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Abstract

Super-resolution imaging techniques have largely improved our capabilities to visual-
ize nanometric structures in biological systems. Their application further enables one
to potentially quantitate relevant parameters to determine the molecular organization
and stoichiometry in cells. However, the inherently stochastic nature of the fluores-
cence emission and labeling strategies imposes the use of dedicated methods to accu-
rately measure these parameters. Here, we describe a Bayesian approach to precisely
quantitate the relative abundance of molecular oligomers from segmented images. The
distribution of proxies for the number of molecules in a cluster – such as the number of
localizations or the fluorescence intensity – is fitted via a nested sampling algorithm to
compare mixture models of increasing complexity and determine the optimal number
of mixture components and their weights. We test the performance of the algorithm
on in silico data as a function of the number of data points, threshold, and distribu-
tion shape. We compare these results to those obtained with other statistical methods,
showing the improved performance of our approach. Our method provides a robust tool
for model selection in fitting data extracted from fluorescence imaging, thus improv-
ing the precision of parameter determination. Importantly, the largest benefit of this
method occurs for small-statistics or incomplete datasets, enabling accurate analysis at
the single image level. We further present the results of its application to experimental
data obtained from the super-resolution imaging of dynein in HeLa cells, confirming
the presence of a mixed population of cytoplasmatic single motors and higher-order
structures.
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Introduction

The advent of super-resolution techniques has allowed the imaging of cellular struc-
tures beyond the limit imposed by diffraction, revealing unknown molecular arrange-
ments at the nanoscale [1–3]. These techniques have rapidly evolved and their initial fo-
cus, i.e. resolving biological structures with unprecedented details, has shifted toward
satisfying the demand of quantitative data to support specific biological hypotheses and
models [4]. Along this line, an important effort has been devoted toward the develop-
ment of calibrations and statistical methods for counting molecules in supramolecular
arrangements [5–10]. As a matter of fact, the capability of counting molecules consti-
tutes an important development to measure molecular stoichiometry, interactions, and
organization, properties that play a fundamental role in signaling and other cellular
functions [11].
A ubiquitous features observed at the cell membrane, in the nucleus, and in organelles

is the formation of protein clusters, i.e. little aggregates containing different copies of
the same protein, either exclusively or in addition to other proteins [12, 13]. Typically,
these supramolecular arrangements of proteins occur at a scale of the order of tens of
nanometers, thus comparable with the resolution provided by super-resolution tech-
niques [13]. Therefore, it is not possible to distinguish or directly count each single
protein within these nanostructures. At intermediate number densities (. 500 µm−2),
randomly distributed nanoclusters would mostly appear as resolvable features with
size and shape comparable to the microscope point spread function (e.g., in STED
nanoscopy), or as groups of molecular localizations (in single molecule localization
microscopy, SMLM) with standard deviation comparable to the localization precision
(Fig. 1). In these cases, manual and automatic feature-detection procedures [14–17]
and clustering algorithms [18–21] have been devised to segment the image and auto-
matically pinpoint spots/clusters, thus providing a quantification of the total fluores-
cence intensity per spot or of the number of localizations per cluster. These quantities
are inherently stochastic as a consequence of the labeling strategy, the fluorophore pho-
tophysics, and the imaging protocol. As a consequence, chemically identical proteins
produce a rather broad distribution of fluorescence intensities or number of localiza-
tions (Fig. 1D). However, these quantities generally conserve linearity (or at least pos-
itive correlation) with respect to the protein copy number. With the help of a reference,
e.g. obtained by imaging and quantifying samples of known stoichiometry (tipically
sparse monomeric proteins labeled as the actual sample), these quantities can be cali-
brated and used as proxies for protein counting [22–24].
The output of this kind of calibration typically consists in a set of counts (e.g., corre-
sponding to the number of localizations or to the fluorescence photon counts within a
segmented region of the image) in a range n = 1, ..., nmax, from which the shape and
parameters θ describing the probability density function (pdf) associated to monomers
f1(n|θ) can be obtained. Under the assumption of linearity, this pdf allows to build
the corresponding distribution for any oligomeric form of the protein, i.e. fi(n|θ) with
i > 1. In fact, the rule of composition for the pdf of the sum of two independent random
variables allows one to write:

fi(n|θ) =

∞∑
m=1

f1(m|θ) fi−1(n − m|θ) = f1 ∗ fi−1 (1)
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Figure 1: Quantification of super-resolution imaging of protein nanoclusters. (A) A simulated image repre-
senting nanoclusters containing identical proteins with different stoichiometry. Super-resolution techniques
such as SMLM, relying on fluorophores blinking, produce series of molecular localizations (B) that can be
rendered into reconstructed images (C). Segmentation algorithms can be used to pinpoint spatially separated
spots and extract the localization counts of each, displayed in the histogram of panel D. The stochastic nature
of the process produces broad probability distributions from which is difficult to directly determine cluster
stoichiometry. Scale bar: 100 nm.

where the symbol ∗ indicates the convolution [25]. The distribution of a population
containing a mixture of i-mers with different weights αi, can thus be expressed as

g(n,α|θ) =

K∑
i=1

αi fi(n|θ) (2)

where K is the number of proteins forming the largest oligomer and
∑K

i=1 αi = 1. Based
on these formulas, it is in principle possible to obtain the weights corresponding to the
different stoichiometries through the fit of the experimental distribution of the counts
per spot n, as described earlier [23, 26].
Although this procedure might seem rather straightforward, it presents some of the is-
sues found for the analysis of finite mixtures, a thoroughly investigated topic in statis-
tics [27], such as the presence of multiple maxima in the likelihood function and the
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need to know the number of components K. However, in contrast to finite mixtures,
here we are dealing with non-identical pdf’s that are derived through the convolution
and might not have a closed-form expression.
The fitting of a mixture model is generally performed via the optimization of the like-
lihood with either an expectation-maximization (EM) algorithm [28], or following a
Bayesian approach based on Markov chain Monte Carlo (MCMC) methods [27]. As-
sessing the exact number of component is an important and difficult task, since a precise
determination of the free parameters αi further relies on the knowledge of the maxi-
mum number of oligomers K to consider. This problem is generally solved by fitting
a set of candidate models with different values of K and determining the best based
on same criterion. Since the likelihood increases by adding further parameters, the
most popular criteria - such as the Bayesian information criterion (BIC) [29] and the
Akaike’s information criterion (AIC) [30, 31] - introduce a penalty term for the num-
ber of parameters in the model to prevent overfitting. Both criteria can be derived in
a Bayesian framework as approximated forms of the posterior probability using differ-
ent prior probabilities [32]. However, even though they are valid beyond the Bayesian
context, they only provide correct estimations in the large-sample limit.
Tackling the problem in a Bayesian framework provides a systematic comparison of
different models, while simultaneously providing the best associated parameters. Not
using the approximations of these information-criteria approaches enables a more ac-
curate determination of the component weights, in particular when dealing with small
datasets. The latter situation is often encountered in imaging experiments, when instru-
mental conditions induce changes of the calibration parameters θ that do not allow the
collection of large and uniform dataset, so that and the analysis must be performed at
the single-image level.
In this article, we demonstrate how Bayesian inference can be efficiently applied to
determine protein copy number from data obtained from segmented fluorescence im-
ages. We implement the Bayesian analysis using the nested sampling (NS) algorithm
introduced by Skilling [33, 34]. The algorithm provides an estimation of the Bayesian
evidence to perform model ranking, calculates the model best-fit parameters and their
confidence interval. We evaluate our method on synthetic data simulated in a wide
range of conditions to take into account the effect of the amount of data, noise and
threshold. We analyze its performance by calculating several statistical estimators and
compare them with results obtained through conventional maximum likelihood esti-
mation in combination with BIC and AIC. Our results indicate that our model ensures
robust results, outperforms traditional approaches for small dataset and offers good
performance even with incomplete datasets, e.g. when the presence of spurious local-
izations impose the truncation of the data below a threshold. Its application to experi-
mental data allows to confirm previous results from single-image analysis.

Results and Discussion

Bayesian inference and model selection. We consider a dataset {x} composed of N
measurements with discrete values n = 1, ..., nmax corresponding to a process described
by the pdf given in Eq. 2. Our objective is estimating the component weights α for a
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specific model including at most K = K′ oligomeric species. In a Bayesian inference
framework [35], we need to calculate the posterior distribution which is expressed
according to Bayes’ theorem as

P(αK′ |K′, x) =
P(x|αK′ ,K′)P(αK′ |K′)

P(x|K′)
=
L(αK′ )π(αK′ )
ZK′

, (3)

where P(n|αK′ ,K′) = L(αK′ ) represents the likelihood, P(αK′ |K′) = π(αK′ ) the prior
probability and P(n|K′) = ZK′ is the evidence. The right-hand side symbols refer to
the notation used in the classical literature [34]. The evidence is generally difficult to
calculate, since it requires integration over all possible parameter values. In most of
the cases, it is sufficient to estimate the posterior up to a multiplicative constant and the
evidence is thus ignored.
However, if we want to statistically compare and rank several models characterized by
different K j, we need to apply again the Bayes’ theorem as:

P(K j|x) =
P(x|K j)P(K j)

P(x)
. (4)

In Eq. 5, the term P(x|K j), corresponding to the evidence in Eq. 3, takes the meaning
of a likelihood. As such, it is crucial for the evaluation of the probability of a model.
In fact, assuming that all the models have the same prior probability P(K j), and con-
sidering that P(x) is a constant term that only depends on the data, the model posterior
can be approximated as:

P(K j|x) ∝ P(x|K j) = ZK j , (5)

and thus used to rank the different models.

The nested sampling algorithm. As mentioned above, the estimation of ZK j involves
the calculation of the likelihood L(αK j ), and the solution of the integral

ZK j =

∫
L(αK j )π(αK j )dαK j , (6)

that become complicated when αK j has more than a few dimensions. The likelihood
can be easily calculated considering the number of events h recorded for each value n
of the discrete variable x:

L(αK j ) =
∏

n

g(n,αK j )
h(n). (7)

For the prior, we use the symmetric Dirichlet function [36]

Dir(αK j |δ) =
Γ(δK j)
Γ(δ)K j

K j∏
i=1

αδ−1
K j,i, (8)

for different values of δ. In the following, for the sake of simplicity, we will use only
the subscript j instead of K j to indicate a specific model.
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For the calculation of the evidence, we use the NS approach [33, 34], that allows us to
reduce the integral in Eq. 6 to one dimension:

Z j =

∫ 1

0
L(X j)dX j, (9)

where L(X j) is the inverse of the so-called “prior mass” [34]

X(λ) =

∫
L(α)>λ

π(α)dα. (10)

In practice, the evidence in Eq. 9 is calculated as a sum

Z j ≈
∑

k

Lk(α j)4k (11)

over a number of “particles” corresponding to values of the vector of parameters α
and with quadrature weights 4k = ∆Xk. For this calculation, we follow a NS im-
plementation similar to the one recently described for the analysis of single-particle
trajectories [37]. Namely, we first generate a random set of particles and sort them
by their likelihood. We select the one with the minimum likelihood and assign the
weight 4k=1 = 1

N+1 , where N is the number of particles, to calculate the first term of
the sum in Eq. 11. The particle is thus removed from the set. A new particle is gen-
erated by copying one of the surviving particles and performing a random walk by the
Metropolis-Hasting algorithm. The particle is moved in a random direction with a step
length drawn from a normal distribution with a mean equal to zero and a standard de-
viation initially set to 0.1 and updated at every iteration to ensure an acceptance rate
of ∼50% [38, 39]. The movement is constrained in the domain [0, 1] through peri-
odic boundary conditions. After each iteration, all the coordinates are normalized so
to verify the condition

∑
i αi = 1. The Metropolis-Hasting algorithm is conditioned

such to have a likelihood higher than the one of the removed particle and with an ac-
ceptance ratio based on the particle prior [39]. After each run, a new term is added to
the sum in Eq. 11, consisting in the product of the minimum likelihood and the weight
4k = 4k−1

N
N+1 , to take into account of the reduction of the range of the “prior mass”

at each iteration [34, 37]. The procedure is repeated until the ratio Zres
Z j

< 10−5 [37],
where Zres = 4k

∑
mLm represents the residual evidence after k steps, with the sum

running over the surviving particles.

Performance on synthetic data. We tested the algorithm on synthetic data simulated by
varying several parameters for mimicking different experimental conditions. For space
limitations, here we only report results obtained in a few relevant cases compared with
the ground truth (gt). In Fig. 2, we show as an example the detailed results of the
analysis of a single simulated dataset composed by 300 datapoints and with Kgt = 5
components with decreasing weights. The histogram of the data is shown in Fig. 2A, to-
gether with the generating distribution and the pdf’s of the different oligomeric species,
each multiplied by the corresponding ground truth weight. The algorithm runs the NS
analysis iteratively for increasing values of K j and evaluatesZ (as well as the BIC and
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Figure 2: Results of the application of the NS algorithm to a simulated dataset. (A) Histogram of the
simulated data and results of the fit. The color curves correspond to the pdf’s of different species multiplied
by the corresponding weight. (B) Information criteria at varying the number of components considered for
the inference. The NS shows a minimum corresponding to the ground truth value Kgt . (C) Bar plot of the
weights determined by the different approaches. The NS retrieves weights compatible with ground truth
values within the uncertainty, even for small datasets.The dataset was simulated with parameters: N = 300,
α = (0.33, 0.27, 0.20, 0.13, 0.07), (µ, σ) = (3.349, 0.846) and analyzed with a Dirichlet prior with δ = 1.0.

the AIC), stopping when a maximum inZ is detected. The results of the inference are
reported in Table 1 and in Fig. 2B, where to facilitate the comparison with the other
criteria we plot −2 logZ. Although the different methods retrieve best-fit curves close
to the gt (Fig. 2C), the NS finds the right value of components whereas both the BIC
and the AIC show minima at smaller values. Moreover, the NS recovers weights that
are compatible with the gt values (Fig. 2D and Table 1). We find this result quite re-
markable considering the large overlap between the pdf’s of consecutive components,
the small dataset and the low value of α5. In fact, although in this case we have only
20 datapoints associated to pentameric clusters, the algorithm is still able to determine
the weight of this species rather precisely.

To further test the performance of the method, we simulated data according to the
same model presented above at varying the number of data points. We run 500 simula-
tions in each case and quantify the overall performance by evaluating the goodness of
the fit by the Kullback-Leibler (DKL) divergence, the true positive rate (TPR, i.e. the
fraction of cases for which the estimated number of components K̂ was equal to Kgt),
the mean absolute error (MAE) for the number of components MAEK = 〈|Kgt − K̂|〉,
and the root-mean square error (RMSE) of the weights RMSEαi =

√
〈(αgt,i − α̂i)2〉.
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Table 1: Results of Bayesian inference on a simulated dataset of 300 points with Kgt = 5 and decreasing α’s
(Fig. 2).

K j log(Z j) α1 α2 α3 α4 α5 α6 BIC AIC
2 -1693.6±0.3 0.21±0.04 0.79±0.04 – – – – 3387.7 3384.0
3 -1666.5±0.3 0.32±0.05 0.13±0.09 0.54±0.07 – – – 3336.2 3328.8
4 -1662.4±0.3 0.30±0.05 0.26±0.10 0.19±0.13 0.25±0.09 – – 3334.3 3323.1
5 -1662.3±0.3 0.30±0.05 0.27±0.09 0.21±0.12 0.14±0.09 0.08±0.05 – 3339.5 3324.7
6 -1663.2±0.3 0.29±0.05 0.30±0.11 0.19±0.12 0.13±0.07 0.05±0.04 0.03±0.03 3345.1 3326.6

Kgt = 5 – 0.33 0.27 0.2 0.13 0.07 – – –

The values obtained for a specific set of parameters are shown in Fig. 3. First, we calcu-
lated the DKL of the fitted distributions q(n) with respect to the ground truth distribution
p(n) as DKL =

∑∞
n=1 p(n) log p(n)

q(n) as a measure of the information gain (Fig. 3A). All the
methods show similar performance at reproducing the ground truth distribution, with
an expected improvement as a function the number of data points. Moreover, for small

A B

C D

Figure 3: Performance of the NS algorithm in comparison to BIC and AIC at varying the number of data
points. (A) The Kullback-Leibler (DKL) divergence. (B) The true positive rate TPR. (C) The mean ab-
solute error of the number of components MAEK . (D) The average root-mean square error of the weights
〈RMSEαi 〉. Each point correspond to 500 simulations with parameters: α = (0.11, 0.22, 0.33, 0.22, 0.11),
(µ, σ) = (3.349, 0.846) and analyzed with a Dirichlet prior with δ = 1.5.

N, Fig. 3A indicates that the NS method provides better fits as compared to the other
methods. However, DKL only tells us about the goodness of the fit, but does not report
about the precision in the determination of the model or in the value retrieved for free
parameters. The plot of the TPR (Fig. 3B) further shows that the NS outperforms the
other methods in detecting the right number of components for small datasets and thus
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rules out the possibility of overfitting. Even if the values obtained for the TPR might
seem low ( 0.6 − 0.7 for N = 300 − 1000), they are 2 to 3 times better than the other
methods. In addition, one must consider that even when not retrieving the exact value
of components, the Bayesian approach estimates K with a very small error. This can be
appreciated by the plot in Fig. 3C, where for the NS we obtain values of the mean abso-
lute error smaller than 1 and in more detail from the histograms of Fig. 4. Furthermore,
we also measured the deviation of the estimated values of αi with respect to the ground
truth. In Fig. 4 we report the histograms for each component weight, whereas for sim-
plicity in Fig. 3D we only show the average of RMSE over all the weights 〈RMSEαi〉.
These results confirm that the parameters calculated by the NS better reproduce the
true weights of the oligomeric components, as also observed in Fig. 2D.
Typically, in datasets obtained from segmented fluorescence images, the number of
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Figure 4: Details of the performance of the NS algorithm at varying the number of data points. The first
column shows the histogram of the value obtained for the estimator of the number of components K̂ with
respect to the ground truth value (red line). Columns from the second to the fifth represent the histograms of
the value of the estimator of the component weight α̂i as obtained over all the simulation (pink) or over only
on those for which the number of components has been correctly identified (light blue). The blue lines corre-
spond to the ground truth values. Each line of plots corresponds to the results obtained for different number of
data points N. Histograms correspond to 500 simulations with parameters: α = (0.11, 0.22, 0.33, 0.22, 0.11),
(µ, σ) = (3.349, 0.846) and analyzed with a Dirichlet prior with δ = 1.5.

events corresponding to low counts is overestimated as a consequence the presence of
spurious spots/localizations resulting from noise and/or false positive detection. To fil-
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ter out these data, a simple strategy consists in cutting down the dataset by removing
events below a positive threshold. We explored the effect of this left truncation on the
results of the Bayesian inference, as reported in Fig. 5. For distributions with both
decreasing and bell-shaped weights αi a moderate threshold improves the performance
of the analysis in determining the true number of components. This effect might seem
rather counter-intuitive at first glance, but can be interpreted as the consequence of a
reduction in the effective weight of the populations with low stoichiometry (monomer,
dimer) with respect to those represented in the right tail of the distribution, thus favour-
ing fits with more components. In fact, it is accompanied by an increase of the mean
error on the determination of the parameters αi (Fig. 5), mostly driven by the loss of
information on the low-stoichiometry components. This reasoning is further supported
by the comparison of the results for different distributions of weights, showing a mi-
nor effect on bell-shaped αi with respect to decreasing αi as the result of the different
value of the weight corresponding to the largest oligomeric species. In both cases, as
the threshold is further increased, the overall loss of information generates an expected
decrease of the performance. We performed further simulations and analysis at chang-
ing the number of ground truth components Kgt, the distribution of weights αgt, the
parameters defining the calibration function (µ, σ) and the prior probability δ.

A B

C D

Figure 5: Performance of the NS algorithm for different threshold values and different distribution of weights.
(A) The Kullback-Leibler (DKL) divergence. (B) The true positive rate TPR. (C) The mean absolute error
of the number of components MAEK . (D) The average root-mean square error of the weights 〈RMSEαi 〉.
Each point correspond to 500 simulations with parameters: N = 1000, α = (0.11, 0.22, 0.33, 0.22, 0.11)
(bell-shaped) or α = (0.33, 0.27, 0.20, 0.13, 0.07) (decreasing), (µ, σ) = (3.349, 0.846) and analyzed with a
Dirichlet prior with δ = 1.5.
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Analysis of STORM data. We further test our method on datasets obtained from four
individual STORM images of dynein intermediate chain (DIC) fused to GFP stably
expressed in HeLa cells [40]. For these imaging conditions, a calibration function was
obtained following an approach based on DNA-origami [23, 40]. The super-resolution
images of dynein labeled with anti-GFP primary and secondary antibodies revealed
groups of localizations that were segmented via a clustering algorithm. Events corre-
sponding to less than 10 counts per spot were not taken into account. The data were
fitted via the NS algorithm, as described for the simulations using the as a prior the
Dirichlet function with δ = 1.5 (Fig. 6). As discussed in an earlier work, dynein is
a homodimer containing two copies of DIC, but DIC may not be incorporated into
a fully-assembled functional dynein motor complex and may exist as a monomer in
cells [23]. Therefore, we included in the fit the pdf’s corresponding to monomers,
dimers and clusters of dimers, thus considering as negligible the occurrence of mixtures
of dimers and monomers. The NS algorithm consistently finds that all the experiments
are best fitted with K = 5 components, whereas the BIC and the AIC find different
values from 6 to 9. Moreover, out of the variable (35-60%) fraction of monomeric
DIC, the NS shows that the functional dynein motor complex has a highly consistent
distribution, corresponding to a ∼ 60% of dimers, ∼ 35% of tetramers and the rest of
clusters containing 3 and 4 dimers (Fig. 6D).

A

DC

B E

Figure 6: Results of the application of the NS algorithm to STORM data. (A-D) Histograms of the data
obtained from 4 different STORM image and results of the fits. The color curves correspond to the pdf’s
of different species multiplied by the corresponding weight. (E) Bar plot of the weights determined by the
NS approach on the 4 datasets. The weights of the dimeric and clustered species show compatible values.
The data were analyzed including the pdf’s corresponding to monomers, dimers and clusters of dimers with
(µ, σ) = (3.227, 0.569), and a Dirichlet prior with δ = 1.5.

Conclusions

We introduced a Bayesian approach based on the nested sampling algorithm for the
multicomponent fitting of data obtained through the segmentation of super-resolution
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image. As shown by the application of the method to synthetic data, the algorithm
assess the correct number of components and determine the component weights with
higher precision as compared to BIC and AIC, thus allowing one to accurately es-
timate cluster stoichiometry in biological samples. Moreover, the Bayesian analysis
allows one to use physical information by defining proper parameter ranges through
the priors.
Notably, the method offers largest improvements over traditional approaches for small
dataset. Therefore, it enables robust single-image quantification, eliminating the need
for cumulating data obtained from different images that can introduce variability as a
result of different experimental and calibration conditions. Furthermore, it also per-
forms rather well with incomplete, left-truncated datasets. This situation is typically
encountered when dealing with real data, where a threshold is introduced to filter out
the overcount of events associated to spurious spots/localizations resulting from noise
and/or false positive detection.
Although we presented examples from SMLM, the method can be equally applied on
data extracted from stochastic or deterministic super-resolution techniques as long as
the calibration function corresponding to an oligomeric species can be estimated. De-
spite the fact that in this work we assume that the parameters characterizing the shape
of the pdf are previously known from calibration measurements, our method can be
generalized to allow their inference from the Bayesian analysis with a proper choice of
the corresponding priors [38, 41]. Moreover, for the case of SMLM data, the method
can be further extended to also include the Bayesian treatment of spatial and temporal
information and thus bypass the previous segmentation step.
Our method improves the post-processing step present in a type of workflows used
to estimate and quantify molecular clustering in cells from super-resolution images.
Molecular clustering is thought to have a fundamental role in cell signalling, therefore
the ability to detect it and precisely quantify is necessary to reveal the biological im-
plications of molecular self-organization. Although several quantitative approaches -
also involving super-resolution techniques - have been proposed, several questions are
still open. Recently, the existence of nanoclusters in T-cells has been questioned on
the basis of contrasting results obtained with SMLM techniques [13, 42]. Therefore,
improvements in hardware, probes, and pre- and post-processing software are neces-
sary to obtain solid quantitative information about these biological processes. In this
scenario, we hope that our method can help to better quantify super-resolution data and
thus contribute to determine the biological relevance of clustering.

Materials and Methods

Software implementation and simulations. The code for implementing the NS algo-
rithm was written in both Matlab (The MathWorks, Inc., Natick, Massachusetts, United
States) and R (R Foundation for Statistical Computing, Vienna, Austria).
The NS algorithm used for this study was implemented on 30 particles with a depth
of 40 iterations. For the Metropolis-Hastings, the random motion of a particle is per-
formed by adding a variable step in a random direction. To ensure an acceptance rate
of ∼50%, the step length is drawn from a normal distribution with standard deviation
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σstep initially set to 0.1 and updated at each iteration as [38, 39]

σstep =

{
σstep · e1/A if A > R
σstep · e−1/R if A ≤ R , (12)

where A and R are the numbers of accepted and rejected samples, respectively. We
explored the behavior of the algorithm for different prior probabilities corresponding
to the Dirichlet distribution with δ = 1 (uniform distribution), δ = 0.5 and δ = 1.5.
Data corresponding to simulations of localization counts obtained from monomeric
clusters were generated considering a discretized lognormal pdf

f1(n|µ, σ) =
1
2

[
erf

(
µ − log(n − 1)

√
2σ

)
− erf

(
µ − log(n)
√

2σ

)]
, (13)

with parameters (µ, σ) equal to (3.349, 0.846) and (3.227, 0.569), since they have been
recently shown to accurately approximate the output of STORM imaging in different
experimental conditions [23, 40]. Localization counts in oligomeric clusters of m pro-
teins were obtained by the sum of m random numbers obtained as described above.

Sample preparation for STORM microscopy. HeLa IC74-mfGFP stably transfected
cell line (from Takashi Murayama lab, Department of Pharmacology, Juntendo Uni-
versity School of Medicine, Tokyo, Japan) were plated on 8-well Lab-tek 1 cover-
glass chamber (Nunc) and grown under standard conditions (DMEM, high glucose,
pyruvate (Invitrogen 41966052) supplemented with 10% FBS, 2 mM glutamine and
selected with 400 µg/mL Hygromycin). Cells were fixed with PFA (3% in PBS) at
RT for 7 minutes. Cells were then incubated at RT with blocking buffer (3% (wt/vol)
BSA (Sigma) in PBS and 0.2% Tryton. In HeLa IC74-mfGFP stably transfected cells,
dynein intermediate chain-green fluorescent protein (GFP) was immuno-stained with
primary antibody (chicken polyclonal anti GFP, Abcam 13970) diluted 1:2000 in block-
ing buffer for 45 minutes at room temperature. Cells were rinsed 3 times in blocking
buffer for 5 minutes and incubated for 45 minutes with secondary antibodies donkey-
anti chicken labeled with photoactivatable dye pairs for STORM (Alexa Fluor 405-
Alexa Fluor 647).

STORM microscopy. Imaging was performed with an oil immersion objective (Nikon,
CFI Apo TIRF 100x, NA 1.49, Oil), repeated cycles of activation (405 nm laser), and
readout (647 nm laser) using TIRF illumination. During experiments the focus was
locked through the Perfect Focus System (Nikon) and imaging was performed on an
EMCCD camera (Andor iXon X3 DU-897, Andor Technologies). A commercial N-
STORM microscope (Nikon Instruments) was used to acquire 40,000 frames at a 33
Hz frame rate. An excitation intensity of ∼0.9 kW/cm2 for the 647 nm readout laser
(300 mW MPB Communications, Canada) and an activation intensity of ∼35 W/cm2

for the 405 nm activation laser (100 mW, Cube Coherent, CA) were used. STORM
imaging buffer was used containing GLOX solution as oxygen scavenging system (40
mg/mL Catalase [Sigma], 0.5 mg/mL glucose oxidase, 10% glucose in PBS) and MEA
10 mM (Cysteamine MEA [SigmaAldrich, #30070-50G] in 360 mM Tris-HCl).
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STORM data analysis. Localization and reconstruction of STORM images were per-
formed using custom software (Insight3, kindly provided by Bo Huang, University of
California) by Gaussian fitting of the single molecules images to obtain the localization
coordinates. The final image is obtained plotting each identified molecule as a Gaussian
spot with a width corresponding to the localization precision (10 nm) and corrected for
drift. A custom code implementing a distance-based clustering algorithm, was used to
identify spatial clusters of localizations. The localizations list was first binned to 20 nm
pixel size images that were filtered with a square kernel (7 × 7 pixel2) and thresholded
to obtain a binary image. Only the localizations lying on adjacent (6-connected neigh-
bours) non-zero pixels of the binary image were considered for further analysis. To
select the sparse dynein contribution large clusters were filtered out setting a threshold
on the maximum number of localizations (1000 localizations/cluster).
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