priorities rather than to financial impossibilities 622 

(Jabłońska et al., 2020) and it is an action currently applied in different parts of the world (e.g., Hoffmann et al., 2020; 623 

Walton et al., 2020). At the lake scale, the current evidence highlights that different active measures applied, such as 624 

macrophyte transplantation, fish removal, and exotic mussel/macrophyte introductions have different outcomes.  625 

Reviews considering lake recovery from eutrophication, particularly those evaluating the re-establishment of 626 

submerged macrophytes, have mostly focused on temperate systems (e.g., Søndergaard et al., 2005; McCrackim et al., 627 

2017; although see Jeppesen et al., 2012). So far, it seems that in subtropical lakes greater efforts are necessary to 628 

maintain or speed up the recovery of littoral habitats, by performing continuous fish removal and combining this with 629 

major nutrient reduction (Yu et al., 2016). More examples from Mediterranean, tropical, and subtropical areas are 630 

needed to understand the effectiveness of different restoration measures across a broad range of climates and conditions. 631 

Until more information is synthesized, reduction of nutrient loads and preservation of the existing natural habitat 632 

complexity at different spatial scales seems to be one of the key measures to maintain the resilience of lake and pond 633 

ecosystems against global and local anthropogenic impacts. Habitat complexity, from the landscape to the within-634 

system levels, needs to be prioritized by environmental managers and policymakers, as it impacts directly on 635 

biodiversity and several ecosystem services supplied by lakes and ponds.  636 
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Table 1. Anthropogenic activities that can directly or indirectly affect habitat complexity in shallow lakes and ponds, 1054 

and some of the expected effects on lake processes and overall functioning. Based on Schindler & Scheuerell (2002). 1055 

See the text for further description of the effects of some of these activities and the mechanisms involved. 1056 

Activities  Effects on shallow lakes and ponds 

Deforestation of catchments  

due to changes in land use 

 

 

Increased erosion with consequent deterioration of light regime. 

Increased nutrient and dissolved organic carbon (DOC) loading 

to lakes. 

Loss of source of large woody debris that represents habitat 

structure in littoral and benthic habitats.  

 

Wetland drainage  

to gain land for agriculture, rangelands, or 

urbanisation 

 

Potential changes in shoreline development, slope and depth of 

ponds and lakes 

Loss of buffer zone between terrestrial and aquatic systems 

(nutrients, DOC loading).  

Decreased complexity of littoral structure and loss of 

nursery/refuge/feeding areas for invertebrates, fishes, and 

waterfowl.  

Removal of large woody debris and rocks or 

stones from lakeshores for urbanisation or other 

uses 

Decreased complexity of littoral habitat.  

Loss of foraging and nesting habitat, predation refuges, etc. 

Macrophyte removal  

to facilitate navigation, enhance aesthetics, etc. 

Depending on initial cover and degree of biomass removal: 

Decreased complexity of littoral habitat.  

Loss of foraging habitat, predation refuges for zooplankton and 

small fishes, etc.  

Decreased resilience of shallow clear water lakes against other 

external perturbations. 

Non sustainable agriculture Diffuse nutrient (eutrophication) and agrochemical 

contamination.  



 

39 

 

Loss of riparian buffer zones and simplification of lake littoral 

areas. 

Increased phytoplankton biomass and light attenuation, limiting 

benthic algae and submerged aquatic plants with consequent 

reduction in littoral and benthic habitat complexity.  

Promotion of turbidity-tolerant aquatic plants leading to habitat 

homogenisation. 

Consequent changes in productivity in each lake habitat.  

Habitat simplification and overall loss of 

biodiversity.Expectedly higher net GHG emissions. 

Exotic species introduction Effects vary depending on species: 

Some species may increase benthic or littoral habitat complexity 

and productivity (of a particular habitat or the whole lake), 

while others may lead to habitat homogenization and decreased 

complexity.  

Water level managementfor irrigation, 

human consumption or after construction of 

reservoirs 

 

Lowered water level fluctuations may reduce seasonal flooding 

that is important to nutrient regeneration and riparian/littoral 

vegetation. 

Changes in water level may either facilitate or prevent the 

establishment and development of submerged or free-floating 

aquatic plants, thereby changing habitat complexity. 

Lower system resilience against other pressures such as 

eutrophication. 
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Figure legends 1058 

Fig. 1 Habitat complexity in lakes at the ecosystem level. Three major within-lake habitats are recognized: the pelagic, 1059 

the benthic and the littoral zone, all interacting with the adjacent terrestrial ecosystem through the riparian zone. Each 1060 

lake habitat is characterised by different assemblages of organisms and different levels of complexity. Drawn by 1061 

M.Meerhoff and Tinna Christensen. From Kosten & Meerhoff, 2014 1062 

Fig. 2 The effects of plant architecture vary with regional climate and associated structure of classic trophic webs.  In 1063 

this field experiment, the same amount of artificial material mimicked submerged and free-floating plants and was 1064 

placed in a series of ten similar shallow lakes under contrasting climates (temperate and subtropical). The modulating 1065 

effects of aquatic plants on littoral (shown) lake communities is affected by climate, likely because of differences in 1066 

local trophic web structure and in the spatial behavior of fish (depicted in the sketch below). Note the different scales 1067 

used for each climate region. Modified from Meerhoff (2006)  1068 

Fig. 3 Effects of aquatic plants on physical, chemical and biological processes in shallow lakes and ponds, and 1069 

ecosystem services. The processes that are directly related to the habitat complexity created by the plants are 1070 

highlighted. All processes are relevant for submerged plants, and many are shared with some other plant life-forms, 1071 

please see the text for elaboration. Modified with permission from Moss et al. (1996) 1072 
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