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Feedbacks between climate change and eutrophication: revisiting the allied 
attack concept and how to strike back 

Abstract 

Despite its well-established negative impacts on society and biodiversity, eutrophication 

continues to be one of the most pervasive anthropogenic influence along the freshwater to 

marine continuum. The interaction between eutrophication and climate change, particularly 

climate warming, was explicitly focused upon a decade ago in the paper by Moss et al. 

(2011), which called for an integrated response to both problems, given their apparent 

synergy. In this review, we summarise advances in the theoretical framework and empirical 

research on this issue and analyse the current understanding of the major drivers and 

mechanisms by which climate change can enhance eutophication, and vice versa, with a 

particular focus on shallow lakes. 

Climate change can affect nutrient loading, through changes at the catchment and 

landscape levels by affecting hydrological patterns and fire frequency, and through 

temperature effects on nutrient cycling. Biotic communities and their interactions can also 

be directly and indirectly affected by climate change, leading to an overall weakening of 

resilience to eutrophication impacts. Increasing empirical evidence now indicates several 

mechanisms by which eutrophying aquatic systems can increasingly act as important 

sources of greenhouse gases to the atmosphere, particularly methane. We also highlight 

potential feedbacks between eutrophication, cyanobacterial blooms, and climate change. 

Facing both challenges at the same time is more pressing than ever. Meaningful and strong 

measures at the landscape and water body levels are therefore required if we are to ensure 

ecosystem resilience and safe water supply, conserving biodiversity, and decreasing the 

carbon footprint of freshwaters. 
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Introduction 

  

The Anthropocene, planetary boundaries, and catastrophic shifts, among other concepts, are 

increasingly prominent and debated in the scientific literature. These concepts, including the 

connection between ecosystem and human health, are also becoming relatively frequent in the 

speeches of managers, policy makers and politicians. Still, most long-standing environmental 

problems remain largely unresolved.  

Several large and often nutrient-poor lakes in temperate and cold regions are showing 

temporal declines in phosphorus concentration and/or phytoplankton biomass (e.g., Kraemer et 

al. 2017; Huser et al. 2018). Different restoration efforts at the water body or watershed levels 

are delivering positive results in Europe and Asia (e.g., Jeppesen et al., 2012; Liu et al. 2018). 

Despite these positive trends, eutrophication continues to be one of the most pervasive 

anthropogenic impacts along the freshwater to marine continuum (Wurtsbaugh et al. 2019). 

Water quality has deteriorated, and blooms of toxic cyanobacteria, hypoxia, finfish, and shellfish 

kills are becoming more frequent in many regions of the world. As a result, the contributions of 

lakes and rivers to human wellbeing are dwindling across the globe regardless of the country's 

economic status and degree of development.  

Climate change, a highly asymmetric but planetary phenomenon, already impacts many 

ecosystems and human livelihoods around the world (IPCC 2013). Besides the most commonly 

described effects of changes in temperature and precipitation patterns, the anticipated change in 

frequency and intensity of extreme events (heatwaves, storms, extreme rains and droughts) may 

also affect ecosystem stability (García-Palacios et al. 2018) and resilience (Pimm et al. 2019) in 

yet unpredicted ways . The natural self-repairing capacity of ecosystems (or resilience, sensu 

Folke 2016) may thus weaken, with consequent increases in ecosystem sensitivity to other 
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external stressors, such as elevated nutrient loading from increasing anthropogenic land use (e.g., 

Paerl et al. 2019). 

 

The interaction between eutrophication and its symptoms, on the one hand, and climate 

change particularly climate warming, on the other, was the focus of the paper by Moss et al. 

(2011), which called for an integrated response to both problems, given their synergy.  

Here we aim to review the status and advances on this topic given the different avenues 

of research in the first decade since the publication of the paper by Moss et al. (2011). Even 

though processes described can apply to any freshwater system, most of the examples refer to 

shallow lakes. Theoretical and empirical studies have consolidated previously described patterns, 

confirmed some expectations, and shed light on the complexity of several processes involved in 

the linkage between eutrophication and climate change. Growing empirical evidence suggests 

that facing both challenges at the same time is more pressing than ever, but also, that current 

measures are not enough. 

 

1. Theoretical advances potentially relevant for management and policy 

 
The existence of feedbacks between eutrophication and its symptoms and climate 

warming has profound implications for the appropriate management of freshwater systems and 

waterscapes. Also, the existence and correct identification of dynamic regime shifts around 

potential tipping points or thresholds is of importance in management and policy making. 

Although tipping points have been described for deep lakes in some circumnstances (Bruel et al. 

2018), thresholds and tipping points have been more intensively studied in shallow lakes.  
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In the case of shallow lakes, the nutrient thresholds modulating a shift from a clear water 

to a turbid water state, and for the reverse shift to occur, have been subject of intensive research 

and debate, given the diverse effects of climate and other external and internal drivers (e.g., 

Jeppesen et al. 2007; Scheffer and van Nes 2007). Determining such thresholds for a given 

region and particular water body before the shift has occurred has proven extremely difficult if 

not impossible. The challenge increases as not all regime shifts are associated with tipping points 

(Dakos et al. 2015).  

The work focused on early warning signals of regime shifts has flourished in the last 

decade (Scheffer et al. 2009; Wang et al. 2012; Dakos et al. 2015), as well as research aimed at 

quantifying and measuring ecosystem resilience and stability (Donohue et al. 2016; Pimm et al. 

2019). Also in the last decade, the idea of feedbacks and thresholds for a system to experience a 

shift or critical transition has upscaled from individual ecosystems (Scheffer et al. 1993; Folke 

2016), to the planet itself (Steffen et al. 2018). In particular, the existence of planetary 

boundaries, and of a safe operating space for humanity and for particular ecosystems has been 

the subject of research in the past few years (Rockström et al. 2009; Green et al. 2017). 

However, these ideas have sparked intense debate and controversy (Montoya et al. 2018; 

Hillebrand et al. 2020), among other issues due to difficulties in identifying those boundaries and 

translating them into concrete management recommendations.  

 

2. Empirical advances: climate change enhances eutrophication and its 

symptoms 
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In the last decade, empirical evidence has mounted documenting temporal changes in 

phytoplankton biomass (using Chlorophyll-a as proxy), largely using remote sensing techniques 

particularly applied to large lakes. Opposite trends have been documented (Kraemer et al. 2017, 

Ho et al. 2019), sparking debate on the reliability of different methodologies (e.g., Feng et al. 

2021). Some temporal trends do not relate consistently with trends in temperature, precipitation, 

or fertilizer use (Ho et al. 2019), whereas a combination of positive and negative trends for 

individual lakes stresses the heterogeneity of lake responses to global change.  

Many empirical studies based on either in situ measurements or paleolimnogical approaches 

have supported the idea that climate change is promoting both eutrophication and many of its 

symptoms (e.g., Beaulieu et al. 2013; Taranu et al. 2015). Such enhancement is the result of a 

variety of processes occurring at different spatial and temporal scales (Fig. 1), and biological 

levels of organization; from the catchment to the water body and from ecosystem-scale 

biogeochemical cycles to food webs and life history traits of particular species or genotypes. The 

following subsections describe some of the main expectations from a large to small spatial and 

ecological scales (Fig. 1). 

The watershed level  

Human-induced external nutrient loading of surface waters is the key driver of eutrophication. 

Even under constant anthropogenic practices such as land use, several components of climate 

change tend to increase eutrophication through direct and indirect mechanisms that have become 

clearer in the last decade. 

Climate change involves changes in precipitation patterns, temperature, wind speed, and both in 

magnitude (means and extreme values) and in the frequency and duration of extreme events. The 

external nutrient loading entering inland and coastal systems will depend on changes in the 
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regional and local climate, besides future changes in land use governed by future-climate, 

population, and policies. 

Major changes in precipitation patterns and amounts are expected worldwide (IPCC 

2021). Net precipitation is expected to increase in vast regions of the world but to decrease over 

parts of the subtropics, limited areas of the tropics, and the Mediterranean (IPCC 2021). In the 

latter situation, despite the resulting reduction in runoff and potentially lower net loads of 

nutrients, water nutrient concentrations may remain high because a more prolonged residence 

time can enhance sediment-water column exchange and internal nutrient cycling (Özen et al. 

2010). In arid and semi-arid climates, climate warming also enhances drought through higher 

evaporation and evapotranspiration rates (Trenberth et al. 2014; IPCC 2021), with strong 

implications for water level and salinity in lakes (Beklioğlu et al. 2011; Yılmaz et al. 2021).. If 

prolonged or extreme, drought can transform permanent lakes and ponds into more transient 

systems (Beklioğlu et al. 2007) or they may disappear altogether. Even if the water bodies 

remain permanent, they may become saline to different degrees, with negative effects on aquatic 

diversity (Brucet et al. 2012) and trophic web structure and functioning (Vidal et al. 2021; 

Yılmaz et al., 2021). This process may be accelerated when water extraction is increased by 

enhanced bank filtration for drinking water production (Gillefalk et al. 2019; Yılmaz et al. 2021).  

In contrast, higher net precipitation is expected in large areas in the North temperate 

zone, particularly during winter  and in several locations of the southern hemisphere subtropical 

zones , while in many places storms are also expected to intensify in frequency and magnitude 

(IPCC 2021). In such cases, higher net precipitation and more intense precipitation events 

enhance runoff of sediments, dissolved organic carbon, and nutrients and other substances from 

the catchments to the water bodies, particularly in catchments with intense land uses (Paerl et al. 
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2020). Such increases in external loading may or may not rapidly translate into higher nutrient 

concentrations in the lakes, depending on their size, flushing rates, water level fluctuations and 

sediment characteristics, among others.  

Climate change effects act on top of  impacts from agricultural land use, often in additive 

and/or synergistic ways. Through various research approaches, we can now predict that a 

significant enhancement in diffuse nutrient loadings of phosphorus (Jeppesen et al. 2009; 

Goyenola et al. 2015; Ockenden et al. 2017), nitrogen (Jeppesen et al. 2011; Goyenola et al. 

2020), and organic matter (Graeber et al. 2015) can be expected from agricultural catchments in 

areas with increasing precipitation driven by climate change. Obviously, the nutrient legacy in 

the soils, resulting from historical land use, is a key factor determining the levels of nutrients 

reaching surface waters (Goyenola et al. 2020). An increase in up to 30% of average winter 

phosphorus loads at present-day land-use has been predicted to occur in temperate rain-fed 

watersheds by 2050, due to future changes in precipitation (Ockenden et al. 2017).  

However, and although this topic needs to be further investigated, it is unlikely that land 

use will remain unchanged. Water-demanding fast-growing crops are expected to increase in 

locations where precipitation is already increasing or expected to increase in coming years 

(Olesen et al. 2007). In places where access to water will be limited or more variable in time and 

space, the selection of drought resistant crops or crop variants, as well as agricultural practices, 

are to be expected, although the reverse pattern (i.e., more water demanding crops fed by 

irrigation) has unfortunately also been seen in recent decades (Yılmaz et al., 2021). In contrast, 

climate change-mitigation policies, such as land-use changes towards reforestation or even 

afforestation may eventually lead to improved water quality (Daneshmand et al. 2020), 

depending on local conditions.  
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 One of the concerns that has emerged in the last years, is that the combined effect of 

changes in precipitation patterns, particularly increased droughts, and climate warming coupled 

to land use changes have led to an increase in the number and intensity of fires in many places 

around the world (Stevens‐Rumann et al. 2018) and that such effect impacts fresh waters. One of 

the multifold effects of fires is the high load of ashes (Earl and Blinn 2003). High ash loads can 

increase water pH, turbidity, total organic carbon (TOC) and nutrient concentrations, as well as 

reduce dissolved O2 concentrations (Earl and Blinn 2003; Cerrato et al. 2016). The overall 

effects differ regionally. The ash and post-fire erosion-related increase in nutrient loading leads 

to increases in primary production (Planas et al. 2000), thus contributing to eutrophication (Fig. 

1). Increased fires are assumed to contribute to the increasing occurrence of filamentous algae 

blooms in the littoral of lakes, even in remote areas (Vadeboncoeur et al. 2021). 

 

The ecosystem level   

A decade ago, it was already generally accepted that warming may increase in-lake nutrient 

concentrations through enhanced microbially-mediated internal cycling, thereby directly 

promoting eutrophication (Jeppesen et al. 2009). Warming-induced anoxia events following 

higher organic matter decomposition and stronger stratification of the water column will also 

boost sediment release of stored phosphorus and nitrogen (Søndergaard et al. 2003; Søndergaard 

et al. 2013).  

Now it is also becoming clear that the natural shield of lakes and their tributaries, represented by 

riparian zones (Naiman and Decamps 1997; Vidon et al. 2010), can also be affected by climate 

change. Owing to their topographic position in the landscape, riparian zones are generally highly 
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exposed to extreme climatic events, such as floods and droughts, which are expected to increase 

in frequency and intensity in many regions due to climate change (Capon et al. 2013; Stocker et 

al. 2014; Paerl et al. 2019). These changes may pose a risk of a decreased buffering capacity to 

retain, transform, or decrease nutrients before they reach the water (Capon et al. 2013; Pinay et 

al. 2018). 

Both fish and macrophyte communities, key players for pond and shallow lake 

functioning, can be directly and indirectly affected by climate change, in particular by warming,  

as identified in Moss et al. (2011). Changes in both communities can promote several cascading 

effects and, if strong enough, promote ecosystem regime shifts  with different effects on 

ecosystem contributions to societies (Hilt et al. 2017; Janssen et al. 2021).  

Strong changes in fish communities are expected with climate warming, both due to 

direct and indirect effects as observed by different approaches, such as heating experiments, 

long-term monitoring and time series analyses, and space-for-time substitution (summarized in 

Jeppesen et al. 2014). One of the issues that emerged more clearly with the research conducted in 

the last decade is that fish diet often changes with increasing temperature. At the community 

level, a decrease in carnivory (i.e., with omnivorous and herbivorous species becoming more 

abundant and even dominant) within fish communities occurs at lower latitudes and in warmer 

climates (González-Bergonzoni et al. 2012). A change in diet towards more herbivory with 

increasing water temperature has been observed at individual, population, and community levels 

(González-Bergonzoni et al. 2016), following intra-annual variations. Food webs in tropical and 

subtropical lakes are thus more truncated than food webs in similar temperate shallow lakes, as 

found in comparative studies (Iglesias et al. 2017). Different indicators of fish predation suggest 

a stronger effect of fish on prey communities such as zooplankton under warmer climates 
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(Meerhoff et al. 2012). Stronger fish predation on macroinvertebrates is also expected with 

warming (Clemente et al. 2019). Via cascading effects, fish  may therefore enhance the growth 

of phytoplankton and of epiphytic periphyton thus negatively affecting submerged plants. Top-

down mediated elevated phytoplankton biomass in warmer climates has been observed in many 

empirical studies along latitudinal gradients or cross-comparisons (Gyllström et al. 2005; 

Meerhoff et al. 2012), patterns that are further substantiated with comparisons involving a huge 

number of lakes (Jeppesen et al. 2020). Experimental results suggest that linear top-down effects 

may be weaker with warming in cases where fish omnivory (understood as feeding on animal 

and plant items) is of importance (He et al., 2021). Changes in precipitation patterns, although 

much less studied than changes in temperature, may also provoke large changes in lake and pond 

communities and food webs (Ledger et al. 2013; Romero et al. 2020). Variations in the quantity 

and evenness of rainfall, resulting in localized droughts or flooding, can potentially erode the 

base of freshwater food webs, with negative implications for the stability of trophic dynamics 

(Romero et al. 2020). 

Climate warming is also expected to affect macrophytes in many direct and indirect 

ways. Warming may stimulate macrophyte growth in lakes with ambient temperatures currently 

below the macrophytes’ optimum temperatures (Zhang et al. 2019; Lauridsen et al. 2020). This 

increase in growth can potentially overcompensate warming-enhanced herbivory (Bakker et al. 

2016; Calvo et al. 2019). Warming can also lead to a prolongation of the macrophyte growing 

season (Netten et al. 2011), advance phenology and/or higher abundance (Velthuis et al. 2018), 

as well as shifts in species composition and flowering (Li et al. 2017), vegetation type (Peeters et 

al. 2013), and plant stoichiometry (Velthuis et al. 2017). However, some heating experiments 

have instead shown a higher risk of a shift from submerged plants to a dominance by free-
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floating plants (Netten et al. 2010) or filamentous algae (Trochine et al. 2011). The future role of 

submerged macrophytes for maintaining clear water conditions (Scheffer et al. 1993) is unclear 

but will likely diminish in many systems as stated in Moss et al. (2011). Besides from negative 

direct effects, this can result from  indirect negative effects of warming on other communities 

that can suppress their periphyton and phytoplankton competitors, such as grazer 

macroinvertebrates (Brucet et al. 2012; Clemente et al. 2019) and zooplankton (Meerhoffet al. 

2007b; Havens et al. 2009). Warming may also promote phytoplanton and periphyton growth 

(Mahdy et al. 2015; Kazanjian et al. 2018) and in this way increase the susceptibility of 

macrophytes to herbivory (Hidding et al. 2016). 

Low water levels due to more frequent or intense drought can lead to an increase in 

growth of submerged plants (Bakker and Hilt 2016; Ersoy et al. 2020). However, extreme 

reductions in water level may lead to submerged macrophyte collapse and substitution by other 

primary producers, such as floating plants (Moi et al. 2021).  

Sudden increases in water turbidity can occur because of the more frequent extreme 

climatic events (Crisci et al., 2017), including storm-driven particulate and dissolved organic 

matter loss and transport from watersheds to receiving water bodies (Brothers et al. 2014). As 

with macrophytes, turbidity pulses might affect trophic interactions, often more than the 

increases in temperature (Figueiredo et al. 2019). Moreover, the ash of climate change-enhanced 

fires has been found to negatively impact zooplankton (Harper et al. 2019) and fish (Silva et al. 

2020), besides also exerting toxic effects on some algae and macrophytes (Silva et al. 2015). The 

increase in fires may thus be yet another way in which climate change leads to enhanced 

eutrophication and may potentially induce regime shifts from the clear water to the turbid or 

free-floating plant dominated regimes. 
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Trait change in response to climate and eutrophication effects 

In the previous section we focused on changes in ecosystem rates and biomasses linked to 

climate change and eutrophication. In addition to changes in biomass, however, the trait values 

of communities in food webs may also substantially change due to climate warming, as has been 

evidenced in recent research. This can be achieved both through changes in species composition 

and changes in trait values of the different species within a community. The latter intraspecific 

variation has multiple components: ontogenetic change (linked to changes in age distribution), 

phenotypic plasticity (direct response of individuals to higher temperatures), and genetic change 

(i.e., due to evolution) (Govaert et al. 2016).  

A classic example involves the change in body size of fish communities resulting from 

increasing water temperature (Daufresne et al. 2009; Teixeira-de Mello et al. 2009; Jeppesen et 

al. 2010; Brucet et al. 2013). Although not all fish species show a consistent response to climate 

(Jeppesen et al. 2010), a smaller mean body size of adult fishes in warmer climates has been 

confirmed in a comprehensive analysis of a large database along climatic gradients (latitudinal, 

altitudinal, and water depth) in 356 European lakes (Emmrich et al. 2014). The mechanisms 

behind a reduction in fish body size with warming, whether direct, physiology driven, or indirect, 

via trophic web interactions, are the subject of debate (Lefevre et al. 2017). In general, low 

latitude species also grow faster, mature earlier, have shorter life spans and reproduce more 

frequently than high altitude species (reviewed in Meerhoff et al. 2012). A reduction in body size 

in warmer waters has also been observed for zooplankton, both mediated through changes in 

species composition (Gianuca et al. 2018) as well as through genetic change (Geerts et al. 2015; 

Brans et al. 2017). Such changes enhance the positive interaction between climate change and 
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eutrophication, given that smaller zooplankton generally are less efficient grazers than large-

bodied zooplankton (Fig. 2).  

Genetic adaptation, however, may also contribute to reduce the probability of adverse 

effects of warming. Van Doorslaer et al. (2009), for instance, provided experimental evidence 

that an evolutionary trait change upon warming can enhance the capacity of local zooplankton 

populations to reduce invasion success of pre-adapted immigrants from warmer regions.  

From ecosystem back to catchments: landscape level dynamics 

 
One of the issues that has received a tremendous theoretical and empirical impulse since the 

early 2000’s and particularly in the last decade, is the recognition that population persistence, 

community dynamics and biodiversity, and their impacts on ecosystem functioning, are deeply 

affected by the position of a given system in the landscape and the potential connectivity with 

other systems (Loreau et al. 2003; Leibold et al. 2004; Heino et al. 2015; Thompson et al. 2020). 

Biodiversity is strongly affected by species dispersal and information fluxes, and ecosystem 

dynamics are largely determined by the flow of matter and substances among systems (Heino et 

al. 2021). Connectedness in heterogeneous landscapes can increase local biodiversity and 

resilience through a spatial insurance effect (Loreau et al. 2003). A recent study by Horváth et al. 

(2019) showed, through a longitudinal study across more than 50 years, that the disappearance of 

soda pans at the regional level resulted in a concurrent decline in average local diversity in the 

remaining pans following the gradual disappearance of less common species. Effective 

connectedness is indeed not only a function of geographic distances among lakes and ponds, but 

also of the regional abundance of species, as fewer abundant species will occupy less of the 

available patches. Conversely, high connectedness can under some circumstances also be 
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detrimental to diversity (Scheffer et al. 2012), since anthropogenic disturbances (pollution, exotic 

species, fire, eutrophication) may affect more systems simultaneously when they are better 

connected.  

Connectivity can be affected by climate change in a myriad of ways. Warming and 

reduced precipitation can result in the disappearance of ponds and shallow lakes in certain areas, 

or in a modification of hydroperiod leading to a change in lake type (permanent versus 

temporary), resulting in a decrease in local and regional diversity (Horváth et al. 2019). Human 

interventions to mitigate climate change effects may increase drought stress (e.g., in case of 

irrigation for agriculture), counteract it (e.g., restoration measures), or substantially change the 

nature of ponds (e.g., by making temporary ponds deeper and more permanent), depending on 

the situation. An increase in local water storage capacity (by digging ponds and most frequently 

by impounding and fragmenting low order streams and wetlands) is a strategy both farmers and 

policy makers will likely pursue under the predictions of lower or uncertain water availability. 

Such strategies are already implemented in several areas due to fear of future water shortage.  

3. Empirical advances: eutrophication and its symptoms enhance climate change 

 

Moss et al. (2011) hypothesized that eutrophication could promote climate change, but that was 

still largely an open question. In the past decade, much evidence has accumulated indicating that 

several manifestations of eutrophication enhance climate change (see review in Li et al. 2021); 

thus supporting the idea of self-reinforcing feedbacks between both processes (Fig. 3).  

Lake GHG emissions are affected by several external drivers, including changes in 

temperature (Kosten et al. 2010; Aben et al. 2017) and hydrology (Kosten et al. 2018; Keller et 

al. 2020). Temperature can be a major driver of GHG emissions. In experiments conducted along 



 

17 
 

a latitudinal gradient in Europe, a decline in net ecosystem production was found, from positive 

in the colder lakes (implying a net capture of CO2) to negative (implying a net release of CO2) in 

the warmer southern lakes, regardless of nutrient levels (Scharfenberger et al. 2019). The net flux 

of CO2 under a eutrophic and warmer scenario seems to depend on regional climate as well as on 

local abiotic characteristics (Kosten et al. 2010). Changes in hydrology, due to changes in 

precipitation and evaporation patterns, may lead to changes in stratification patterns and trophic 

state, and ultimately in GHG emissions (Fig. 3). For example, in regions with higher 

precipitation and consequent higher runoff from catchments to water bodies, water browning, 

anoxia and eutrophication interact leading to higher CO2 and CH4 emissions (Brothers et al. 

2014; DelSontro et al. 2018).  

Despite the growing evidence of its relevance, eutrophication-induced emissions from 

natural or artificial lakes and ponds are not included in national greenhouse gas inventories or in 

the IPCC guidelines. This is a crucial gap, as lakes and ponds are large sources of methane at the 

global scale. Global estimated emissions from natural lakes and ponds oscillate around 0.012 Pg 

C yr-1 (25-75th percentiles: 0.006-0.015 Pg C yr-1), only for CH4 diffusive flux (Holgerson & 

Raymond, 2016). Calculated mean annual fluxes for individual artificial ponds vary between 0.1 

– 44.3 g CH4 m-2 yr-1 and -36 – 1138 g CO2 m-2 yr-1 (Peacock et al. 2021). A recent synthesis 

suggests, besides, that GHG fluxes vary inversely with lake size, with ca. 37% of total lentic CH4 

emissions (diffusive + ebullitive) coming from systems <0.1 ha. in size (Rosentreter et al. 2021). 

Growing evidence indicates that CH4 emissions tend to be increased by eutrophication and 

climate warming (Davidson et al. 2015; Deemer et al. 2016; Davidson et al. 2018; DelSontro et 

al. 2018; Sepulveda-Jauregui et al. 2018; Beaulieu et al. 2019). Water Chl-a or TP 

concentrations, two clear proxies of eutrophication, can often explain CH4 emissions from lakes 



 

18 
 

and reservoirs (Deemer et al., 2016; DelSontro et al., 2018; Beaulieu et al., 2019). The 

mechanisms responsible for the increased CH4 emissions in eutrophic ecosystems are, however, 

not fully resolved. Under eutrophic conditions, the more abundant and more labile organic matter 

supplies seem to fuel methanogenesis. At the same time, the potential for methane oxidation 

decreases due to a frequent lack of oxygen (Zhou et al. 2019). A productive environment, 

combined with the enhanced metabolic activities caused by higher temperatures (Yvon-Durocher 

et al. 2010), results in a disproportionate increase of CH4 emissions (Davidson et al. 2018). 

Particularly, bubble-mediated emissions increase under eutrophic and warming conditions, 

transporting methane produced in the sediment directly to the atmosphere with little opportunity 

for methanotrophic bacteria to transform some of that CH4 to CO2 (Fig. 3). Current and expected 

reduced wind-speed in many parts of the world (atmospheric stilling) (Mölter et al., 2016) will 

accelerate lake thermal responses to warming and lengthen stratification (Woolway et al., 2019), 

further enhancing the risk of having low oxygen concentrations at the sediment surface in 

shallow lakes (Deng et al. 2018) and thus enhancing the risk of higher CH4 emissions.  

The alternative dominance by phytoplankton, submerged plants, and free-floating 

vegetation, that are likely under eutrophic conditions, can promote contrasting patterns in CO2 

and other GHG fluxes (Davidson et al. 2015; Almeida et al. 2016; Jeppesen et al. 2016; Audet et 

al. 2017). While all primary producers take up CO2 through photosynthesis and release CO2 

through respiration, the effects on CH4 and N2O dynamics may differ among phytoplankton, 

submerged, free-floating, or emergent macrophytes. In the tropics, areas of floodplain lakes 

dominated by free-floating plants can act as net CO2 sinks during all seasons due to carbon 

fixation by plants, whereas open waters generally emit CO2 following hydrological changes 

(Peixoto et al. 2016). Macrophytes that root in the sediment may oxygenate the sediment, 
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thereby potentially increasing consumption and decreasing CH4 production, overall resulting in a 

decrease in methane emissions (Davidson et al. 2015; Davidson et al. 2018). A counteracting 

effect, however, is that rooted plants with emergent parts (i.e., either emergent macrophytes, or 

submerged macrophytes with emergent leaves and flowers) may also transport CH4 from the 

sediments to the atmosphere, by-passing water column CH4 oxygenation. In this way, rooted 

plants may increase CH4 emissions (Oliveira Junior et al. 2019). The overall effects of aquatic 

plants on CH4 emissions are therefore considerably variable (Kosten et al. 2016; Hilt et al. 2017) 

and likely depend on species traits and environmental conditions. Overall, however, current 

evidence suggests that abundant submerged plants may decrease CO2 efflux (Jeppesen et al. 

2016) and tend to decrease CH4 emissions (Colina et al. 2021b). Plants effects on oxygen 

conditions in the sediment and in the water column do not only affect CH4 processes, but also the 

nitrogen cycle (Veraart et al. 2011), thereby potentially impacting N2O emissions. In contrast, 

phytoplankton blooms have been related to uptake of CO2 (Jeppesen et al. 2016) but to high N2O 

emissions (Wang et al. 2006) and to high emissions of GHG in general during the decomposition 

of decaying blooms of cyanobacteria (Yan et al. 2017). 

Different food web configurations, often associated with the alternative regimes in 

shallow lakes and ponds, may also promote different GHG release patterns. A field of very 

active research currently aims at elucidating the role of trophic interactions and particularly the 

role of fish trophic and behavioural effects on GHG dynamics (Devlin et al. 2015; Oliveira 

Junior et al. 2019; Colina et al. 2021a). Under certain conditions, fish predation on zooplankton 

may indirectly promote CH4 oxidizing bacteria and thus decrease CH4 diffusive emissions 

(Devlin et al., 2015). Benthic fish, whose numbers and biomass typically increase with 

eutrophication, may promote contrasting processes. Benthivores may either reduce CH4 
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emissions due to higher oxygen availability in the sediments through bioturbation (Oliveira 

Junior et al. 2019) or, in contrast, lead to an increase in CH4 production through negative top-

down effect on bio-irrigating benthic macroinvertebrates (Colina et al. 2021).  

This review highlights that general patterns are still hard to destil, because an individual 

lake´s emissions are, to a large degree, the result of local morphometric, hydrological, and 

catchment characteristics, including land uses that affect inputs of dissolved organic matter 

(DOM) and suspended sediments, and of dissolved GHGs (Weyhenmeyer et al. 2015). As 

hotspots for biogeochemical processes, lakes and ponds suffer from the ills of the catchments, 

both in terms of ecological conditions due to eutrophication but also in terms of potential 

feedbacks to climate change.  

4. Eutrophication and climate warming synergy and feedbacks through 

cyanobacteria  

 

Despite opposite trends may be expected in nutrient-poor lakes (e.g. Kraemer et al. 2017), under 

warmer climate and eutrophic conditions, a higher biomass of phytoplankton and dominance by 

potentially toxic cyanobacteria is expected. This a consistent result emerging from numerous 

recent studies (Paerl and Huisman 2008; Kosten et al. 2012; Paerl and Paul 2012; Jeppesen et al. 

2014; Huisman et al. 2018; Burford et al. 2020) and research approaches such as modelling for 

individual temperate lakes and basins (Trolle et al. 2011; Kakouei et al. 2021); heating 

experiments  (Hansson et al. 2013, but see Feuchtmayr et al. 2009 and Kratina et al. 2012); and 

latitudinal gradient and cross-comparative studies (Kosten et al. 2012; Meerhoff et al. 2012). 

Long-term increases in water temperature have translated to an acceleration in the dominance by 

cyanobacteria, as detected in sediment records (Taranu et al. 2015). Cyanobacterial biomass is 
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even increasing in northern nutrient poor lakes with the increases in mean temperature, earlier 

ice-out and later ice-on experienced in the last decade (Freeman et al. 2020). Long-term 

monitoring of phytoplankton composition (along a 25-year period) indicated that climatic 

changes, including warming and a decrease in long-term wind speed, combined with high 

nitrogen and phosphorus loads, were important interactive drivers of changes in phytoplankton 

community structure and bloom dynamics in eutrophic Lake Taihu in China (Deng et al. 2018; 

Guo et al. 2019; Paerl et al. 2020). Heat waves also seem to promote cyanobacterial blooms 

(Jöhnk et al. 2008; Wagner and Adrian 2009; Bartosiewicz et al. 2019). 

The interaction of warming and eutrophication may strongly affect other key aspects of 

blooms. Experiments combining warming with nutrient pulses found higher microcystin 

concentrations at the combined treatment than under warming alone (Lürling et al. 2018). A 

strong latitudinal gradient analysis in Europe has shown that direct and indirect effects of 

temperature are the main drivers of the spatial distribution in the toxins produced by 

cyanobacteria, both in terms of their diversity and their concentrations (Mantzouki et al. 2018). 

With climate warming, the direct and indirect effects of increased lake temperatures will likely 

drive changes in cyanobacterial taxa and their production of cyanobacterial toxins; likely 

including promoting the selection of a few Microcystis species or strains producing highly toxic 

microcystin-LR (Mantzouki et al. 2018). Despite variations among lakes in a waterscape, a 

regional increase in microcystin maxima and duration of blooms has also been clearly explained 

by increasing temperature in central North America (Hayes et al. 2020), with increasing risks to 

human health.  

Growing evidence indicates that cyanobacterial dominance will exert a positive feedback 

with climate warming (Havens et al. 2016; Paerl et al. 2020). Many cyanobacterial species 
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proliferate on the lake surface, absorbing light and enhancing localized temperature increases 

and increasing thermal stratification potentials (Kahru et al. 1993). Cyanobacteria promote the 

release of GHG during the decomposition following the collapse of a bloom, particularly of 

methane (Yan et al. 2017). Cyanobacteria also promote remineralization of nutrients during 

blooms, leading to multiple blooms in a single season. Under eutrophic and warming conditions, 

cyanobacteria dominance may thus be a self-perpetuating prophecy (Figs. 2 & 3).  

5. Advances in mitigation and adaptation policies 

 

The advances in research and understanding of the feedbacks between eutrophication and climate 

change, however, have not translated in significant advances in management actions. Despite the 

current recognition of the integral role lakes and ponds play in GHG emissions (Rosentreter et al. 

2021), they are typically not included in national greenhouse gas inventories. We call for their 

inclusion, as it would contribute to reduce GHG emissions and lead to efforts to promote 

biodiversity conservation and restoration measures in ponds and lakes. We also call for decision 

making strategies that build natural resilience, as illustrated for some iconic ecosystems 

(Scheffer et al. 2015), particularly wetlands (Green et al. 2017).  

The best approaches for mitigating the effects of human activity on lake phytoplankton 

and cyanobacteria depend strongly on lake sensitivity to long-term change and the magnitude of 

projected climate changes and land use at a given location (Kakouei et al. 2021). Although 

climate warming may promote eutrophication and its symptoms, eutrophication is still largely 

human-controlled. The application of appropriate management measures should lead to a 

reduction in nutrients, despite increasing air temperatures. In the case of lakes and ponds, 

measures should aim at decreasing nutrient exports from the catchments and minimizing 
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eutrophication symptoms and, at the same time, at protecting and/or recovering resilient 

mechanisms at the ecosystem and landscape level such as the natural hydrological patterns (Fig. 

4), buffer zones, and existing landscape connectivity with other waterbodies. The monitoring and 

restoration of lake biodiversity and ecosystem services should also consider that besides the 

individual responses of a given lake or pond, a high degree of dynamism occurs at local, 

regional, and global spatial scales (Heino et al. 2021). Connected and heterogeneous landscapes 

allow metacommunity dynamics to build biodiversity resilience against future disturbances 

driven by climate change, such as fires (Cunillera‐Montcusí et al. 2021).  

Measures to reduce point sources of nutrients are well known (Moss 1990; Moss et al. 

1996; Hamilton et al. 2016). Still, in many locations around the globe, sanitation, proper sewage 

treatment and disposal of black and grey waters from cities and industries (including confined 

animal operations) are lacking or largely insufficient. A global decrease in nutrient discharge is 

only possible when wastewater treatment plants are extended with at least tertiary treatment.  

In contrast, measures to reduce diffuse nutrient input are more difficult, since they need 

to be implemented at the catchment level and therefore may require action of many stakeholders 

(Hamilton et al. 2016). To illustrate the problem, based on a complex combination of models, 

Ockenden et al. (2017) suggested that the effects of climate change on surface runoff and 

consequent increase in diffuse P loading to fresh waters might be limited only by large-scale 

agricultural changes (e.g., 20-80% reduction in current levels of phosphorus inputs). Beaulieu et 

al. (2013) models indicated that under a scenario of atmospheric CO2 doubling from 1990 levels 

(resulting in an estimated 3.3 oC increase in surface water), a doubling of cyanobacteria biomass 

could be expected. Future nutrient loadings should thus be seriously decreased, also considering 

that a series of reinforcing feedbacks may occur under cyanobacterial dominance decreasing the 
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nutrient threshold theoretically needed to recover clear water conditions, as also suggested by 

recent models that incorporate cyanobacteria traits (Chang et al. 2020). 

Measures to reduce both N and P loading, particularly in priority catchments (in terms of 

human uses, such as drinking water sources, or in terms of biodiversity and cultural values), may 

include: 1) promotion of organic or agroecological production of food and feed instead of 

conventional, chemically-based agriculture, 2) formulation and application of fertilisers as 

determined by crop needs and soil retention capacity, as well as weather and climate forecast, 3) 

improvement of agricultural practices, including minimizing chanelization to reduce both soil 

erosion and dissolved nutrient export, 4) recognition of the hydrological cycle of particular lakes 

and streams, allowing floodplains and wetlands to develop and increase nutrient and organic 

matter retention, 5) develop climate-smart irrigation systems, and 6) reestablishment of native 

riparian vegetation along rivers and shores of large lakes. The appropriate management or 

restoration of ponds within agricultural landscapes can have a secondary positive effect of 

increasing local and regional biodiversity (Swartz & Miller 2021) and contributing to the 

potential connectivity among freshwaters.  

Measures to reduce loading at the catchment and landscape level are the most needed 

since they deal with the cause of the problem. However, measures taken at the system level can 

also enhance its own resilient mechanisms to better cope with climate change effects (e.g., 

Urrutia-Cordero et al. 2016). Various in-lake measures may also help counteract the synergy 

between eutrophication and warming. One such method is biomanipulation, including removal of 

planktivorous and benthivorous fish. In northern temperate lakes in Europe biomanipulation has 

had variable long-term effectiveness (Jeppesen et al. 2012), but a shift to clear water and 

promotion of non-cyanobacterial species, along with submerged plants and higher biodiversity, 
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is frequent (Fox et al. 2020). Biomanipulation in subtropical and tropical lakes is often less 

successful mainly due to trophic web structure (reviewed in Jeppesen et al., 2012), which may 

indicate that its future success under warmer conditions may be weaker or shorter-lived than 

needed. Chemical intervention, aimed at precipitating and/or reducing P release from the 

sediment, has been used to reverse eutrophication (Lürling et al. 2016). A promising alternative 

for warm and warming, particularly not too shallow, lakes may be to combine fish removal, 

transplantation of submerged macrophytes, and capping phosphorus in the sediment (Liu et al. 

2018; Zhang et al. 2021), with potential lower restoration costs and environmental impacts (via 

reduced use of chemicals and less fish kills). More research needs to be done on a range of 

ecosystems and climatic conditions to corroborate these results.  

Degraded ecosystems are too often resistant to traditional restoration measures due to 

constraints on changes in landscape connectivity and organization, loss of native species pools, 

shifts in guilds dominance, changes in major trophic interactions, invasion by exotic species, and 

associated changes in biogeochemical processes (Suding et al. 2004). The efforts described 

above would not only help recover good water quality and lead to improved biodiversity, but 

also decrease the carbon footprints of fresh waters, even turning some waters from net sources to 

net sinks of GHG, by increasing carbon sequestration while decreasing methane emissions 

(Taylor et al. 2019). This will also contribute to ecosystem resilience to counter the pressures 

from climate change. Lake management measures aimed at reducing GHG emissions are starting 

to be applied and results need to be monitored (e.g., by water managers in a Dutch waterscape, 

Motelica-Wagenaar et al. 2020). 

Final remarks 

 



 

26 
 

The COVID 19 crisis, despite its terrible death toll and health, social, and economic 

consequences, can be seen as an opportunity to inspire reactions against other global crises, such 

as the biodiversity and climate crisis. As a global society we have learned that we can respond 

immediately and dramatically, in ways unthinkable before December 2019. Governments have 

managed to lock down hundreds of cities, ban international travels, and prevent millions of 

children from going to schools, with huge political, economic, and societal costs. Considering 

these dramatic changes in our societal habits, how difficult can it be to put a limit to the massive 

use of agrochemicals, prevent the fragmentation and disappearance of lakes and ponds in 

connected landscapes, and to promote climate-smart restoration and conservation practices? An 

integrated response to tackle eutrophication and climate change and their feedbacks is urgently 

needed to maintain and recover water quality, protect the remaining biodiversity, and enhance 

ecosystem resiliency as we jointly engage to mitigate the negative effects of climate change. 
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Figure legends 
 
 

Fig. 1.  Summary of some of the main climate-change related drivers acting at different spatial 

and ecological levels that can directly or indirectly promote eutrophication and its symptoms, as 

explained in section 2. For each level, direct and indirect changes promoted by climate change 

are shown inside panels, while some of main system responses enhancing eutrophication and/or 

its symptoms are shown at the right-hand side. 

 

Fig. 2.  Schematic view of main feedback effects of climate change on eutrophication and its 

symptoms. Dashed line indicates that changes in precipitation regimes may either lead to higher 

or lower nutrient and organic carbon loading, depending on local and regional circumstances. 

Warming intensifies water stratification and nutrient mineralization, and directly or indirectly 

promotes several biological changes leading to a higher likelihood of free-floating plant and 

phytoplankton dominance. The resilience against eutrophication is consequently reduced with 

climate warming, and the likelihood of cyanobacteria blooms, which are self-perpetuating 

regimes under eutrophic conditions, increases. The resilience of an individual water body also 

depends on landscape processes, including other anthropogenic impacts, such as fragmentation 

and climate-change promoted fires, and the potential connectivity with other freshwaters. 

Drawing by Alan R. Joyner, based on Fig. 1 in Moss et al. (2011). 

 
Fig. 3. Current understanding of main feedback effects of eutrophication on climate change. The 

blue arrow indicates carbon sequestration; red arrows indicate carbon emission routes; black 

arrows indicate other type of effects. The dashed line indicates that changes in precipitation 

regimes may either lead to higher or lower nutrient and organic carbon loading, depending on 



 

41 
 

local and regional circumstances. Warming and eutrophication intensify water stratification and 

reduce oxygen concentrations. Direct and indirect changes in biotic interactions under eutrophic 

conditions promote cyanobacteria dominance, which has its own feedbacks with climate change. 

Warming and eutrophication may increase both CO2 uptake and release and thus net CO2 balance 

is unclear, whereas potential effects on other GHG and particularly CH4 are evident. Strong 

fluctuations in water level due to changes in precipitation may lead to cycles of drying-rewetting 

of sediments, promoting CO2 release. GHG are produced and released by difussion accross 

diferent lake compartments, and CH4 also by ebullition (bubbles). The role on GHG emissions of 

key communities, such as macrophytes, fish and macroinvertebrates, are subject of intense 

research. Drawing by Alan R. Joyner, based on Fig. 2 in Moss et al. (2011). 

 
Fig. 4. Synergy between climate warming and eutrophication, highlighting some of the 

feedbacks including effects through changes in the hydrological dynamics. To restore or keep 

lakes and ponds in a state of high biodiversity, clear water, and a low carbon footprint (illustrated 

as the grey space), as climate change progresses a major reduction in nutrient loading and 

eutrophication symptoms are required. That often needs measures at the landscape and lake 

levels to maintain, strengthen, or recover resilient mechanisms. See the text for the elaboration 

on drivers and feedbacks between and within climate warming and eutrophication, as well as on 

other climate change-related effects such as a potential increase in salinization. Based on the safe 

operating space for wetlands scheme in Green et al. (2017). Painting by Tone Bjordam.  
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