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Abstract 
Most frequently mutations that lead to the development of breast and ovarian cancer are BRCA1 and BRCA2. Blood 

samples from BRCA1, BRCA2 and non-mutation carriers were extracted for both healthy and cancer-affected individuals. 

These samples underwent lymphocyte stimulation and they were analyzed by using novel bioinformatic tools to gain 

insight into the transcriptome and to revel different traits between each of the phenotypes. A complex transcriptomic 

analysis was performed, including and assessing the strategies undertaken in all the necessary steps, quality control, 

annotation, deconvolution, filtering, variable selection, differential expression and gene set enrichment analysis. Final 

results suggest that cell cycle and DNA replication pathways were positively overexpressed in BRCA1 and BRCA2 

healthy samples, as well as and in BRCA1 affected. In contrast, negative pathways shared a similar pattern in all the 

studied groups.  
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1 Introduction  

 
According to the Global Cancer Observatory (GCO), breast 
(BC) and ovarian cancer (OC) rank among the most preva-
lent malignant tumors in women. In 2020, the worldwide 
diagnosis was over 2.2 million cases of BC and 313.000 
cases of OC [1]. These statistics position BC as the first 
cause of cancer-related deaths, while OC was the eighth 
leading cause of deaths. BRCA1 and BRCA2 (BRCA1/2) are 
two well-known genes associated with these two types of 
cancers, as individuals who inherit or acquire sporadic 
pathogenic germline variants in these genes present an in-
creased risk of developing them in the future. Approxi-
mately 55%-72% of women with a harmful mutation in 
BRCA1 and 45-69% with a BRCA2 variant will develop 
BC. In contrast, these percentages decrease for OC, since 
its risk stands at 39-44% for women with a BRCA1 variant 
and 11-17% for those with a BRCA2 pathogenic variant [2]. 
 
BRCA1/2 are tumor suppressor genes that play a significant 
role in maintaining genome stability and the integrity of 
DNA. Both produce essential proteins that facilitate the re-
pair of damaged DNA, specifically double-strand DNA 
breaks by homologous recombination. This repair mecha-
nism prevents the introduction of new mutations, and there-
fore, cancer initiation and development.  
When these genes are mutated or absent in cells, the strin-
gency and precision of DNA damage repair mechanisms 
weakens. Consequently, cells are unable to effectively re-
pair DNA breaks, leading to an increased probability of 

accumulating variants across cell division. While some of 
these cells may die, the survival and stabilization of these 
unrepaired DNA cells confer the capacity to independently 
undergo cell division, resulting in cancer development 
[3][4]. For this reason, cells with biallelicBRCA1/2 delete-
rious mutation become highly sensitive to a wide range of 
DNA-damaging agents, coming both from environmental 
factors, such as ionizing radiation (UV, X and Gamma 
rays), and endogenous sources (reactive oxygen species) 
[5] . 
 
A multitude of research studies have been dedicated to in-
vestigating the impact of BRCA1/2 genes on human health 
[6][7]. Having a deep understanding of how these genes 
function and how mutations affect their roles can help to 
identify individuals with a heightened genetic risk, that 
would benefit from the implementation of more aggressive 
preventive measures. As researchers have a better insight 
into the cancer mechanisms linked to BRCA1/2, they can 
devise treatments that are both more targeted and precise, 
aiming to decrease cancer mortality.  
Over the recent years, gene expression regulating mecha-
nisms have been extensively explored, particularly within 
the context of oncology. The transcriptome contains all the 
information encoded in RNA that has been transcribed 
from DNA. Gene expression levels resulting from tran-
scription are studied through transcriptomics, but the 
causes and consequences of changes in RNA expression 
can be examined in other omics perspectives, such ge-
nomics, epigenomics and proteomics, where each level pre-
sents its specifics advantages and limitations [8]. In con-
trast to the genome, which is stable, the transcriptome 



 

depends on the dynamics of an organism at a given mo-
ment, responding to the physiological and/or pathological 
conditions.   
Thanks to the rapid advancement and development of cut-
ting-edge technologies, the identification of cancer bi-
omarkers and gene signatures has become possible, open-
ing new horizons for understanding, managing, and treating 
cancer.  
 
Since the discovery of RNA molecules, quite a few tech-
nologies have been developed with the primary goal of an-
alyzing and quantifying the transcriptome in the context of 
human diseases. This endeavor has advanced the under-
standing and exploration of the intricacies of gene expres-
sion regulation and their contributions to cellular processes 
and functions, driving significant progress in the compre-
hension of cancer. These technologies range from tradi-
tional methods like northern blotting to novel approaches 
such as microarrays and next generation sequencing 
(NGS), represented by RNA sequencing (RNA-seq). These 
latter two methods are key in modern transcriptomics anal-
ysis [8]. In the scope of this project, our focus will center 
on microarray technology. 
  
A microarray is a collection of biomolecules containing 
DNA probes corresponding to known sequences. In the 
Affymetrix arrays, probes are attached to a solid surface, 
creating a platform to which DNA fragments from a sample 
can hybridize. The probes consist of single-stranded DNA 
oligonucleotides, typically of 25 bases in length, rigorously 
designed to perfectly match specific target sequences. RNA 
fragments extracted from the samples of interest undergo 
reverse transcription into cDNA and then are fragmented 
and labelled to be finally introduced to the array for hybrid-
ization. The amount of hybridization observed for each 
probe is quantitatively measured using fluorescence, given 
that the fluorescence signal is directly proportional to the 
number of RNA fragments present in the sample [8][9].  
 
Microarray experiments provide information regarding 
which genes are differently expressed when comparing dif-
ferent biological samples, often RNA extracted from blood. 
Blood samples are composed of heterogeneous mixtures of 
cell types with different proportions, and this may con-
found the analysis of differential gene expression. Hence, 
it is important to understand the cellular composition of the 
samples. In order to address this issue, deconvolution have 
been developed to infer cell type proportions from tran-
scriptomics data [10]. As a result, deconvolution helps to 
perform more precise differential expression analyses, 
which is crucial for identifying biomarkers for disease di-
agnosis.  
 
To understand the biological significance of gene expres-
sion changes, there are bioinformatic functional analyses 
that can be performed, such as Gene Set Enrichment Anal-
ysis (GSEA). GSEA is a computational method utilized to 
determine whether a pre-defined list of genes present con-
sistent statistically significant differences between biologi-
cal conditions [11].To perform this enrichment analysis, 

several collections of gene sets can be used. These, share a 
common biological function or are part of the same path-
way and can be obtained through different databases such 
as Gene Ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG), Reactome or the Molecular Signature 
Database. The method computes an enrichment score that 
reflects the degree to which genes are overrepresented at 
the top or bottom of the ranked list. A significant score will 
indicate that the gene set is associated with the biological 
condition. This information provides insights into the bio-
logical processes that play a key role in each condition [12].  
 
In summary, transcriptomics has applications in various ar-
eas of biological and medical research, that can be used to 
identify biomarkers, understand processes, and study the 
effects of treatments.  
 

This project is based on a prior study whose primary pur-
pose was to determine the impact of irradiation on blood 
gene expression levels in both healthy and cancer-affected 
individuals, considering their specific BRCA1/2 mutation 
status. Carrier individuals possessed either the BRCA1 or 
the BRCA2 mutation, but not both simultaneously. A stand-
ard bioinformatics analysis was performed to examine the 
differential expression levels in blood samples of BRCA1/2 
carriers and non-carriers for both non-irradiated and irradi-
ated samples. Additionally, the study also explored whether 
lymphocytes carrying these mutations presented an in-
creased sensitivity to radiation when assessed in a con-
trolled in-vitro environment [13]. The data from this study 
was used to perform the analysis for my project. Neverthe-
less, in contrast to the original study’s extensive range of 
comparisons between samples, this project is focused ex-
clusively on a single radiation status: non-irradiated sam-
ples. Within this context, only four main comparisons are 
analyzed (BRCA1 healthy versus non-carriers healthy; 
BRCA1 cancer-affected versus non-carriers cancer-af-
fected; BRCA2 healthy versus non-carriers healthy; BRCA2 
cancer-affected versus non-carriers cancer-affected). 
Therefore, the main objective of the current study is to re-
assess the initial analysis by using an updated methodology 
and to characterize both BRCA1 and BRCA2 breast cancer 
carriers beyond the genomic mutation for non-irradiated 
samples. 
Updated bioinformatics workflows were strategically de-
signed, as the methodologies and techniques have evolved 
and differ from those used in the past years. Thereby, the 
results of the project should be improved by updating the 
bioinformatics analysis and providing more comprehensive 
steps. 
This main objective is segmented into a series of smaller 
ones, covering deconvolution, differential expression anal-
ysis, and concluding with functional analysis. These steps 
will contribute to achieve the primary purpose of this study.  
 
 
 
 



 

2 Methods 

 

Subjects and data collection 
 

The data employed in this project is derived from a study 

in which blood samples from 53 individuals were collected. 

These individuals were meticulously categorized based on 

the mutational status of BRCA1 and BRCA2 genes, along-

side their disease status. The resulting categories were as 

follows: 18 BRCA1 mutation carriers (10 with BC and 8 

healthy), 20 BRCA2 mutation carriers (11 with BC and 9 

healthy) and 15 individuals without detected mutation (5 

with BC and 10 healthy). 

To establish blood cultures, researchers used 4.5ml of 

RPMI medium supplemented with 1% phytohaemaggluti-

nin (PHA), a substance known for its immune system stim-

ulation properties, facilitating the division of T-lympho-

cytes cells. Peripheral blood mononuclear cells (PBMC), 

which include lymphocytes, were isolated using a density 

gradient centrifugation method, resulting in 2 samples per 

individual. One sample was treated with 2 Gy of gamma 

irradiation, while the other remained untreated (baseline 

type). A total of 106 samples were obtained for subsequent 

analysis. After a 24-hour incubation period (in an incubator 

with 5% CO2 and 37 ℃), RNA was extracted from the col-

lected samples following a standard isolation protocol us-

ing Trizol (Invitrogen), and gene expression profiling data 

was obtained using the Affymetrix GeneChip Human Ge-

nome U133 Plus 2.0 Array (Thermo Fisher). This 3’IVT 

microarray comprises more than 54.000 probe sets, ena-

bling the analysis of expression levels for over 47.000 tran-

scripts [14]. 

The microarray chips were scanned using a device designed 

to quantify the fluorescence intensity of each probe. Subse-

quently, the scanner process generated individual CEL files 

for each single microarray experiment, transforming the in-

tensity measurements into a numerical matrix, that contains 

the raw intensity data for each probe.  

Researchers supplied metadata, which contained infor-

mation of the disease condition of each patient, as well as 

several covariates that need to be considered for the analy-

sis, including age, smoking history, years of smoking, 

chemotherapy and radiotherapy history, and the number of 

years since the patient underwent those specific cancer 

treatments.  

 
 
Bioinformatic analysis 
 
R Studio software (version 4.3.0), along with the R pro-

gramming language, was used as the primary tool to con-

duct data processing, analysis, visualization, and computa-

tions for this project.  

The CEL files were the starting point for the analysis. To 

process these files, the Affy package [15] (version 1.78.0) 

from Bioconductor was opted for, since it is specially de-

signed for 3’IVT Affymetrix GeneChip arrays [16]. The 

quality control and the normalization steps were performed 

with some functions included in this package. For the sam-

ple aggregation procedure, the packages employed were 

Stats [17] (version 4.3.0) and dendextend [18] (version 

1.17.1). The annotation process was performed using two 

distinct annotation methods. The first approach involved 

the hgu133Plus2.db (version 3.13.0) Bioconductor’s pack-

age [19], and the second involved using an annotation file 

provided by the microarray manufacturer for this specific 

array, Thermo Fisher, which was downloaded from its web-

site [20]. Two tools, Immunedeconv [21] (version 2.1.0) 

and MIXTURE [22] (version 0.01) R packages were em-

ployed to conduct the deconvolution process. Variable se-

lection was performed with Glmnet [23] (version 4.1-7). 

Linear Models for Microarray Data, abbreviated as Limma 

[24], was the Bioconductor package employed to perform 

the differential expression analysis (version 3.56.1), and fi-

nally, the gene set enrichment analysis was performed with 

the clusterProfiler [25] (version 4.8.1) Bioconductor’s 

package. Graphical representation plots were performed by 

using ggplot2 (version 3.4.2), and ComplexHeatmap 

(2.15.4). 

 

 

Quality control  

 

To ensure data quality and determine whether each array 

was suitable for the analysis or needed to be discarded, sev-

eral quality control approaches were used [26][27]. The 

first step involved examining the scan-generated images to 

identify any potential issues, such as spots or irregularities 

on the array.  

Then, five types of graphics were performed to examine the 

data distribution and to identify any outlier samples. These 

included: 

          Boxplots of intensity data. This plot provides a con-

cise summary of continuous data for each sample, showing 

the median and the quartiles.  

          Histogram of intensity data, which details the in-

sights into the shape of the data’s distribution. 

          MA plot. This graphical representation helps to iden-

tify which arrays are behaving differently from the rest on 

the probe set basis. It displays (M) the difference between 

the log intensity value of one array minus the intensity of a 

reference (pseudo median of the rest of the arrays), against 

(A) the average of log intensity for a given probe set. 

          RLE (relative Log Expression). This plot illustrates 

how much the expression level of a probe set in a particular 

array differs from the average level across all arrays. The 

RLE value is assessed as the log ratio of the expression 



 

level of a probe relative to the median expression level of 

that probe in all arrays using a linear model.  

         NUSE (Normalized Unscaled Standard Errors). This 

quality control plot assesses the standard errors of the linear 

models generated for the RLE analysis.  

 

 

Normalization  

 

Microarray experiments involve complex laboratory proce-

dures that can introduce systematic biases due to differ-

ences in sample preparation, labeling, hybridization, or 

scanning, leading to signal intensities across the 106 arrays 

used in the study. In order to compare between the arrays, 

a normalization procedure was performed on the data to 

correct for these biases and remove technical variations, en-

suring that the observed differences on the intensity values 

of the samples primarily reflect biological variations in 

gene expression rather than technical effects. Hence, raw 

expression values obtained from CEL files were prepro-

cessed and normalized using the Robust Multichip Average 

(RMA) method [27], a three-step process that involves 

background correction, quantile normalization, and sum-

marization of probes, resulting in a single intensity value 

for each of the probe sets.  

 

 

Sample aggregation 

 

Hierarchical clustering was applied to the data with the ob-

jective to examine whether samples could be grouped based 

on their disease status, distinguishing between cancer and 

healthy cases. Different distance metrics and linkage meth-

ods were used to define the clusters. Specifically, the Eu-

clidean and correlation-based distances, as well as the 

Ward.D2 and average linkage methods. The purpose of us-

ing multiple approaches was to assess the consistency and 

similarities of the resulting cluster formations across differ-

ent methodologies.  

On the other hand, to address the high dimensionality of the 

data, given the large number of probe sets, we employed 

the principal component analysis (PCA) statistical method 

to investigate if distinct gene expression profiles existed be-

tween disease status. The proportion of data variability ex-

plained by the PCA model was also determined.  

 

 

Annotation 

 

Probe set identifiers were assigned to know annotations, 

which are, in this case, gene name identifiers by using the 

HUGO Gene Nomenclature Committee (HGNC) symbols.  

The annotated results from the Bioconductor’s package and 

the annotated file from Thermo Fisher were compared to 

assess its effectiveness, by calculating the number of 

unannotated probes and the percentage of identical anno-

tated gene symbols. The main objective was to determine 

which method performed better in annotating probe sets, 

aiming to retrieve as much information as possible.  

In microarrays, a probe set may be associated with more 

than one annotated gene. This is because each probe set 

comprises multiple individual probes with different se-

quences, some of which might target regions that are shared 

by several genes or transcript isoforms. To handle this sit-

uation, the first gene symbol identification provided by 

Thermo Fisher was selected. 

Unannotated (NA) probe sets were removed from the data 

set. As it may happen that different probe sets correspond 

to the same gene, the mean expression values for each du-

plicated gene and for each sample was computed, and a new 

matrix was created with the expression values of unique 

genes. 

 

 

Deconvolution  

 

As PHA was aggregated to the samples, we were interested 

in investigating the prevalence of T-lymphocytes within 

them. To achieve this, a deconvolution process was per-

formed to determine the specific cellular composition of 

each sample. This step was crucial for evaluating the qual-

ity of the samples, to detect possible contaminations, and 

obtaining the cell fraction of different cell types present in 

the samples. T CD4 lymphocytes cellular fraction infor-

mation was further used as a covariate for the differential 

expression gene (DEG) analysis, enabling us to account for 

any variations in this cell composition among the samples 

during the DEG. 

Both packages employed to perform deconvolution are 

equipped with advanced computational algorithms de-

signed to estimate the fractions of immune cells present in 

the microarray data. Within the “Immunedeconv” package, 

that offers multiple methods with distinct concepts, we se-

lected two methods: CIBERSORT absolute mode and 

EPIC. The reason behind selecting those methods was be-

cause of the type of scores they provide, as they reflect each 

cell type’s absolute fractions, that allow for between-sam-

ples and between-cell type comparisons. Both methods are 

classified into deconvolution-based approaches, which use 

v-support vector regression methods (v-SVR) to estimate 

immune cell type’s proportion form a gene expression pro-

file [28]. LM22.txt and CIBERSORT.R files were required 

to run Cibersort within “immunedeconv” package. These 

two files were downloaded from the cibersort website [29] 

and contain the signature gene matrix for 22 different im-

mune cell types and a source code, respectively. 

On the other hand, MIXTURE, which is a method based in 

cibersort, was also used to estimate the cell type fractions.  

The input data for those methods was a gene expression 

matrix with gene symbols in rows and samples in columns. 



 

Data had to be normalized, which was already performed 

in previous steps, and non-logarithmically transformed 

[28]. Once the cell fractions were obtained, statistical tests 

were applied on the data to evaluate its variability between 

phenotypes status. A Shapiro test was performed to exam-

ine the distribution of each cell type’s data and to determine 

whether they followed a normal distribution or not. The test 

provided p-values for all cell types, and this information 

influenced the decision on which paired test was the most 

suitable for comparing the gene expression mean of the dif-

ferent phenotype of individuals. A Spearman’s rank corre-

lation test was employed to perform T CD4 cell type corre-

lation analysis between CIBERSORT abs.mode, EPIC and 

MIXTURE. 

 

 

Filtering 

 

Only non-irradiated samples were selected to continue with 

the analysis of characterizing BRCA1/2 carriers. Therefore, 

the findings and results obtained will specifically pertain to 

this subset of samples. Prior to the variable selection step, 

samples with missing values for the smoking variable were 

excluded, since this variable is important for the study and 

imputation methods might introduce bias into the data. 

Moreover, with a small sample size dataset, the data of each 

patient can have a significant impact on the analysis, so im-

puting these categorical values could lead to inaccurate re-

sults. 

Standard deviation measurement was used to filter data and 

to avoid unexpressed or unchanged genes across different 

samples. The second quantile of the standard deviation was 

used as a threshold to select the genes to remain in the anal-

ysis. In other words, we kept the 50% of genes with higher 

variability.  

 

 

 Variable selection  

 

Feature selection was performed with LASSO, a regression 

analysis method that aims to identify the most important 

predictor variables that are strongly associated with the re-

sponse variable. LASSO introduces a penalty term to the 

linear regression function, forcing the coefficients of less 

significant variables to be shrunk towards zero [30]. In this 

case, we investigated the potential relationship between co-

variates – age, smoking history, and T CD4 cell proportions 

for healthy patients, along with chemotherapy, radiother-

apy, and years elapsed between the end of these treatments 

and the blood extraction for the study, in cancer affected 

patients – and each patient’s phenotype of the studied com-

parisons. Four binomial models for variable selection were 

constructed, one for each of the following comparisons, al-

ways comparing carriers versus non-carriers: 

 

1.BRCA1 Affected vs NOMUT Affected 

2.BRCA1 Healthy vs NOMUT Healthy 

3.BRCA2 Affected vs NOMUT Affected 

4.BRCA2 Healthy vs NOMUT Healthy 

 

Since it is reasonable to expect that certain predictor varia-

bles may not have an effect in all the comparisons, employ-

ing a binomial approach allows the identification of these 

unique association for each comparison, provides more ac-

curate and meaningful results.  

 

Differential expression gene analysis 

 
Differential expression gene (DEG) analysis was con-

ducted on each of the four comparisons previously de-

scribed, with two main objectives. The first objective aimed 

to detect genes that displayed different significant expres-

sion patterns between the two conditions. Secondly, it 

aimed to generate a ranked list of genes, which will then 

serve as input for the subsequent step, GSEA. 

Limma, the package used for DEG, is based on a linear 

model analysis with empirical Bayes approach, that com-

bines information across genes to stabilize the estimation 

of variance, and returns standard tests statistics, such as the 

fold change, B, t and p-value for each for the tested gene 

[31]. Since many independent tests (one per gene) are per-

formed simultaneously, p-values were adjusted to multiple 

correction, in order to control the false discovery rate 

(FDR) using the Benjamini and Hochberg method, ensur-

ing that the reported significant genes are unlikely to be 

false positives [32].  

The covariates used in each of the comparisons depended 

on the results of variable selection, and adjusted P-value < 

0.05 and the absolute value of log fold change (logFC) > 1 

were the threshold to select differential expressed genes.  

 

 

Gene Set Enrichment Analysis 

 

The final step of this project involved a gene set enrichment 

analysis. The primary goal was to get biological pathway 

information from the list of previously ranked genes to 

identify a biomarker that can distinguish between patient’s 

phenotypes. The Molecular Signature Database (MSigDB) 

was used to define two gene set collections for the analysis. 

The first one, was the Hallmark collection, which consist 

of 50 gene sets that represent specific and well-defined bi-

ological states. The second, was the Reactome subset of 

Canonical pathways collection, which contains 1654 gene 

sets derived from the Reactome pathway database [33].  

Pathways were separated into positive (enriched at the top 

of the list) or negative (enriched at the bottom) according 



 

to its normalized enrichment score (NES), and those with 

an adjusted p-value < 0.05 were selected.  

Finally, we assessed whether negative and positive path-

ways were shared between BRCA1 healthy versus BRCA1 

affected, and BRCA2 healthy versus BRCA2 affected sam-

ples.  

The metrics used to rank the genes was a combination of 

the sign of the logFC and the logarithm of the p-value.  

 

3 Results 

 

3.1 Preprocessing steps 

 

Images generated by the scan were valid despite some 

traces of spots, marks, or signs of damage that were de-

tected in the images 107 and 121. However, they were not 

significant enough to exclude them [Supplementary Figs. 

S1-S2]. Moreover, data quality plots outcomes demon-

strated generally good quality of the arrays.  

54,675 summarized probe sets were obtained after the nor-

malization procedure, whose intensities were similarly dis-

tributed and homogenous in all the samples.  

Samples did not aggregate by disease, as there was not a 

clear separation between healthy and cancer-affected pa-

tients in any of the hierarchical clustering dendrograms per-

formed with different metrics and linkage methods [Fig 1.A 

and Supplementary Fig. S3-S4]. The PCA plot revealed 

overlapping ellipses in all the different phenotype condi-

tions, suggesting similar gene expression profiles between 

all the individuals, independently of the BRCA mutation 

they may present, and their disease status, as visualized in 

Figure 1.B. 

 

 

  

After evaluating both annotating methods, the Thermo 

Fisher file, was selected as the preferred method. Not only 

did it result in a higher number of annotated probe sets, but 

it is also considered the official source, providing a more 

reliable, curated, and informative dataset for further analy-

sis. Once the aggregation of duplicates, the matrix con-

tained the expression levels of 21,923 genes. 

 

3.2 Deconvolution 

 

CIBERSORT abs. mode and MIXTURE provided a higher 

level of detail regarding cell types. Therefore, the propor-

tions of T CD4 naïve and memory activated cell types were 

summed and combined into a single cell type group (T CD4 

aggregated) to perform correlation analysis with the T CD4 

cell type proportion of EPIC, which can be found in sup-

plementary Figs. S5-S7. CIBERSORT abs. mode and 

MIXTURE displayed the strongest correlation among the 

methods, as the Spearman’s correlation value (rho) was 

0.86. On the other hand, the rho value for EPIC and 

MIXTURE correlation analysis was 0.51, and the correla-

tion between EPIC and CIBERSORT exhibited an even 

further decrease (rho= 0.4).  One of the main differences in 

the correlation plots is that both EPIC - MIXTURE and 

EPIC-CIBERSORT present most of the EPIC data points 

concentrated between a 0.7-0.9 range of proportions, while 

MIXTURE and CIBERSORT concentrate their T CD4 data 

points between a 0.25-0.95 range. Based on these results, 

the T CD4 aggregated proportions obtained by 

CIBERSORT abs. mode, were the fractions used as a co-

variate in the next steps, variable selection, and differential 

expression analysis.   

 

 

 

 

 

Fig 1. Sample aggregation plots. A) Hierarchical clustering dendrogram of each sample phenotype, using the Euclidean distance and the 

Ward.D2 linkage method. B) Principal Component Analysis (PCA) plot by sample’s phenotype.  



Once this method was selected, the distribution of T CD4 

cell type fractions, which includes naïve and memory acti-

vated CD4 cells, were analyzed to compare the mean ex-

pression value and to detect significative differences be-

tween the phenotypes. To achieve this, a Kruskal Wallis 

test was performed.  No statistically differences (p-value < 

0.05) between the means of the phenotypes in neither T 

CD4 memory activated fraction and T CD4 naïve cell 

types, as it is showed in Fig 2, although the median level of 

T CD4 memory activated cells in BRCA2 healthy samples 

is a little bit higher than the rest. On the other hand, a Wil-

coxon test was also performed to ensure no statistically sig-

nificant differences were detected between the two means 

of all possible phenotype comparisons.  

Cell proportion results obtained through CIBERSORT 

method presented a notable increasement in fractions of T 

CD4 memory activated cells, as it is seen in Fig.3 which 

graphically illustrates the cell type proportions that were 

obtained by this method. 

 

 

 3.3 Filtering  

 

Seven samples were removed from the analysis, since they 

contained missing values (NA) for the smoking variable, as 

detailed in Supplementary Table S1. Of note, BRCA1, 

BRCA2 and 4 genes related to the MYC family (GJA9-

MYCBP, MYC, MYCBP2, and MYCBPAP) passed the fil-

tering when using a sd = 0.05. 

 

 

 3.4 Variable Selection 

 

For each of the four comparisons studied, LASSO penal-

ized and selected specific variables. Different variables, 

summarized in Table 1, were added to the model, depend-

ing on the disease status of group of samples comparing, as 

previously described in the methods section. The variables 

LASSO selected for each comparison were as follows, as 

its coefficient was not shrunk to 0, indicating its relation- 

 

 

Fig 2. Distribution of T CD4 cell type per each of the phenotypes, using 

the CIBERSORT absolute mode deconvolution method.   

Fig 3. Cell type proportions obtained through CIBERSORT absolute mode.  



 

ship with the phenotype of each group: 

 

A) BRCA1 Affected: Age and smoking. 

B) BRCA1 Healthy: no variables selected. 

C) BRCA2 Affected: Age, smoking, chemotherapy, 

and radiotherapy. 

D) BRCA2 Healthy: age, smoking, and T CD4 cell 

proportions. 

 

The aim of the study was to finally compare results, on one 

hand between BRCA1 healthy and cancer-affected samples, 

and in the other hand, between BRCA2 healthy and cancer-

affected, without comparing between BRCA1 and BRCA2. 

For this reason, it is necessary to design consistent DEG 

models. Thus, the combination of variables selected by 

LASSO was chosen for both affected and healthy compar-

isons in each BRCA1/2 group. However, the variables re-

lated with cancer treatment were retained only for cancer-

affected patients, as they do not have relevance for healthy 

individuals. This approach led to the inclusion of age and 

smoking for BRCA1 DEG models. For BRCA2 models, the 

variables encompassed age, smoking, and T CD4 for 

healthy individuals, while also incorporating chemotherapy 

for cancer-affected individuals. Since chemotherapy and 

radiotherapy were highly correlated, only the variable of 

chemotherapy was included in the model because it had a 

higher LASSO coefficient. 

 

 

 

 

3.5 Differential expression analysis 

 

According to the previous described models, no significant 

differential expressed genes were found in BRCA1 healthy, 

BRCA1 cancer-affected, and BRCA2 cancer-affected com-

parison, as detailed in Table 2. This lack of significance 

was due to the absence of any gene with an absolute logFC 

value over 1 and an adjusted p-value below 0.05 and 0.01. 

Fig.4 shows the expression levels of those genes with a p-

value < 0.05 and logFC >1 for the BRCA1 affected compar-

ison, whilst the rest of the comparisons can be found in 

Supplementary Figs. S12-S14. 

In contrast, when comparing BRCA2 healthy and NOMUT 

healthy individuals, only one gene was significantly differ-

entially expressed when using a p-value < 0.05 (Table 2). 

That gene was identified as LOC100653061, a non-specific 

gene name that lacks universal assignment and has an un-

certain function. Given its limited significance and rele-

vance, no specific conclusions were drawn about the gene’s 

potential implications. The distribution of p-values across 

all BRCA comparisons deviated significantly form the ex-

pected ideal, which should have shown a right-skewed pat-

tern. In BRCA2 and BRCA1 cancer-affected comparison, 

the distributions appeared to be uniform and left-skewed, 

respectively, and a little bit right-skewed in BRCA1 

healthy, although it was not considered a good distribution 

[Supplementary Figs S8-S11]. 

 

 

 

 

 

 

Table 1.  Univariate descriptive analysis.  



 

 

 

3.6 Gene Set Enrichment Analysis 

 

Once the collection of positive and negative pathways was 

acquired for each phenotype, a comparative analysis within 

each mutation status became intriguing. Fig 5, illustrates 

the pathways resulting from the Hallmark gene set collec-

tion. Next, the results pertaining to Hallmark are detailed.  

The positive pathways jointly present in both BRCA1 

healthy and cancer-affected samples (Fig. 5A-B) encom-

passed myc targets V1 and 2, and E2F targets. Conversely, 

the negative pathways that were shared included inflamma-

tory response, hypoxia, angiogenesis, epithelial mesenchy-

mal transition, kras signaling up, and coagulation. There 

was no overlap of positive pathways between BRCA1 

healthy and negative pathways of BRCA1 affected samples, 

and vice versa. Concerning BRCA2 (Fig. 5C-D), there were 

no positive pathways commonly shared between healthy 

and affected samples, neither positive pathways in one con-

dition that were negative in other, and the other way 

around. Only six negative pathways were shared between 

BRCA2 healthy and affected, inflammatory response, hy-

poxia, kras signaling up, TNFA signaling via NFKB, inter-

feron gamma response, and complement.  

This analysis was also performed using the Reactome col-

lection, and similar results were obtained.  

 

 

4.  DISCUSSION 

 

In this study, we have examined the transcriptional profile 

present in human blood samples associated with BRCA1/2 

mutation carriers. A comprehensive bioinformatic analysis 

was performed, which provide insights into the gene ex-

pression profile and biological processes and pathways that 

are overrepresented in each of the phenotype condition. 

 

As expected, deconvolution results presented an enrich-

ment of T cell CD4 lymphocytes in all the samples, without 

statistically significant differences between phenotypes. 

This fact indicates that the proportions of T lymphocytes 

were similar, independently of the disease status and 

whether the individual was a BRCA carrier or not. T lym-

phocytes enrichment can be attributed to the administration 

of PHA to the samples. This substance particularly  

 

 

 

 

effectively stimulated the division of T CD4 lymphocytes, 

leading to a heightened presence of this cell type in the sam-

ples. Therefore, the PHA treatment was successful and had 

a similar impact on each of the samples. 

 

Although MIXTURE is a method that offered the potential 

for an improved and accurate estimation of cell type pro-

portions, and it is based in CIBERSORT, the existing liter-

ature does not establish solid evidence on whether the kind 

of score it provides allows the comparison between cell type 

and/or sample type [22]. Then, EPIC tended to overesti-

mate the proportion of T CD4 cell type since it calculates 

or predicts a higher fraction of T CD4 compared to what 

might truly be present, demonstrated also in internal stud-

ies. For these reasons, CIBERSORT abs. mode was the de-

convolution method selected for the analysis. 

 

Results from variable selection with LASSO indicated that 

the proportion of T CD4 lymphocytes in blood samples did 

not adjust for the phenotype in three of the four compari-

sons. Since LASSO selected variables based on their pre-

dictive strength, this may suggest that the T CD4 cell frac-

tion is weakly associated with the phenotype. It does not 

definitively mean that cell type proportions are not related 

with the phenotype, but it is possible that its relationship is 

not strong enough to be considered for the model, as 

LASSO shrinks its coefficient to zero. Therefore, there was 

no improvement in the DEG given that our analysis un-

veiled an absence of significant differentially expressed 

genes. This minimal significance in the genes was already 

anticipated, in agreement with the aggregation analysis. It 

has been demonstrated that there isn’t a specific tran-

scriptomic profile that uniquely characterizes the pheno-

type of the individuals. 

 

As differentially expressed genes were obtained taking 

standard thresholds, that doesn’t necessarily mean that 

there are no regulatory changes occurring within the cell, a 

GSEA was performed.  By focusing on gene sets rather than 

individual genes, GSEA allows to explore functional path-

ways or networks that might reveal biological processes 

 

Comparison Total genes P-value < 0.05 P-value < 0.01 Adj.P-value <0.05 & logFC>1 Adj.P-value <0.01 & logFC>1 

BRCA1 Healthy vs NOMUT Healthy 10961 840 4 0 0 

BRCA1 Affected vs NOMUT Affected 10961 157 5 0 0 

BRCA2 Healthy vs NOMUT Healthy 10961 527 10 1 0 

BRCA2 Affected vs NOMUT Affected 10961 491 40 0 0 

Table 2.   Number of significant genes for each comparison.  



 

 

 

 

 

Fig 5.   Barplots of the GSEA negative and positive pathways. 

Fig 4.   Heatmap of the genes with a p-value < 0.05 and absolute value logFC >1 for the BRCA1 healthy group comparison. 

Fig 4.   Heatmap of the genes with a p-value < 0.05, and absolute value LogFC>1 for the BRCA1 affected samples. 



 

that have some relevance to the phenotype condition, even 

if individual genes don’t exhibit statistical significance.  

 

The results of the GSEA showed that cell cycle, DNA rep-

lication and proliferation pathways were by far the most 

positively overrepresented, specifically MYC and E2F tar-

get pathways.  Since in the experimental part of the study 

phytohemagglutinin was used to stimulated lymphocytes, 

and consequently, facilitate the cell proliferation of the 

cells, a rapid cell division will be expected, and therefore, 

observing pathways related to the cell cycle and DNA rep-

lication is a key point. Furthermore, the implication of 

BRCA1 and BRCA2 genes in the DNA replication process, 

demonstrate the importance of observing pathways related 

to this event.  

For BRCA1 healthy, BRCA1 affected, and BRCA2 healthy 

individuals, both MYC_Targets_V1 and V2, and E2F_Tar-

gets were among the highest positive overexpressed path-

ways, which means that the individuals that have the muta-

tion are showing more expression of MYC compared to the 

control group of them, the non-mutated samples. 

That way, most of the overexpressed pathways were related 

with cell cycle and DNA replication, such as MYC_Target, 

G2M_Checkpoint, DNA_repair, and E2F_Targets in the 

BRCA1 healthy group. In the BRCA2 affected group, there 

are also MYC and E2F pathways, as well as in the BRCA2 

healthy group. However, the results indicated that BRCA2 

affected group, was the most different from the other three, 

as there was not identified any positively overexpressed 

pathway related with the previously mentioned.  

Regarding pathways, a similar pattern was present in all the 

different phenotypes. Hypoxia, inflammatory response, in-

terferon gamma (cytokines) and various signaling path-

ways, were the ones shared in all the groups.  

 

GSEA results obtained were supported by the findings of 

other studies, which reported an enrichment of MYC, E2F 

and NFKB in lymphocytes treated with PHA [34]. There-

fore, there are indeed similarities between the studies, as an 

enrichment of gene sets specifically associated with key bi-

ological pathways such as cell cycle, DNA replication and 

cell proliferation were obtained. However, in our study, the 

signaling pathway related to NFKB was found to be nega-

tively enriched instead of positively.  

E2F involves transcription factors that regulate genes in-

volved in cell cycle progression and DNA replication, and 

MYC, also a transcription factor that is a master regulator 

of ell growth, proliferation, and metabolism. There are 

many studies that have been focusing on the study of MYC 

and E2F association with breast cancer, even have deter-

mined the predictive potential of E2F as a biomarker for 

the disease [35][36]. Even though these pathways are 

dysregulated and tend to be overexpressed in cancer [37], 

they are not exclusively to cancer conditions. These genes 

and their associated pathways are also crucial for normal 

cells, as they carry out essential functions related to the 

maintenance of cellular processes. The overexpression of 

MYC and E2F target pathways in both healthy and cancer 

samples raises interesting questions about their roles in dif-

ferent biological contexts and their potential contributions 

to cancer development. Our results did not show pathways 

related to cell cycle and proliferation in BRCA2 cancer af-

fected samples. Therefore, further investigation would be 

needed to study in detail and understand why these path-

ways are overexpressed in al the conditions except for can-

cer-affected BRCA2 mutation carriers. 

 

Although microarray technology has been a valuable tool 

in molecular biology for the past years, like any other tech-

nique, it has its limitations. Microarrays have a limited dy-

namic range, which means that the gene expression meas-

urement may not be accurately for low and high expressed 

genes. Another disadvantage is the ability to detect novel 

transcripts, as the design of arrays is based on known se-

quences at the time of the design, so they may not capture 

unknown sequences [38]. In addition to this, the cost of mi-

croarrays can be relatively high compared to other technol-

ogies, and the high background noise can reduce the sensi-

tivity and make it challenging to detect changes in gene ex-

pression [39]. 

However, since the field of genomics and transcriptomics 

continually evolves, novel techniques such as RNA-

sequencing have largely replaced microarrays in recent 

years for many applications due to their improved abilities.  

 

This study has focused on the transcriptome analysis of 

non-irradiated samples. Hence, results of this study pertain 

to this subset of samples. In a future, a similar bioinformat-

ics approach could be employed to also analyze the irradi-

ated samples, thus, to identify possible differential ex-

pressed genes and biological pathways in this condition.  

In summary, a comprehensive and in-depth bioinformatic 

analysis has been conducted, delving into the complexities 

of performing a transcriptomics analysis. Even though no 

results were obtained in the differential expression analysis, 

they were found in the functional analysis. Moreover, 

GSEA results were solid and consistent in all the compari-

sons, as well as coherent within the biological context. Cell 

cycle and DNA replication related pathways were the key 

ones identified. Moreover, in further studies, integrating 

additional omics data, such as genomics and epigenomics, 

could unveil underlying patterns that are not apparent in the 

transcriptomics analysis alone. 

To perform all the necessary steps to conduct the bioinfor-

matics analysis, a variety of strategies were meticulously 

employed and evaluated, considering their suitability and 

relevance within each step of the analysis process. During 

this progress, we have not only discussed the power of 



 

cutting-edge bioinformatic tools, but also demonstrated a 

critical discernment in their application. The outcome is a 

robust exploration of the analysis of the transcriptome and 

gene expression. In this way, a data set has been re-ana-

lysed by using innovative techniques, that could potentially 

lead to novel discoveries and insights of the biological pro-

cesses under investigation.   

 

 

 

 SUPPLEMENTARY INFORMATION 

 

Fig. S1-S2.  Array images generated by the scan.  

Fig. S3. Dendrogram of the disease status, using the Eu-

clidean distance and the linkage ward.D2 method.  

Fig. S4. Dendrogram of the disease status, using the corre-

lation-based distance and the average linkage method. 

Fig. S5-S7.  Correlation plots. 

Fig. S8-S11. Plots representing the distribution of the p-

values generated in the differential expression analysis. 

Fig. S12-14. Heatmap of the most significative genes for 

each of the comparisons.  

 

 

 

REFERENCES 

 

[1] “Cancer Today.” https://gco.iarc.fr/today/online-

analysis-multi-

bars?v=2020&mode=cancer&mode_population=c

ountries&population=900&populations=900&key

=total&sex=2&cancer=39&type=0&statistic=5&p

revalence=0&population_group=0&ages_group%

5B%5D=0&ages_group%5B%5D=17&nb_items=

10&group_cancer=1&include_nmsc=0&include_

nmsc_other=1&type_multiple=%257B%2522inc

%2522%253Atrue%252C%2522mort%2522%25

3Afalse%252C%2522prev%2522%253Afalse%2

57D&orientation=horizontal&type_sort=0&type_

nb_items=%257B%2522top%2522%253Atrue%2

52C%2522bottom%2522%253Afalse%257D 

(accessed Aug. 12, 2023). 

[2] “BRCA Gene Mutations: Cancer Risk and 

Genetic Testing Fact Sheet - NCI.” 

https://www.cancer.gov/about-cancer/causes-

prevention/genetics/brca-fact-sheet (accessed 

Aug. 11, 2023). 

[3] S. A. Narod and L. Salmena, “BRCA1 and 

BRCA2 Mutations and Breast Cancer,” Discov. 

Med., vol. 12, no. 66, pp. 445–453, Nov. 2011. 

[4] E. R. Jang and J.-S. Lee, “DNA Damage 

Response Mediated through BRCA1,” Cancer 

Res. Treat., vol. 36, no. 4, p. 214, 2004, doi: 

10.4143/CRT.2004.36.4.214. 

[5] G. Borrego-Soto, R. Ortiz-López, and A. Rojas-

Martínez, “Ionizing radiation-induced DNA injury 

and damage detection in patientswith breast 

cancer,” Genet. Mol. Biol., vol. 38, no. 4, p. 420, 

Oct. 2015, doi: 10.1590/S1415-

475738420150019. 

[6] M. Saleem et al., “The BRCA1 and BRCA2 

Genes in Early-Onset Breast Cancer Patients,” 

Adv. Exp. Med. Biol., vol. 1292, pp. 1–12, 2020, 

doi: 10.1007/5584_2018_147. 

[7] K. Yoshida and Y. Miki, “Role of BRCA1 and 

BRCA2 as regulators of DNA repair, 

transcription, and cell cycle in response to DNA 

damage,” Cancer Sci., vol. 95, no. 11, pp. 866–

871, Nov. 2004, doi: 10.1111/J.1349-

7006.2004.TB02195.X. 

[8] S. Supplitt, P. Karpinski, M. Sasiadek, and I. 

Laczmanska, “Current Achievements and 

Applications of Transcriptomics in Personalized 

Cancer Medicine,” Int. J. Mol. Sci., vol. 22, no. 3, 

pp. 1–22, Feb. 2021, doi: 10.3390/IJMS22031422. 

[9] C. Virtanen and J. Woodgett, “Clinical Uses of 

Microarrays in Cancer Research,” Accessed: Aug. 

14, 2023. [Online]. Available: 

www.affymetrix.com. 

[10] F. Avila Cobos, J. Alquicira-Hernandez, J. E. 

Powell, P. Mestdagh, and K. De Preter, 

“Benchmarking of cell type deconvolution 

pipelines for transcriptomics data,” Nat. 

Commun., vol. 11, no. 1, Dec. 2020, doi: 

10.1038/S41467-020-19015-1. 

[11] “GSEA.” https://www.gsea-

msigdb.org/gsea/index.jsp (accessed Aug. 14, 

2023). 

[12] A. Subramanian et al., “Gene set enrichment 

analysis: A knowledge-based approach for 

interpreting genome-wide expression profiles,” 

Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 43, 

pp. 15545–15550, Oct. 2005, doi: 

10.1073/PNAS.0506580102/SUPPL_FILE/06580

FIG7.JPG. 

[13] S. Gutiérrez-Enríquez et al., “Ionizing radiation or 

mitomycin-induced micronuclei in lymphocytes 

of BRCA1 or BRCA2 mutation carriers,” Breast 

Cancer Res. Treat., vol. 127, no. 3, pp. 611–622, 

Jun. 2011, doi: 10.1007/S10549-010-1017-

6/METRICS. 

[14] “GeneChip ® Human Genome U133A 2.0 

Array,” Accessed: Aug. 12, 2023. [Online]. 

Available: www.affymetrix.com. 

[15] “Bioconductor - affy.” 

https://bioconductor.org/packages/release/bioc/ht

ml/affy.html (accessed Aug. 14, 2023). 

[16] L. Gautier, L. Cope, B. M. Bolstad, and R. A. 



 

Irizarry, “Affy - Analysis of Affymetrix GeneChip 

data at the probe level,” Bioinformatics, vol. 20, 

no. 3, pp. 307–315, Feb. 2004, doi: 

10.1093/BIOINFORMATICS/BTG405. 

[17] “R: The R Stats Package.” https://stat.ethz.ch/R-

manual/R-devel/library/stats/html/stats-

package.html (accessed Aug. 30, 2023). 

[18] “dendextend package - RDocumentation.” 

https://www.rdocumentation.org/packages/dendex

tend/versions/1.17.1 (accessed Aug. 30, 2023). 

[19] “Bioconductor - hgu133plus2.db.” 

https://bioconductor.org/packages/release/data/ann

otation/html/hgu133plus2.db.html (accessed Aug. 

14, 2023). 

[20] “GeneChipTM Human Genome U133 Plus 2.0 

Array.” 

https://www.thermofisher.com/order/catalog/prod

uct/900466 (accessed Aug. 14, 2023). 

[21] “GitHub - omnideconv/immunedeconv: A unified 

interface to immune deconvolution methods 

(CIBERSORT, EPIC, quanTIseq, TIMER, xCell, 

MCPcounter) and mouse deconvolution methods.” 

https://github.com/omnideconv/immunedeconv 

(accessed Aug. 14, 2023). 

[22] E. A. Fernández et al., “MIXTURE: an improved 

algorithm for immune tumor microenvironment 

estimation based on gene expression data,” 

bioRxiv, p. 726562, Aug. 2019, doi: 

10.1101/726562. 

[23] “Package ‘glmnet’ Type Package Title Lasso and 

Elastic-Net Regularized Generalized Linear 

Models,” 2023, doi: 10.18637/jss.v033.i01. 

[24] “Bioconductor - limma.” 

https://bioconductor.org/packages/release/bioc/ht

ml/limma.html (accessed Aug. 14, 2023). 

[25] T. Wu et al., “clusterProfiler 4.0: A universal 

enrichment tool for interpreting omics data,” 

Innovation, vol. 2, no. 3, Aug. 2021, doi: 

10.1016/J.XINN.2021.100141. 

[26] M. Dozmorov, “Quality assessment, single 

channel (Affymetrix) arrays Probe level QC,” 

2017, Accessed: Aug. 12, 2023. [Online]. 

Available: 

http://plmimagegallery.bmbolstad.com/. 

[27] N. Lara, “Transcriptomics. Microarray Data 

Analysis.” 

[28] “Getting started with immunedeconv • 

immunedeconv.” 

https://omnideconv.org/immunedeconv/articles/im

munedeconv.html (accessed Aug. 14, 2023). 

[29] “CIBERSORTx.” https://cibersortx.stanford.edu/ 

(accessed Aug. 23, 2023). 

[30] “Least Absolute Shrinkage and Selection Operator 

(LASSO) | Columbia University Mailman School 

of Public Health.” 

https://www.publichealth.columbia.edu/research/p

opulation-health-methods/least-absolute-

shrinkage-and-selection-operator-lasso (accessed 

Aug. 14, 2023). 

[31] M. E. Ritchie et al., “Limma powers differential 

expression analyses for RNA-sequencing and 

microarray studies,” Nucleic Acids Res., vol. 43, 

no. 7, p. e47, Jan. 2015, doi: 

10.1093/NAR/GKV007. 

[32] Y. Benjamini and Y. Hochberg, “Controlling the 

False Discovery Rate: A Practical and Powerful 

Approach to Multiple Testing,” J. R. Stat. Soc. 

Ser. B, vol. 57, no. 1, pp. 289–300, Jan. 1995, doi: 

10.1111/J.2517-6161.1995.TB02031.X. 

[33] “GSEA | MSigDB.” https://www.gsea-

msigdb.org/gsea/msigdb (accessed Aug. 14, 

2023). 

[34] C. Beinke, M. Port, R. Ullmann, K. Gilbertz, M. 

Majewski, and M. Abend, “Analysis of Gene 

Expression Changes in PHA-M Stimulated 

Lymphocytes - Unraveling PHA Activity as 

Prerequisite for Dicentric Chromosome Analysis,” 

Radiat. Res., vol. 189, no. 6, pp. 579–596, Jun. 

2018, doi: 10.1667/RR14974.1. 

[35] Y. Chen and O. I. Olopade, “MYC in breast tumor 

progression,” Expert Rev. Anticancer Ther., vol. 

8, no. 10, p. 1689, 2008, doi: 

10.1586/14737140.8.10.1689. 

[36] M. Oshi et al., “The E2F Pathway Score as a 

Predictive Biomarker of Response to Neoadjuvant 

Therapy in ER+/HER2− Breast Cancer,” Cells, 

vol. 9, no. 7, Jul. 2020, doi: 

10.3390/CELLS9071643. 

[37] Y. Li et al., “Expression patterns of E2F 

transcription factors and their potential prognostic 

roles in breast cancer,” Oncol. Lett., vol. 15, no. 6, 

pp. 9216–9230, Jun. 2018, doi: 

10.3892/OL.2018.8514/HTML. 

[38] “RNA-Seq vs Microarrays | Compare 

technologies.” 

https://www.illumina.com/science/technology/nex

t-generation-sequencing/microarray-rna-seq-

comparison.html (accessed Sep. 01, 2023). 

[39] R. Jaksik, M. Iwanaszko, J. Rzeszowska-Wolny, 

and M. Kimmel, “Microarray experiments and 

factors which affect their reliability,” Biol. Direct, 

vol. 10, no. 1, Sep. 2015, doi: 10.1186/S13062-

015-0077-2. 

 

 


