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Abstract 
When we compare an individual’s genome with the reference, several mutations are encountered. Most of these 

mutations are neutral, but some others can lead to pathogenic consequences. Given the rapid increase in the amount 

of generated sequencing data, there is an urgent need to accurately determine whether genetic variants detected in 

patients are disease causing or not. While numerous computational predictive tools exist, their ability to make accurate 

predictions is still limited. In this study, we focus on missense variants, those that modify the coding amino acid, and 

our aim is to determine if the pathogenicity of these variants can be extrapolated to homologous variants, i.e., variants 

affecting the same position in homologous proteins and exhibiting the same or similar amino acid change. With this 

purpose, we extracted homologous variants in a dataset composed of all reported disease-causing (ClinVar) and neutral 

(gnomAD) human missense variants from proteins with autosomal dominant (AD) inheritance. We collected 63,192 

pairs of homologous variants from which 60,822 were disease-causing, 1,799 were neutral and 571 of them disagreed 

in pathogenicity annotation, achieving an error rate of 0.9%. Thus, our data supports that pathogenicity can be 

extrapolated, with a high accuracy and reliability, between homologous variants. This approach expands the number of 

variants for which pathogenicity can be annotated with a high precision. 

Contact: gabriel.ruiz@uvic.cat 
GitHub link (Contact for access): https://github.com/ruizzgabriel/Homologous-mutations/ 
Supplementary data are available at: https://ja.cat/gruiz_Supp_mat_FMP_MSc_Omics_Data_Analysis_UVic-UCC 

 

Introduction 
Genetic variation has driven evolution since the 

appearance of the first simplest organism to today’s most 

complex organisms. It allows diversity in the organisms, 

which has the potential to improve the species. 

Individuals presenting a differential trait that provides 

them some adaptive advantage to their environment, are 

more likely to survive and reproduce, passing the 

adaptive traits onto their offspring. Therefore, species can 

evolve thanks to these variations that can be consolidated 

in a process called natural selection. Yet, individuals also 

present different genetic variations in different 

populations, due to the differences in their environments. 

Although some variants represent an adaptive trait, 

others are neutral, and some others prevent the 

adaptation of the organism to the environment by 

hindering its survival. The latter variants are less likely to 

be passed to the offspring because they present a 

survival disadvantage in the environment, as in the case 

of disease-causing variants, so they are rarely present in 

the current population. There are different mechanisms of 

genetic variation that allow organisms to develop 

differences in their genomes such as single nucleotide 

mutations. A mutation is a variation in the DNA sequence 

of an organism that can occur from errors in DNA 

replication during cell division, exposure to mutagens or 

a viral infection. Variants that occur in body cells are 

called somatic variants whereas variants that occur in 

eggs and sperm are called germline mutations and can 

be passed onto offspring. 

Depending on the frequency of appearing in a 

population, variants are classified as: (1) rare variants, 

that present a frequency <0.5%, (2) low-frequency 

variants, that present a frequency between 0.5% and 5%, 

and (3) common variants that present a frequency higher 

than 5%.[1] From the total number of human variants 

annotated, only 10% are common. In contrast, a human 

genome presents approximately between 1-4% of rare 

variants, while the vast majority of the variants are 

common.[1]  

The variants can be of type synonymous (the change in 

the nucleotide sequence does not alter the amino acid 

sequence), truncating variant (resulting in a premature 

stop coding and changing or not changing the amino acid 

sequence between the introduction of the stop codon), 

splice site variants (that affect splice site sequences), 

UTR variants (nucleotide changes that affect the 3’UTR 

and the 5’UTR sequences) and missense variants. 

Among the different types of single nucleotide variants, 

missense variants are the most common.[2] A missense 

variant is a DNA change that entails an amino acid 

encodement variation at a particular protein position. 

Thus, missense variants cause the change of an amino 

acid sequence, and it is estimated that in a typical human 

genome, 10,000 to 12,000 missense variants altering 

protein sequence can be found.[1] Depending on the 

position of the amino acid and the change in its 

physicochemical properties, missense variants can affect 

protein structure and function or not, i.e., conserved 

regions and drastic amino acid changes are more prompt 
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to affect protein structure and function, and thus may be 

involved in pathogenesis (or, more rarely, provide an 

advantage). 

Missense variants can lead to monogenic diseases, 

diseases that can be caused by variants in a single gene, 

or to complex disease, caused by the contributions of 

multiple genes. Mendelian diseases, those presenting an 

inheritance type that follow the principles proposed by 

Gregor Mendel describing the presence of two alleles for 

each gene, are monogenic diseases. The most common 

interaction between alleles is a dominant/recessive 

relationship, where the dominant allele imposes its 

phenotype overruling the recessive. Mendel proposed an 

inheritance model in which the combination of the alleles 

of both parents would define the probabilities of 

occurrence in their offspring. Mendelian diseases 

typically correspond to rare diseases, because they occur 

infrequently in the general population, in less than 1 in 

2,000 individuals.[3] Also, depending on if the gene is 

present in a sex chromosome or not, it will present a sex-

linked or an autosomal pattern. In contrast with sex-

linked, autosomal inheritance allows the transmission of 

traits regardless of the sex of the parent or the child. Thus, 

autosomal dominant Mendelian diseases allow a direct 

approach to study them with respect to the recessive 

ones because functional data can be related with the 

variation, because a single mutated allele is enough to 

cause the disease, but also because it can be studied 

regardless of the sex.[2] In fact, our understanding of the 

relationship between gene function and human 

phenotypes is mostly based on the study of rare genetic 

variations caused by Mendelian phenotypes with a 

dominant autosomal inheritance.[4] 

Most identified Mendelian phenotypes result from 

altered function, localization, or presence of the encoded 

proteins, even though the protein-coding regions are only 

around 1% of the human genome. A typical genome 

differs from the reference human genome at 4.1 million to 

5.0 million sites, and 24-30 variants per genome are 

implicated in rare diseases.[1] Over the past twenty years, 

there have been significant advancements in the field of 

genomics, resulting in a considerable decrease in the 

cost of genome sequencing.[5] Despite these 

advancements, there remains a challenge in determining 

which rare variants cause a monogenic disease by 

affecting the structure and function of a protein. There is 

still a lack of understanding about the relationship 

between genetic variability between patients and possible 

pathology. It has been shown that missense variants 

causing rare Mendelian diseases are more common than 

previously believed: around 50% of genes underlying the 

known Mendelian phenotypes were still unknown in 

2015.[6] A significant portion of known human diseases, 

about 0.4% of live births, are made up of clinically 

recognized Mendelian phenotypes and, if we consider all 

congenital anomalies, approximately 8% of live births 

have a genetic disorder that can be identified by early 

adulthood. This means that every year, around 8 million 

children are born with a serious genetic condition that is 

either life-threatening or could result in disability. Birth 

defects, which include a significant proportion of 

Mendelian phenotypes, are the leading cause of death in 

infants during their first year of life. Every year, more than 

three million children under the age of five die from a birth 

defect, and a similar number survive with significant 

health problems. In addition, the diagnosis time is often 

extensive.[4] According to a European survey of eight rare 

diseases, including several Mendelian diseases, 25% of 

patients had to wait between 5 and 30 years from early 

symptoms to confirmatory diagnosis of their disease, and 

40% of them first received an erroneous diagnosis.[6] 

While high-throughput data is being generated and new 

mutations are being identified and detected, we are still 

not able to check the pathogenic/non-pathogenic effects 

of the variants pari passu. Due to the high costs derived 

from experimentally annotating the pathogenicity of a 

variant, i.e., introducing the variant and observing how the 

protein structure and function changes, the variant 

consequences must be studied computationally to save 

resources and time. If the protein function is altered as a 

consequence of the amino acid change, the variant can 

be disease-causing, but they can also be neutral as they 

are not benign and do not alter the protein function. 

Accordingly, variants that are (potentially) disease-

causing are known as pathogenic variants. Still, there are 

some missense variants affecting the protein structure 

and function that are not disease-causing per se, as are 

involved in complex disease or because the protein 

function is not essential for the organism. It is vital to early 

detect the variant implications in the patient to predict its 

possible pathogenicity and provide higher accuracy on 

diagnosis with the aim of improving patients’ quality of life. 

Numerous efforts are being performed to detect the 

consequences of missense variants and easily 

differentiate whether they are pathogenic or not. Several 

prediction tools have therefore been developed to help 

this process, called variant prioritization. They use 

different approaches with the aim of providing 

approximations on the pathogenic or neutral effects of the 

discovered variants, so that we could improve our 

understanding of certain diseases and be able to detect 

them early on patients. 

Many of the main tools used to predict the impact of 

genetic variations rely on analyzing phylogenetic 

conservation of the region and how changes may affect 

the structure and function of a protein, such as SIFT[7], 

Provean[8] or Mutation Assessor[9]. While other tools 

incorporate structural parameters for variant classification 

such as Poly-Phen-2[10]. But they still have some 

limitations.[2,11]  

The sensitivity of SIFT and PolyPhen tools were 

assessed in a set of 141 missense variants and they 

presented 69% and 68% respectively, whereas their 

specificity was 13% and 16%.[11] In another study, SIFT 

and PolyPhen-2 accuracies were checked in GPCRs 

involved in neuroendocrine regulation of reproduction, 

showing 83% and 85%, respectively.[12] 

Despite numerous tools with different approaches 

having been designed, they are still not accurate enough. 

Thus, there is a great interest in predicting the 

pathogenicity of variants, since identifying the disease-

causing variant is the first step in designing a therapeutic 

strategy. 

A recent study presented by our group has recently 

identified that for GRIN-related disorders, a monogenic 

rare disease, the pathogenicity of missense variants can 

be extrapolated between homologous variants, (variants 

that affect the same equivalent position in homologous 

proteins)[13]. This is based on the hypothesis that similar 

amino acid changes in similar proteins may result in the 
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same effect in both protein structure and functions in a 

dominant autosomal monogenic disease, where there is 

a clear correlation between the effect of a single variant 

in protein structure and function and the clinical 

phenotype. Taking advantage of this recent study, we 

want to explore if pathogenicity of missense variants can 

be extrapolated between homologous variants for all 

genes in the human genome involved in dominant 

autosomal monogenic diseases, thus contributing to 

expanding the pathogenicity annotations of newly 

identified variants, and speeding up the identification of 

pathogenic variants in patients that are sequenced under 

the suspicions of a rare genetic disease. 

 

Objectives 
This study seeks to elucidate whether it is possible to use 

the available information regarding the pathogenicity 

annotations in human missense variants to extrapolate 

pathogenicity annotations to homologous variants, i.e., 

variants presenting the same or similar amino acid 

changes in equivalent positions between homologous 

proteins.  We hypothesize that similar changes in 

equivalent positions of homologous proteins may result in 

the same effect in protein structure and function. For this 

purpose, we will compare pathogenicity annotations 

between all homologous missense variants in the human 

genome. 

Methods 
High-throughput data was collected from UniProt, 

gnomAD and ClinVar databases and combined using the 

pipeline illustrated in Figure 1.  

Specifically, we retrieved pathogenic and non-

pathogenic variants details from ClinVar and gnomAD. 

UniProtKb was consulted to retrieve all reviewed protein 

information for Homo sapiens. For each of the 20,422 

human curated proteins, the essential information was 

retrieved: gene and protein names, Pfam codes, and 

references to other databases (ENSEMBL, RefSeq and 

InterPro). Once UniProtKb human proteins were 

obtained, they were sought in gnomAD to retrieve all 

available (non-pathogenic or neutral) variants based on 

the Ensembl gene ID. Thereby, information regarding 

missense, truncations, splice sites, UTRs, frameshift and 

stop gained molecular consequences were acquired. 

Additionally, this information was searched in two 

gnomAD datasets: v2.1 and v3. For each variant, several 

details were taken including chromosome, position in the 

genome, the SNPs ID ‘rsID’, transcript ID, gene name, 

molecular consequence, variant ID, and genome and 

exome features. Non-pathogenic variants files from 

gnomAD required a processing step. We removed the 

non-desired columns to maintain only the desired 

information and to decrease the size of the files. 

Accordingly, the conserved features of each variant were 

gene name, ENSEMBL transcript ID, RefSeq transcript 

ID, rsID, protein change, molecular consequence, clinical 

significance, and genome and exome allele frequencies 

(AF). 

Besides neutral variants, the study also required 

disease-causing variants. Pathogenic and likely 

pathogenic variants were retrieved from ClinVar. A 

dataset of 208,426 disease-causing human variants was 

obtained. The retrieved information from ClinVar 

comprised variant name, transcript name, gene name 

and protein change, clinical significance, review status, 

chromosome location, variation ID, allele ID, among 

others. 

Once the raw data was collected, we processed it to 

retrieve the information of interest. We extracted the 

information related to the annotated NM NCBI accession 

code and protein change into different columns. Also, the 

protein change was split into different columns to 

separate the position and initial and final amino acids in 

different columns. In addition, Pfam codes and UniProt 

accession names were added, linking ClinVar and 

UniProt files by the RefSeq transcript code (NM). Despite 

that, NM codes present in UniProt obtained from RefSeq 

were only the canonical ones, and since each gene can 

be associated with different NM codes, a high number of 

entries would have not been related with UniProt. To 

address this and avoid losing information, the BioMart 

database was used to relate those NM codes in ClinVar 

that could not have been related with its corresponding 

entries in UniProt. 

As a final step, several restrictions were applied to the 

large datasets of protein variants to retain only entries 

that met the desired conditions. Consequently, after 

applying all filters, the numbers of pathogenic and neutral 

variants were reduced (See Table 2). First, pathogenic 

and non-pathogenic variants were filtered to keep only 

genes following an autosomal dominant (AD) inheritance 

pattern (see introduction). This information was taken 

from the OMIM dataset and resulted in 2,224 AD genes 

out of 20,422 human genes.  Second, we discarded 

variants with types other than missense. ClinVar was also 

filtered to exclude somatic variants, which are DNA 

alterations that occur in non-germ cells and therefore are 

not inherited in the offspring. Although gnomAD is meant 

to be a non-pathogenic database, it is possible that it may 

include pathogenic variants that have not yet been 

characterized. To prevent this, we have discarded 

variants with an AF< 5 ∗ 10−4. 

Homologous positions using sequence alignments 

We seek for homologous variants, i.e., those that occur in 

members of the same family and modify amino acids in 

the same position. We used Pfam (as integrated into the 

InterPro database) both for family classification and for 

the family alignments that allowed normalizing the protein 

change positions annotated in ClinVar and gnomAD to 

check for homologous variants. 

From the different alignments available, full alignments 

were chosen. Protein change positions were compared 

with the alignments from Pfam, and a standard position 

was duly extracted. In this process we checked that the 

residue in the alignment matched the initial amino acid 

described in the protein change at the corresponding 

position. We only kept cases that met this requirement 

since not all NM amino acid numbering are equal as in 

Pfam. 

In the retrieved Pfam alignments, upper and lower case 

residues were found, as well as different gap characters: 

points and slashes. Only upper case residues were 

considered to obtain equivalent positions, but both 

different gap types were treated uniformly as gaps. Upper 

case residues are the ones that are confidently aligned to 

the profile HMM (Hidden Markov Model), which is the 
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Fig. 1. Workflow representing the different steps of data collection (blue), data processing (green) and data filtering (yellow). 
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computational algorithm used by Pfam to identify 

similarities between protein sequences. Otherwise, a 

lower case residue is represented in the alignment when 

an insertion occurs after an envelope is detected for a 

profile HMM match. An envelope is considered the region 

on the sequence where the match has been 

probabilistically determined to lie.[14] Moreover, points are 

used to align sequences that have extra amino acids that 

are not part of the match in the profile HMM, and slash 

characters are used when the HMM profile expects a 

residue to be present in the sequence but is missing.[15] 

After aligning the protein change positions, pathogenic 

and neutral variant datasets were merged conserving 

their database of origin, resulting in a single variants 

dataset. After that, this whole variant's dataset was split 

into Pfam families. 

Furthermore, since we were interested in matching 

homologous variants, apart from matching exact amino 

acid changes, we were interested in detecting variants 

involving amino acids with similar physicochemical 

properties. To accomplish that, the BLOSUM62 

substitution matrix was computed to extend the previous 

results matching pairs with positive amino acid changes. 

Since the aim of the experiment was to find variants with 

equivalent physicochemical properties to extrapolate the 

possible pathology, we were interested in the protein 

change result. 

General purpose databases 

In addition to the database specifically dealing with 

mutation data, we have used additional biological 

databases to get complementary information for the 

characterization of the genes and its families. Some of the 

following ones contain protein information, sequence 

alignment information or relations between different 

accession codes. 

The Universal Protein Resource (UniProt, 

https://www.uniprot.org/) is a freely accessible, 

comprehensive resource for protein sequence and 

functional information. It is maintained by the UniProt 

Consortium, which consists of the European 

Bioinformatics Institute (EMBL-EBI), the Swiss Institute of 

Bioinformatics (SIB), and the Protein Information 

Resource (PIR). The UniProt Knowledgebase 

(UniProtKB) is the central hub for the collection of 

functional information on proteins, with accurate, 

consistent and rich annotation. It includes both manually 

reviewed (UniProtKB/Swiss-Prot) and unreviewed 

(UniProtKB/TrEMBL) records.[16] It contains sequences 

from 14,403 different species where the most 

represented one is Homo sapiens with 20,422 reviewed 

entries (UniProtKB/Swiss-Prot release 2023_01).[17] 

 

Pfam(https://www.ebi.ac.uk/interpro/entry/pfam/#table) 

is a database of protein families and domains integrated 

in the InterPro database. It is used to analyze novel 

genomes and metagenomes, as well as to guide 

experimental work on particular proteins and systems. 

Pfam entries are manually annotated with functional 

information from the literature where available.[18] Current 

version (Pfam release 35.0) contains 19,632 families but 

only 6,680 of them are found in human. 

 

BioMart(http://www.ensembl.org/info/data/biomart/inde

x.html) is a community-driven platform supported by 

Ensembl, that provides access to over 800 different 

biological datasets from various fields such as genomics, 

proteomics, cancer data, and more. Can be accessed by 

a web-based tool that provides an easy way to extract 

data, where different parameters can be modified to 

access the specific requirements.[19] 

NCBI’s Reference Sequence (RefSeq, 

https://www.ncbi.nlm.nih.gov/refseq/) database 

integrates curated and non-redundant DNA, RNA and 

protein sequences from a wide range of species. In 

addition, it also provides genetic and functional 

information with the sequence data. Can be accessed by 

a web-based tool or by available links in other NCBI 

resources.[20] 

Variants Databases 

The large amount of mutation data available is 

conveniently stored and curated in specialized 

databases. In the present report we have used the 

following resources, which provide valuable information 

about the variants pathogenicity: 

ClinVar(https://www.ncbi.nlm.nih.gov/clinvar/) is a 

freely available, public archive of human genetic variants 

and interpretations of their relationships to diseases and 

other conditions, maintained at the National Institutes of 

Health (NIH). More than 1300 organizations have 

contributed their interpretations of variants to the ClinVar 

database, including clinical testing laboratories, research 

laboratories, locus-specific databases, clinicians, patient 

registries, expert panels, and other organizations.[21] 

The Genome Aggregation Database (gnomAD, 

https://gnomad.broadinstitute.org/) is the largest publicly 

available resource that aggregates and harmonizes both 

exome and genome sequencing data from a wide variety 

of large-scale sequencing projects. It provides summary 

data on genetic variants observed in tens of thousands of 

individuals, with the goal of facilitating the interpretation 

of genetic variation in both clinical and research 

settings.[22] In this project, two versions of gnomAD were 

used: v2.1 and v3. v2.1 release is composed of 125,748 

exomes and 15,708 genomes (GRCh37) from 15 

population subgroups[23], whereas v3 includes 71,102 

genomes (GRCh38) from 9 population groups.[24] 

The Online Mendelian Inheritance in Man (OMIM, 

https://www.omim.org/) is a comprehensive and 

authoritative database of human genes and genetic 

phenotypes that is updated daily. All its entries are 

curated and contain full-text overviews of genes and 

genetic phenotypes that can be used by students, 

researchers, and clinicians.[25] 
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http://www.ensembl.org/info/data/biomart/index.html
http://www.ensembl.org/info/data/biomart/index.html
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/clinvar/
https://gnomad.broadinstitute.org/
https://www.omim.org/
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Results and discussion 

Description of the Human variants 

We extracted all pathogenic and non-pathogenic human 

missense variants available in ClinVar and gnomAD, 

respectively (see Methods). A summary of the data 

obtained is presented in Table 1. Within the pathogenic 

variants, we found a total number of 208,426 variants. 

Among them, truncation/frameshift/stop gained variants 

was the largest group with 124,945 variants (58.9%), 

followed by missense variants with 52,190 variants 

(24.6%). Also, we found 25,140 splice site variants 

(11.9%) and 9,740 UTR variants (4.6%). The distribution 

is displayed in Figure 2. In the case of non-pathogenic 

variant datasets, we obtained 18,017,079 and 

14,569,514 variants in v2.1 (annotated on reference 

genome GRCh37) and v3 (annotated on GRCh38 

reference genome), respectively. In total we compiled 

32,450,901 unique variants (only 135,692 variants were 

present in both datasets). Among them, missense 

variants were the largest group found in both versions 

(35.9% in v2.1 and 31.6% in v3), followed by synonymous 

variants, 3,003,140 variants in v2.1 (16.7%) and 

2,200,104 in v3 (15.1%). In addition, we found 929,699 

UTR variants in v2.1 (5.2%) and 920,608 in v3 (6.3%), 

and 903,882 splice site variants in v2.1 (5%) and 653,326 

in v3 (4.5%). Truncation/frameshift/stop gained group 

was the smallest group (3% in v2.1 and 2.8% in v3). (See 

Fig. 2 for pathogenic and non-pathogenic variant 

distributions). Variants from ClinVar occur in only 6,567 

unique genes whereas variants from gnomAD v2.1 and 

gnomAD v3 occur in 18,656 and 19,033 unique genes, 

respectively. Interestingly, from the 20,423 coding genes 

in the human genome according to the UniProt, only 32% 

present pathogenic variants. 

Pathogenic and non-pathogenic missense variants 

in autosomal dominant (AD) inheritance 

We aimed to check if pathogenicity could be extrapolated 

between homologous variants, defined as variants 

presenting the exact amino acid change or when resulting 

amino acids exhibit similar physicochemical properties. In 

order to compare the pathogenicity between variants able 

to cause a disease due to a change in one single amino 

acid, only missense variants from proteins involved in AD 

inheritance type were kept. This inheritance model 

implies that the gene in question is located on non-sex 

chromosomes and only a single copy of the mutated gene 

is enough to cause the disorder. In contrast with sex-

linked variants, autosomal variants have an inheritance 

and presentation pattern that does not depend on the sex 

of the parent or the child so that we can study them 

regardless of the sex. We found 2,224 AD genes in the 

OMIM database. When considering only variants in AD 

genes, the pathogenic dataset reduces from 52,190 to 

28,587 missense variants. For non-pathogenic variants, 

this implied a reduction from 6,465,390 and 4,606,664 

variants to 875,383 and 601,823. (See Table 2) 

Overall, as we can see in Table 2, our pathogenic 

variant dataset suffered a reduction of 7.3-fold mainly due 

to excluding variants other than missense type, but also 

to conserving only AD inheritance type genes. In contrast, 

when referring to non-pathogenic variants, a more drastic 

drop can be noticed. From the original 6,47 million 

missense variants in gnomAD v2.1, only 875,383 of these 

variants accomplished these requirements, while v3 only 

conserved 601,823 missense variants from the original 

4,61 million. 

 

 

 

 

Fig. 2. Frequencies of the different human pathogenic and 
non-pathogenic variant types. From left to right, variants 
obtained from ClinVar, gnomAD v2.1 and gnomAD v3.  

Table 1. The number of variants and genes after the processing step.  

PATHOGENIC 
(ClinVar) 

NON-PATHOGENIC 
(gnomAD v2.1) 

NON-PATHOGENIC 
(gnomAD v3) 

Missense variants 52,190 6,465,390 4,606,664 

Truncation/Frameshift/Stop 
gained variants 

124,945 541,008 400,856 

Splice site variants 25,140 903,882 653,326 

Synonymous variants - 3,003,140 2,200,104 

UTR variants 9,740 929,699 920,608 

Total variants 

(Unique genes) 

208,426 

(6,563) 

18,017,079 

(18,656) 

14,569,514 

(19,033) 
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Identification of equivalent positions between 

homologous variants 

Our goal is to extrapolate pathogenicity between 

homologous variants, i.e., compare the pathogenicity 

between variants able to cause a disease due to a 

change in one single amino acid. Two variants were 

considered homologous if they occur in members of the 

same Pfam family and modify amino acids in the same 

position in the family alignment (see Methods). 

Our filtered dataset contained variants located in 1,612 

different Pfam families. This is a small fraction of the 

6,680 Pfam families that contain human proteins. 

Moreover, not all variants could be mapped in the Pfam 

alignments. Consequently, pathogenic variants were 

reduced from 28,587 to 19,318, while non-pathogenic 

variants were reduced by 3-fold in both gnomAD versions 

(see Table 3). The number of variants was reduced due 

to the fact that no equivalent position was found in Pfam 

for all of them. Also, we only conserved the variants that 

matched the initial amino acid of the protein change with 

the amino acid present in the Pfam alignment (see 

Methods). A combined dataset of 492,433 variants was 

finally considered, from which 96.1% were non-

pathogenic variants and 3.9% were pathogenic. 

Comparison of pathogenicity between homologous 

variants 
We seek for pairs of homologous variants. That is, 

variants in members of the same family that occur in the 

same position according to the family multiple sequence 

alignment file (see Methods). Two analyses were 

performed considering variants presenting the exact 

amino acid change or when resulting amino acids exhibit 

similar physicochemical properties. 

 

a) Assessing allele frequencies  

 Despite gnomAD being a non-pathogenic variant 

database, it may include some (yet unknown) pathogenic 

variants. If present, these variants should have very low 

allele frequencies (AF), and thus, we set different AF 

thresholds at 10−6, 10−5, 10−4, 5 ∗ 10−4 and 10−3 to 

overcome this potential contamination.  

 

 

Those variants with the lowest AF are more susceptible 

to be pathogenic. In table 4 we can observe the non-

pathogenic variants number at each AF threshold, before 

seeking variants with Pfam alignment. On the one hand, 

setting a permissive threshold such as AF >10−6, sample 

data is reduced in 2.54-fold in v2.1 and 2.3-fold in v3 with 

respect to non-filtered condition, but we may be including 

some unknown pathogenic variants. On the other hand, 

setting a strict threshold, such as AF >10−3, we assure a 

smaller susceptibility to keep unknown pathogenic 

variants, but the sample data is largely reduced, 

maintaining 4,764 and 4,564 non-pathogenic variants in 

v2.1 and v3, respectively. Due to the absence of more 

data about the unknown pathogenic variants among our 

non-pathogenic variants’ dataset, it was not possible to 

firmly set a threshold, so we followed our analyses 

maintaining all different AF thresholds. 

 

b) Strict pair analysis 

In a first analysis, we observed pairs corresponding to 

homologous variants which present the same protein 

position and the same initial and final amino acids. These 

pairs were classified into three groups: i) 

pathogenic/pathogenic (P-P) when both homologous 

variants were labelled as pathogenic); ii) non-

pathogenic/non-pathogenic (N-N) when both 

homologous variants were non-pathogenic); and iii) non-

pathogenic/pathogenic (N-P) when the variants 

disagreed in pathogenicity. As mentioned before, we kept 

different variants’ datasets considering different AF 

thresholds on the non-pathogenic variant datasets, so we 

sought for homologous variant pairs in all of them. 

In Figure 3A, we see the addition of P-P and N-N pairs 

versus the number of N-P pairs. As the filter becomes 

more restrictive and less non-pathogenic variants are 

conserved, fewer N-P pairs are encountered. This 

tendency is also followed in Figure 4A, where we can 

observe the total number of pairs seen for each AF 

threshold filter condition, with respect to an error 

percentage. This error percentage was calculated 

dividing the number of pairs N-P by the total number of 

pairs, and was plotted in respect of the total number of 

pairs. As we can see, the error percentage becomes 

Table 2. Number of variants before and after each filter is applied.  

PATHOGENIC 
(ClinVar) 

NON-PATHOGENIC 
(gnomAD v2.1) 

NON-PATHOGENIC 
(gnomAD v3) 

Total variants in the Human genome 208,426 18,017,079 14,569,514 

Missense variants 52,190 6,465,390 4,606,664 

Missense variants in AD genes 28,587 875,383 601,823 

Table 3. Number of variants having an equivalent position found in Pfam. When the initial amino acid of the protein 
change matches with the amino acid present at the same site in a Pfam alignment, we refer to equivalent positions.  

PATHOGENIC (ClinVar) NON-PATHOGENIC 
(gnomAD v2.1) 

NON-PATHOGENIC 
(gnomAD v3) 

Total variants 
(Unique genes) 

28,587 
(1,449) 

875,383 
(1,850) 

601,823 
(1,858) 

Number of variants 
with Pfam 
alignment  

19,318 273,909 199,206 
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lower when the AF threshold is stricter, becoming an error 

of 0.6% when the AF>10−3, in contrast with the 8.5% 

when any AF filter is applied. (See numbers in Supp. 

Tables S9 and S13) We observe a high reduction of the 

error percentage from 8.8% when the filter AF>10−6 is 

applied, to 1.8% when setting AF>10−4 and 0.8% when 

AF>5 ∗ 10−4. These results propose that our approach is 

more efficient when the AF threshold is more restrictive. 

The possible presence of unknown pathogenic variants 

among the non-pathogenic ones, can be increasing the 

number of N-P pairs, which increases the error 

percentage in less restrictive AF thresholds. 

 

c) Similar pairs analysis 

As a second step, we asked whether extrapolation to 

homologous variations could also be possible for strict 

and similar variations, i.e., adding similar initial and/or 

final amino acids. Amino acids were considered similar if 

the score between the two amino acids in a BLOSUM62 

substitution matrix was positive, indicating similar 

physicochemical properties (see Methods). In this 

approach, homologous variant pairs were also sought in 

datasets presenting the different AF thresholds applied in 

non-pathogenic variants.  

When similar final amino acids were searched, we 

noticed a high increase in the addition of P-P and N-N 

variants encountered, compared to the strict pairs 

analysis. When no AF filter was applied, we observed a 

4-fold increase in the total number of pairs, and a close 

5-fold increase in AF>10−3 and >5 ∗ 10−4 (Fig. 3B. See 

numbers in Supp. Tables S10 and S14). Interestingly, the 

number of N-P pairs presented a higher increase than the 

total number, a 5-fold increase when no filter was applied 

and 5.4-fold in AF>10−3. Despite that, the tendency is 

equal to the strict pairs condition: the stricter the AF filter 

is, the less N-P pairs are detected. In Fig. 4B, we see that 

the total number of pairs increases in all AF filters as the 

number of P-P + N-N. As in the strict pairs condition, the 

error suffers a high reduction from the AF>10−6 to the 

AF>5 ∗ 10−4, but in this case, it drops from 13.3% to 

1.8%, noticing a value stagnation in the latter.  

 

Surprisingly, in AF>5 ∗ 10−4 increases only a tenth the 

error to 0.9%, a slight increase considering that the 

sample size presents a 6-fold increase. 

In addition, we checked the results when searching for 

pairs with strict and similar initial amino acids. We do not 

observe an intense increase of total pairs as in the final 

amino acid condition, if we compare with the strict pairs 

condition, we do obtain a very few increase both on total 

variants in all AF filters, and in P-P + N-N addition (Fig. 

3C and 4C, see numbers in Supp. Tables S11 and S15). 

The tendency is maintained, N-P pairs are reduced as the 

AF filter is more restrictive. In Figure 4C, we see that error 

percentages are maintained with respect to strict pairs 

condition, where the highest difference is noticed when 

no AF filters are applied, presenting 7.1% error compared 

to the 8.5% in the strict pairs condition. 

Regarding the search for pairs with similar and strict 

initial amino acids, we did not reveal noteworthy findings 

as expected. When an amino acid change occurs, the 

importance relies on the conservation of the amino acid 

introduced, meaning that the change is tolerated because 

it has similar physicochemical properties or not, due to an 

alteration in the function of the protein. In contrast, the 

initial amino acid does not play a role due to its 

replacement. 

Comparing with the strict pairs condition, the search for 

similar and strict initial amino acids did not show 

upgrades in our results. For that reason, we do not 

consider it worth to include and discuss the condition 

where pairs with strict and similar initial and final amino 

acids were sought (See Supp. Tables S12 and S16). 

 

Given that, compared to the strict pairs condition, the 

search of similar and strict final amino acids showed a 

considerable increase in the sample size without 

increasing the error rate equivalently, we consider it the 

best approach for searching homologous variant pairs. 

More specifically, we consider that variants overstepping 

an AF>5 ∗ 10−4  showed a good non-pathogenic variant 

representation in the dataset, and presented an  

Table 4. Total variants at different allele frequency (AF) thresholds set in non-pathogenic variant datasets.  

NON-PATHOGENIC (gnomAD 
v2.1) 

NON-PATHOGENIC 
(gnomAD v3) 

Missense Variants 
with AF 

No frequency 
filter 

875,383 601,823 

10−6 344,517 265,545 

10−5 55,037 43,230 

10−4 14,598 13,040 

5 ∗ 10−4 6,748 6,330 

10−3 4,764 4,564 

Table 5. Number of variants having an equivalent position found in Pfam. When the initial amino acid of the protein change 
matches with the amino acid present at the same site in a Pfam alignment, we refer to equivalent positions.  

PATHOGENIC 
(ClinVar) 

NON-PATHOGENIC (gnomAD 

v2.1) variants with AF>𝟓 ∗ 𝟏𝟎−𝟒 

NON-PATHOGENIC (gnomAD 

v3) variants with AF>𝟓 ∗ 𝟏𝟎−𝟒 

Total variants 
(Unique genes)  

28,587 
(1,449) 

6,748 
(1,388) 

6,330 
(1,349) 

Number of variants 

with Pfam alignment  
19,318 1,729 1,723 
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extraordinarily low error rate.  

Thus, we assume that non-pathogenic variants 

overstepping this threshold are not likely to be 

pathogenic. In Table 5, we can observe the number of 

variants having an equivalent position found in Pfam for 

this AF threshold: 1,729 variants from 6,748 in v2.1, and 

1,723 variants from 6,330 variants in v3.  

Searching for similar final amino acids with an AF>5 ∗
10−4, we obtained 63,192 total pairs featuring 612 Pfam 

families, out of the 1,090 families that presented 

alignment for these proteins (Table 6). The reason why 

there were not found pairs in 478 families is because 

there were very unrepresented families: 357 families  

 

presented 4 variants or less. Comparing a few number of 

variants between them results in a low probability to find 

pairs. Despite that, we found pairs in 76 additional Pfam 

families compared to the strict pairs condition. From the 

total pairs, 60,822 correspond to P-P pairs, 1,799 are N-

N pairs, and 571 are N-P pairs. Interestingly, considering 

the N-P pairs with respect to the total, we obtained an 

error of 0.9%. This is because if the final amino acid 

presents similar physicochemical properties, the effect of 

the amino acid change in the same equivalent position 

between homologous proteins may be similar. This small 

number of false positives confirms that our hypothesis is 

true and can be safely accepted.  

 

Fig. 3. Summation of P-P and N-N pairs with respect to the N-P pairs for all allele frequencies (AF) in: A) Strict pairs, B) Similar 
final amino acid, C) Similar initial amino acid. P-P refers to pairs of variants presenting pathogenic annotations, N-N to non-
pathogenic annotations, and N-P to pairs of variants that disagree on their annotations. Values are log normalized. 

 

Fig. 4. Total number of pairs with the error percentage for all allele frequencies (AF) thresholds in: A) Strict pairs, B) Similar final 
amino acid, C) Similar initial amino acid. P-P refers to pairs of variants presenting pathogenic annotations, N-N to non-pathogenic 
annotations, and N-P to pairs of variants that disagree on their annotations. Total pair values are log normalized. %error is 
calculated dividing N-P pairs/total pairs and multiplied by 100. 
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The total number of pairs was increased by almost 5-fold 

in similar final amino acid condition from the strict pair 

condition. This computation allowed us to highly increase 

the sample size and observe that the error rate did not 

increase proportionally. Accordingly, one of the key 

highlights of our results is the low error percentage 

obtained, demonstrating the accuracy and reliability of 

our approach. 

Conclusions and future directions 

It is reasonable to consider that missense variants that 

occur at equivalent positions in proteins of the same 

family are likely to have the same effect if the original and 

the mutated amino acid are the same. We noticed, 

however, that this had never been probed and that this 

assumption is not employed by the available predictive 

tools. In the present study we have demonstrated that this 

assumption can be safely taken, with an error of 0.8%. 

Moreover, we show that this is also true when the final 

amino acids are not the same, but exhibit similar 

physicochemical properties. This allows us to safely 

expand the number of variants with pathogenicity 

annotations without performing (costly) functional 

experiments. The only requirement is the availability of 

functional data in an equivalent position in a member of 

the same family and a sequence alignment between the 

corresponding protein sequences, which in our case were 

the family multiple sequence alignments provided by 

Pfam. The results hold significant promise for enhancing 

the accuracy of current predictive tools, which can be very 

useful in the identification of disease-causing variants in 

rare diseases. We recommend incorporating this concept 

in future tool development to harness the full potential of 

available data and drive advancements in the field. 
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