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Abstract
Working memory (WM) is a crucial cognitive function required to maintain and manipulate information that is no longer
present through the senses. Two key features of WM are its limited capacity and the emergence of serial order effects. This
study investigates how synaptic facilitation and diverse display dynamics influence the encoding and retention of multiple
items in WM. A biophysically inspired attractor model of WM, endowed with synaptic facilitation, is considered in this
study. The investigation delves into the behaviour of the model under both sequential and simultaneous display protocols.
Synaptic facilitation plays a crucial role in establishing the response of the WM system by regulating resource allocation
during the encoding stage. It boostsWMcapacity and is a keymechanism in the emergence of serial order effects. The synaptic
facilitation time constant (τF ) is critical in modulating these effects, and its heterogeneity in the prefrontal cortex (PFC) may
contribute to the combination of primacy and recency effects observed experimentally. Additionally, we demonstrate that the
WM capacity exhibited by the network is heavily influenced by factors such as the stimuli nature, and their display duration.
Although the network connectivity determines the WM capacity by regulating the excitation-inhibition balance, the display
protocol modulates its effective limit. Our findings shed light on how different stimulation protocol dynamics affect WM,
underscoring the importance of synaptic facilitation and experimental protocol design in modulating WM capacity.

Keywords Working memory · Synaptic facilitation · Attractor networks · Serial order effects

Introduction

Workingmemory (WM) is a cognitive function which is nec-
essary to maintain and manipulate information that is not
present physically through the senses. Its integrity is basic
for higher cognitive functions, such as language, memory or
reasoning. A hallmark property ofWM is its limited capacity
[1]. In the last decades, several theories have explored these
capacity limits by not only paying attention to such abso-
lute bounds but also to the accuracy with which the items are
memorised [2–5]. Although all of thesemodels have success-
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fully accounted for a broad range of psychophysical results,
little neurophysiological evidence about the neural mecha-
nisms underlying these predictions is available.

Selectively enhanced activity of neurons in the prefrontal
cortex (PFC) throughout the delay period of WM tasks has
been traditionally regarded as a neural correlate of WM
function [6]. Indeed, persistent activity has been reported in
multiple studies (see [7] for a review on the topic). However,
other authors rely on alternative mechanisms such as spiking
rhythmicity [8], or short-term synaptic plasticity [9].

Although the neural mechanisms underlying the main-
tenance of multiple items in WM have not been clearly
identified yet, several hypotheses have been considered from
the computational perspective, which match the three mech-
anisms outlined earlier: (1) sustained neural activation (e.g.
single-item WM [10, 11], and multi-item WM [12–16]), (2)
neural oscillations (e.g. [8, 17]), or (3) patterns of synaptic
strength [9].

Persistent neuronal activity can manifest in the brain
through various mechanisms. It may arise at the network
level, as a result of recurrent connections within a reverbera-
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tory neural network, or at the cellular level, driven by intrinsic
mechanisms that operate independently of network involve-
ment [11, 18, 19]. In this study, delay activity is interpreted in
terms of the attractor dynamics exhibited in neural networks.
Within the attractor picture, persistent activity is charac-
terised by the elevated firing of a subset of neurons, which
remains even without external stimulation. The attractors,
nonetheless, could also be realised in the synaptic dynam-
ics [9] instead of the (persistent) neuronal activities. As
such, attractor dynamics offer a fundamental framework to
investigate both activity-based and activity-silent mnemonic
regimes. In contrast to the activity-based models, Mongillo
et al. [9] proposed a computational model which explores the
hypothesis that persistent neural activity may not be the only
mechanism underlying WM. They suggest that WM is sus-
tained by calcium-mediated synaptic facilitation in the recur-
rent connections of neocortical networks, amechanism that is
metabolically efficient and robust. Unsurprisingly, however,
persistent activity models have been largely prevalent in the
field provided their direct relation with the available neu-
rophysiological recordings. Although we do not claim that
alternative mechanisms are not plausible (or even likely), in
this work, we propose a persistent activity model and argue
that it accounts for a variety of relevant experimental findings.

From a different perspective, it is clear that our perceptual
reality is generally far from static. This is a consequence of
the continuous influx of changing stimuli entering through
our senses. While some of these stimuli appear simultane-
ously in the physical world, others appear asynchronously.
Indeed, the storage and manipulation of serial order infor-
mation is a critical element of WM, which is key for success
in many different cognitive tasks, including numerical tasks
[20], language production [21], or visual perception [22].
However, systematic investigations into the role of stimula-
tion dynamics in determining both the capacity limits ofWM
and the characteristics of the resulting serial order effects
have been relatively scarce [23–26].

In this research, our primary focus will be on the neu-
ronal dynamics exhibited by the network. It is noteworthy
that this temporal dimension contributes to the emergence
of serial effects and carries significant implications not only
for determining the quantity of displayed items retained in
WM but also for identifying the items that are preferen-
tially preserved. Throughout the remainder of the paper, the
term sequential stimulation will refer to the serial display
of stimuli, each presented individually with an interstimulus
interval (ISI) between consecutive items. Notably, two serial
effects, namely primacy and recency, have been experimen-
tally reported (e.g. [27, 28]). In sequential display protocols,
the recency effect implies that items presented in the final
positions of a sequence are more likely to be retained in
WM, while the primacy effect favours items shown earlier in
the sequence.

Remarkably, serial effects have been observed acrossmul-
tiple WM tasks. These tasks encompass diverse test stages
like free recall and recognition, various stimulus modalities
such as verbal, spatial, and object-based WM, and different
temporal dynamics in the presentation of items. A compre-
hensive examination of these serial effects reveals a clear
primacy and recency pattern for verbal material [28]. Con-
versely,when dealingwith spatialmaterial, the recency effect
is evident but primacy seems to be limited in this case [28].
In the visual domain, results remain inconclusive. Several
studies report a recency effect for the last stimulus but do
not observe primacy when using abstract visual patterns [29,
30], as well as other types of stimuli such as unfamiliar faces,
inverted faces or non-work sequences [31–33]. In contrast,
some studies demonstrate both primacy and recency effects
for unfamiliar faces [31]. Indeed, Hurlstone et al. [27], in
their review on this subject, emphasise the limited availabil-
ity of information regarding the emergence of the primacy
effect within the visual domain.

Similarly, distinct WM capacity limits have been doc-
umented across various WM tasks, with reported values
ranging from 3 to 7 items [23, 34]. Altogether, these myriad
experimental paradigms have contributed a wealth of empir-
ical findings regardingWM.However, this heterogeneity has
also posed newchallenges, as it necessitates the identification
of consistent findings across all of these paradigms to con-
tribute fundamental insights into the mechanisms underlying
WM [28].

In this work, we consider a minimal, biophysically
inspired model of multi-item WM endowed with synaptic
facilitation to investigate its underlying neural mechanisms
in the context of these heterogeneous results. Furthermore,
we evaluate its performance under different stimulation pro-
tocols. Hitherto, the influence of the stimulation protocol
on the neuronal dynamics during the encoding stage, and
the subsequent maintenance of items in WM has remained
unclear, despite its likely significant impact on establishing
an effective WM capacity (Ke) [13]. We hypothesise that the
emergence of serial order effects is linked to the time scale
of biophysically relevant processes involved in the neuronal
dynamics, and that the design of the experimental protocols
significantly influences the encoding stage of WM.

Materials andMethods

Experimental Protocols

Particular emphasis is placed on the dynamics of the encod-
ing stage of the experimental protocols, which mainly
encompasses the periodwhen thememory set is displayed. In
the proposedmodel, these dynamics are inherently embedded
within the stimulation protocols. We consider both simulta-
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neous and sequential stimulation protocols (see Fig. 1). In
simultaneous protocols, all items are displayed simultane-
ously, while in sequential protocols, each item is presented
individually with a time interval, known as ISI, separating
contiguous items. Although a few studies have explicitly
examined and compared both types of stimulation protocols
[23–26], the prevailing trend in the literature is to predom-
inantly focus on one of them. In this study, we consider
an experimental paradigm derived from a delay-match-to-
sample (DMS) task. In this paradigm, the memory set is
displayed during a specific time interval (�tstim). In simul-
taneous protocols, �tstim corresponds to the period during
which all items are displayed concurrently, while in sequen-
tial protocols, each item is shown for �tstim , followed by
an interstimulus interval (ISI) before the presentation of the
next item.After the presentation of all stimuli, there is a delay
period of �tdelay . WM is probed during the final �tWM of
this delay period. In this study,�tdelay is set to 3 s, and�tWM

is 500 ms.

Computational Model

In order to investigate the neural mechanisms underlying
WM, we propose a biophysically inspired attractor network
of object WMwith spiking neurons. For simplicity, the level
of accuracy with which an item is kept in WM has not been
specifically addressed. Consequently, a discrete attractor net-
work is considered. The spiking neural network considered
in this study is based on the model proposed by Brunel and

Wang [11] for single-item object WM, which was subse-
quently extended to multiple items [13, 14]. It consists of
a network structured into statistically homogeneous neural
populations. In particular, the statistical properties of the
synaptic currents and the connection strengths are identical
for all the neurons within the same population. There is one
population of inhibitory cells and one population of excita-
tory cells, which is partitioned into N subpopulations. The
excitatory population is divided into 10 subpopulations, P1
to P10, with each subpopulation being selectively responsive
to a particular object i . Each of them represents one memory
by maintaining its activity during a delay period after a cue
λi has been applied during the encoding stage.

Recurrent connections between neurons from the same
selective subpopulation are potentiated by a factor ω+ >

1 with respect to the baseline connectivity level, while
connections between neurons from different selective sub-
populations are weakened by a factor 0 < ω− < 1. The
strength of inhibitory-to-excitatory connections is denotedby
the weight ωinh . The integrate-and-fire spiking network con-
tains 1000 neurons (80%excitatory and 20% in the inhibitory
pool). Each neuron in the network receives external Pois-
son inputs λext from 800 external neurons at a rate of 3.05
Hz/synapse (unless otherwise stated) to simulate the effect of
inputs coming from other brain areas. The attractor network
architecture is shown in Fig. 2.

The behaviour of the neurons is modeled by means of the
leaky integrate-and-fire (LIF)model, in which themembrane
potential V (t) obeys the following differential equation:

Fig. 1 Multi-itemWMexperimental paradigms.Example ofmulti-item
memory set displayed under two different experimental protocols in a
DMS visual task. Following a �t f i xation period lasting 500 ms during
which a central fixation cross is shown but no stimuli are displayed, the
memory set is presented during the encoding stage. Then, the memory
set is no longer shown during a �tdelay period lasting 3s. This is the
so-called memorisation stage. At the end of the memorisation stage, a
test item is shown during �ttest (test stage). Experimentally, a memory

test stage could be subsequently implemented by requesting the sub-
jects to answer the following question: “Was this item present in the
memory set?”. The encoding stage of the two experimental protocols is
different in the following way: (Left) Simultaneous protocol, all items
are shown at the same time during �tstim , and (right) sequential proto-
col, the items are shown individually in a sequence during �tstim (each
item) with an ISI between items
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Fig. 2 The attractor network model. The network is characterised by
full connectivity, wherein the excitatory neurons are partitioned into N
selective pools or neuronal populations denoted as P1 − PN , with four
of these pools illustrated in the diagram. Activation of these selective
pools is driven by specific cues λi , where i designates the individual
pool. The synaptic connections within the pools have strengths consis-
tentwith principles of associative learning, particularly strong intra-pool
connection strengths (ω+), and weaker between-pool synaptic connec-
tion strengths (ω−). The excitatory neurons receive inputs from the

inhibitory neurons with synaptic connection strengthωinh . The remain-
ing connection strengths are 1. ω+ was typically 2.3, ω− = 0.87, and
ωinh = 0.97 (unless otherwise stated). The integrate-and-fire spiking
network typically contained 1000 neurons, with 80 in each of the 10
non-overlapping excitatory pools, and 200 in the inhibitory pool. Each
neuron in the network also receives external Poisson inputs λext from
800 external neurons at a typical rate of 3.05 Hz/synapse to simulate
the effect of inputs coming from other brain areas

Cm
dV (t)

dt
= −gL

(
V (t) − VL

)
− Isyn(t) (1)

where Cm is the total membrane capacitance, gL is the pas-
sive conductance, VL is the resting potential, and Isyn(t) is
the synaptic current that charges the neuron. Four families
of synapses are considered. The recurrent excitatory post-
synaptic currents (EPSCs) have two components, which are
mediated by AMPA and NMDA receptors. In contrast, only
AMPA receptors mediate external EPSCs and GABA recep-
tors mediate the inhibitory components. The total synaptic
current is defined as follows:

Isyn(t) = IAMPA,ext(t) + IAMPA,rec(t)

+ INMDA,rec(t) + IGABA(t)
(2)

The model is endowed with short-term plasticity [14],
which relies on the properties of excitatory neurons in PFC
and their facilitatory activity. STSF can be attributed, for
instance, to the accumulation of residual calciumat the presy-

naptic terminals,which subsequently increases the likelihood
of neurotransmitter release [35]. In this study, STSF has been
implemented by adopting a phenomenological model based
on calcium-mediated transmission principles [9]. The synap-
tic efficacy of recurrent connections among all excitatory
neurons undergoes modulation by the utilisation parameter
(u), which represents the fraction of resources used, and mir-
rors the calcium level. Upon the arrival of a spike at the
presynaptic terminal, calcium influx leads to an increment in
u. This, in turn, elevates the probability of transmitter release
and thereby augments the synaptic strength at that particular
synapse. The temporal decay of synaptic facilitation is reg-
ulated by the time constant τF . This parameter determines
how quickly the increased release probability returns to its
baseline level after the spike has arrived. The model obeys
the following equation [9]:

du j (t)

dt
= U − u j (t)

τF
+U

(
1 − u j (t)

)∑
k

δ(t − tkj ) (3)
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The modulation by the utilisation factor is implemented
by multiplying the synaptic weight of each recurrent exci-
tatory synapse by u to produce an effective synaptic weight
ωe f f = u · ω+. The value for the baseline utilisation fac-
tor is U (U = 0.15, in this study). Different time constants
may reflect the diversity of mnemonic timescales observed in
PFC. An essential aspect of the proposed mechanism is that
STSF temporally (and dynamically) changes the functional
connectivity of the network in a task-dependent manner.

The mean field analysis of the model, as described in
[14], uncovers several critical aspects. On the one hand, the
system can operate in a physiologically plausible regime in
which multiple memories for those, and only those, items
which have received external stimulation can be simultane-
ously held. On the other hand, STSF boosts the overall WM
capacity of the network because of the effectively increased
synaptic strengths of those pools to which the cues are
applied, and the maintenance of this facilitation in just those
pools when the cue is removed (as a result of their continu-
ing neuronal firing). The network capacity K is established
by the maximum number of memories that can be simultane-
ously held upon stimulation.When the network is overloaded
(Nstim > K ) only some of the cued memories are cor-
rectly codified and held in WM. The network parameters
considered throughout this work can be found in the Sup-
plementary Material. The code that implements this model
can be accessed at the following GitHub repository: https://
github.com/mbalague-uvic/WMcode.

It is worth pointing out that we do not model the recog-
nition stage, which takes place in the test stage. In this
investigation,we consider that an item ismaintained inWMif

it shows persistent activity during the interval�tWM . The cri-
terion employed to determine the retention of an item within
WM is a mean firing rate ν̄ ≥ 20 Hz.

Results

Multi-itemWMwith Persistent Firing: Simultaneous
vs Sequential Stimulation Protocols

The predictions of the proposed model are assessed in the
light of the two stimulation protocols: simultaneous and
sequential display of items. In the simultaneous stimulation
protocol, after a 0.5 s period of spontaneous activity (with
λext at the baseline level of 3.05 Hz/synapse), λi tem cues λ1
to λNstim are applied to excitatory neuron pools P1 to PNstim

during the period 500–1500 ms. λ1 − λNstim are applied by
increasing the received external current from λext to λi tem
= 3.3125 Hz/synapse for just these Nstim pools during the
cue period. In the sequential stimulation protocol, also after
a 0.5 s period of spontaneous activity with λext at the baseline
level of 3.05 Hz/synapse, cues λ1 to λNstim are sequentially
applied to excitatory neuron pools P1 to PNstim during 1swith
an ISI of 1 s. The rest of pools remain at the baseline level
of 3.05 Hz/synapse throughout the trial for both protocols.
Note that the network parameters considered in this study,
specifically those associated with the STSF mechanism, are
similar to those considered in previous studies (e.g. [9, 14]).
Figure3 shows how the number of items successfully main-
tained in WM changes as a function of the memory set size
(S = Nstim) for both stimulation protocols. Specifically, it

Fig. 3 Cued memories held in WM under different stimulation proto-
cols for various memory set sizes S (S = Nstim ). Histogram illustrating
the percentage of trials in which each selective pool (Pi ) shows persis-
tent activity during the delay period. Pool ID identifies the selective pool
Pi . The emergence of persistent activity is considered whenever the
mean firing rate fulfils the condition ν̄ ≥ 20 Hz during a �tWM period

of 500 ms, 2.5 s after the last item of the memory set is displayed. a
Simultaneous stimulation protocol, and b Sequential stimulation proto-
col. The results are obtained from 100 trials with the following network
parameters ωinh = 0.97, τF = 1500 ms, ω+ = 2.3 (see the Supple-
mentary Material for the rest of network parameters)
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depends on the number of items that have received external
stimulation. As can be seen, consistent with previous studies
(e.g. [12, 13]), the model predicts that the number of items
that can be stored in WM reaches an upper limit. In these
simulations, the capacity limit is K ∼ 5.

Interestingly, although there is no clear preference as
to which items are kept in WM during the delay period
in the simultaneous stimulation paradigm, Fig. 3(b) shows
that, when the sequential stimulation paradigm is considered,
those items which are seen first in a sequence are much more
likely to bemaintained inWM. This is, however, at odds with
the experimental observations suggesting a recency effect
and indicates that the model, in its current setting, is unable
to replicate such findings.

For instance,Kool et al. [36] proposed aWMtask inwhich
different coloured squares (set sizes 3 to 5) were observed
during 50 ms. The results revealed a solid recency effect in
the case of larger set sizes, indicating that K < 5 in their
experiments. The emergence of the recency effect remained
independent of the retention interval time,while aweaker pri-
macy effect was observed only for the first item. Yakovlev et
al. [34] consider a DMS visual task in which a variable num-
ber of items are presented with an ISI of 1 s, and followed
by a variable (1 to 3 s) delay period. Their results demon-
strate that performance decreases with increasing sequence
lengths. In alignmentwith thefindings of [36], a clear recency
effect emerges, while no primacy effects are observed. Their
results suggest that up to 6–7 stimuli can be retained in WM.

In the following sections, we embark on an empirical
investigationwith the primary objective of validating the core
hypotheses underpinning our research. We have postulated
that the manifestation of serial order effects inWM is closely
interconnected with the temporal dynamics of the biophysi-
cally relevant processes governing the neuronal activity. One
such pivotal process is STSF, with its temporal dynamics reg-
ulated by the time constant τF . Furthermore, we assert that
the design of experimental protocols exerts a substantial in-
fluence on the encoding stage ofWM, therebywielding a sig-
nificant impact on both the effective WM capacity exhibited
by the network and the emergence of serial effects. Notably,
two key facets of experimental protocols are the nature of
stimuli, closely related to the intensity of the stimulation
λstim , and the stimulation duration, denoted as�tstim . In our
investigation, we employ a computational model, system-
atically manipulating these variables to elucidate the funda-
mental relationships between STFS, the experimental design
parameters, and the key features observed in WM function.

The Critical Role of Synaptic Facilitation inWM

Synaptic facilitation is a ubiquitous feature throughout the
brain and it is thought to play a key role in neural pro-
cessing [37]. Indeed, facilitating excitatory synapses are a

major feature in PFC [38]. Interestingly, in an experimental
study carried out on ferrets, Wang et al. [38] suggest that the
distribution of time constants (τF ) associated with synaptic
facilitation in mPFC is in the range of a few hundred mil-
liseconds, in contrast to the larger values (τF ∼ 1500–2000
ms) considered in [9, 14].

The time constant τF plays a critical role in establish-
ing the dynamics of the facilitation mechanism through the
temporal evolution of the utilisation parameter u. As can be
seen from Eq.3, two antagonistic terms govern the evolu-
tion of u. On the one hand, a relaxation term, mediated by
τF , establishes the temporal scale in which u relaxes back to
baseline (U ). On the other hand, for every incoming spike, u
increases. In this section, we explore the role that τF plays on
the encoding and maintenance of items in WM. Particularly,
our next focus of inquiry is the neurodynamical origin of the
limited WM capacity exhibited by the network, as well as
the mechanisms responsible for establishing which stimuli
are preferentially maintained in WM when only some of the
cued items can be simultaneously held in memory. To this
end, we consider a memory set size of Nstim = 9, which
is significantly larger than most capacity limits commonly
reported in the literature (K ∼ 4–5) [1].

The results of the simulations for various τF values are
presented in Fig. 4. Figure4(a) depicts the temporal evolu-
tion of the firing rate for all the excitatory selective pools in
the network, alongwith the corresponding inhibitory activity.
Figure4(b) illustrates the temporal evolution of the utili-
sation parameter (u). Note that synaptic facilitation exerts
an effect akin to the augmentation of synaptic connection
weights within each neural population activated by a specific
cue during a given trial, in contrast to the non-cued pools. As
a consequence, only the synaptic weights of the cued pools
experience this augmentation during a particular trial. This
results in a significant difference from the synaptic weights
associated with the uncued pools, for which the utilisation
parameter remains relatively low [14].

For low time constants (e.g. τF < 500 ms, results
not shown), the system remains quiescent during the delay
period, and nomemories are retained inWM. This is because
the emergence of persistent activity in the network requires
a minimal level of effective feedback excitation. The rapid
relaxation of the utilisation parameter to baseline prevents
u from reaching or remaining at a high asymptotic value
(u∞ ∼ 1). This condition is crucial for achieving and main-
taining the persistent firing regime.

As τF increases, see τF ∼ 550 ms in Fig. 4, the overall
excitability of the system also grows, enabling the network
to sustain somememories. This is because the relaxation term
diminishes, causing the utilisation parameter to approach
high asymptotic values. Consequently, the number of pools
coexisting in a high firing rate state increases. However, due
to concurrent growth in inhibition, the firing rates of pools
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Fig. 4 Effect of the STSF time constant (τF ) in the utilisation param-
eter and firing rate dynamics of sequential stimulation protocols. The
stimulation period is depicted in pale grey whereas �tWM (within the
delay period) is depicted in dark grey. The network parameters con-
sidered in these simulations are the same as in Fig. 3. The stimulation

protocol corresponds to the sequential paradigm also described in Fig. 3
(Nstim = 9). The panels in a show the temporal evolution of the firing
rates corresponding to the different pools, whereas the panels in b illus-
trate the associated utilisation parameters (u), for different τF values:
τF =550 ms, τF =750 ms, τF =1000 ms, and τF =1500 ms
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Fig. 5 Serial order effects in sequential stimulation protocols. The
maintenance of an object in WM is estimated by assuming that the
item is held in memory if its associated selective pool exhibits a mean
persistent activity, ν̄ > 20 Hz, for a �tWM period of 500 ms, 2.5 s
after the last cue is removed. For each block, this measure provides
an estimate of the probability of maintenance of each item within the

series, which is subsequently averaged over 100 blocks. The standard
deviation of the probability estimate (across blocks) is also illustrated.
The results are derived from computational simulations (100 blocks of
100 trials) when different τF values (550 ms, 750 ms, 1000 ms, and
1500 ms) are considered

entering WM gradually decrease. As a result of the compe-
tition between activated pools, some of the initial memories
that accessed WM become destabilised and are erased from
it. The subsequent reduction in global inhibition frees up
resources, permitting newmemories to accessWM, which is
key for the recency effect to emerge. Accordingly, the asso-
ciated K remains low, as only a few items can be maintained
in WM.

As the value of τF further increases, see τF ∼ 750–1000
ms in Fig. 4, the utilisation parameter u corresponding to
each pool maintained inWMduring the delay period reaches
higher u∞ values. This leads to more pools that received
cues during the stimulation period attaining and maintaining
a state characterised by a persistently high firing rate, result-
ing in a progressive increase in K . Gorgoraptis et al. [26]
argue that, from the perspective of a shared resource model,
the recall advantage for the final item in a sequence results
from an uneven distribution of resources, with the largest
proportion allocated to the most recently presented item.
Notably, the proposed model provides a mechanistic expla-
nation for such allocation of resources, which results from
the inherent competition–cooperation mechanisms intrinsic
to the network dynamics.

For τF ∼ 1000ms, it is interesting to note that the stability
of the memories cued earlier in the sequence is greater than
that of the pools cued later because inhibition progressively
becomes stronger. This effect becomesmore prominentwhen
considering items presented in a serial order close to theWM
capacity limit of the system (see also Figs. 5 and 6). As a
result, items presented in themiddle of the sequence aremore

likely to decay from theWMsystem if they had accessed it, or
to be prevented from accessing it altogether. As these items
decay from memory, inhibition decreases thereby creating
new opportunities for later items in the sequence to be suc-
cessfully encoded into WM. While a recency effect remains
observable, it is worth noting the concurrent emergence of a
primacy-like effect.

For larger τF values (τF � 1200 ms), only the pools cued
early in the sequence achieve the state of persistent firing.
From the fifth stimulated pool onwards, none of the sub-
sequently stimulated pools reaches (not even transiently) a
high firing rate state during the encoding stage. These mem-
ories are highly stable, resistant to interference, and able to
efficiently recruit inhibition. This is why memories can be
successfully encoded up to the capacity limit K , beyond
which no additional items are encoded in the WM system.
Consequently, the recency effect is diminished and the
serial order effects are mainly determined by a primacy-like
behaviour.

To evaluate the generality of the previous findings, Fig. 5
presents an estimation of the likelihood of retaining an item
inWMas a function of its serial position in the sequence. The
results are estimated from 10000 trials (100 blocks with 100
trials each). The simulations indicate that within the range
τF ∼ 550–1000 ms, the probability of keeping the last cued
item in WM is higher compared to earlier-cued items. How-
ever, as τF surpasses 1000ms, the prevalence of the last stim-
ulated item in WM diminishes, although the recency effect
remains. As previously discussed, a qualitative shift occurs in
the systemwhen τF � 1200ms, driven by the increased inhi-
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Fig. 6 Serial order effects in sequential stimulation protocols. As in Fig. 5 for τF values: 950 ms, 1000 ms, 1000 ms, 1050 ms, 1100 ms, 1150
ms, 1250 ms, and 1350 ms; which correspond to the transition between two distinctive regimes. The shaded area represents the standard deviation
obtained across blocks

bition, ultimately leading to the disappearance of the recency
effect. In this regime, cues presented later in the sequence
fail to attain a high self-sustained firing rate, resulting in the
absence of stable memories for these items. In the light of
these results, we suggest that the inherent heterogeneity of
τF values in the brain may partially account for the variabil-
ity in findings reported in the literature regarding serial order
effects, specifically the presence of recency effects alone ver-
sus the coexistence of primacy and recency effects.

After identifying different dynamical regimes in which
serial order effects emerge with the sequential display of
stimuli,we now reconsider the simultaneous stimulation con-
dition. Figure7 clearly illustrates the scaling ofWMcapacity
with τF , aligning with the observations made with sequential
stimulation protocols. This boost in capacity is achieved by
effectively increasing the synaptic strengths only for those
selective pools that are cued, and by maintaining the synap-
tic facilitation through continued neuronal firing in those
pools when the cue is removed. In contrast to sequential
stimulation, when all items are cued simultaneously, only
the stochastic nature of the received stimulation, along with
that of the spontaneous background activity, will determine
which items are successfully encoded and retained in WM.
As a result, on average, all stimuli are equally likely to be
memorised from trial to trial.

Overall, the cooperation-competition mechanisms inher-
ent to the attractor networks dynamics, along with the synap-
tic dynamics that transiently modulate network connectivity,
establish working regimes compatible with experimental
results reported in the literature for both simultaneous and
sequential stimulation protocols.

WMCapacity and Serial Order Effects: Sequential vs
Simultaneous Encoding

Now, we analyse and compare the predictions of our model
for both stimulation protocols while varying the memory set
size. The dynamics of the stimulation protocols remain con-
sistent with the description in the previous section, featuring
�tstim = 1 s in both protocols. Considering the consistent
reporting of the recency effect in the literature for sequential
protocols, as opposed to the occasional emergence of the pri-
macy effect, we choose the value τF = 750 ms that places
the network in aworking regimewhere recency is prominent.

As seen in Fig. 8, when the number of cued pools is below
the WM capacity limit (K ∼ 4), the network successfully
maintains all the stimulated items inWM. In agreement with
Gorgoraptis et al. [26], in these circumstances, no differ-
ences are found between both display protocols. In contrast,
when thememory set size surpasses the network capacity (i.e.
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Fig. 7 Effect of the STSF time constant (τF ) in the utilisation parame-
ter and firing rate dynamics of simultaneous stimulation protocols. The
stimulation period is depicted in pale grey whereas �tWM (within the
delay period) is depicted in dark grey. The network parameters con-
sidered in these simulations are the same as in Fig. 3. The stimulation

protocol corresponds to the simultaneous paradigm also described in
Fig. 3 (Nstim = 9). The panels in a show the temporal evolution of the
firing rates corresponding to the different pools, whereas the panels in
b illustrate the associated utilisation parameters (u), for different τF
values: τF =550 ms, τF =750 ms, τF =1000 ms, and τF =1500 ms
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Fig. 8 Serial order effects and WM capacity in sequential and simul-
taneous stimulation protocols. Results obtained from 100 simulated
trials with the following network parameters: ω+ = 2.3, ωinh = 0.97,
N = 1000 neurons, and τF = 750ms. The specific stimulation protocol

considered in these simulationsmakes use of:λstim = 3.31Hz/synapse,
λext = 3.05 Hz/synapse, �tstim = 1000 ms (for all the simulations),
and ISI = 1000 ms (for the sequential protocol only). a Serial order
effects, and bWM capacity
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Nstim = S > K ), only a subset of the stimulated items can
be retained in WM. In particular, in the sequential condition,
a prominent recency effect is evident for S > 4.

For largermemory set sizes, increased competition among
the stimulated pools leads to a reduction in memories held
in WM, falling below 4 for both experimental conditions.
However, this phenomenon appears to be particularly empha-
sised in the simultaneous condition, giving rise to predictions
that are strongly aligned with those presented in Edin et al.
[12]. Indeed, the results presented in Fig. 8(b) suggest that
the overall network capacity is higher for sequential stimu-
lation protocols when S > 7 (K8,seq = 3.29, K9,seq = 3.2,
K8,sim = 2.36, K9,sim = 2.4).

The average WM capacity (K ) exhibited by the network
can be estimated as follows:

K =
S∑

i=1

pi · i (4)

where pi is the probability (estimated from the simulations)
that i memories are simultaneously held in WM, and S is the
memory set size.

The literature presents inconclusive findings regarding
which stimulation protocol leads to higher WM capacities.
In [23], a capacity K ∼ 3 was reported for both protocols. In
contrast, Lecerf and Ribaupierre [24] reported an advantage
in recall performance for simultaneous presentations com-
pared to sequential ones in a visuospatial working memory
task. Similarly, the results in [25] showed improved perfor-
mance with simultaneous presentation of stimuli and higher
WMcapacities comparedwith sequential protocols. Notably,
these experiments used various types of stimulus and differ-
ent�tstim intervals. For instance, in [23],�tstim was set 200
ms for the simultaneous condition and 50 ms for the sequen-
tial one, while in [24], �tstim was 1s for both protocols, and
in [25], �tstim was 1s for the sequential protocol and 4s for
the simultaneous one.

These observations reinforce our hypothesis that the
design of experimental protocols exerts a substantial influ-
ence on the encoding stage of WM, thereby modulating the
effective WM capacity exhibited by the network. The stimu-
lation time �tstim plays a key role in establishing the overall
excitatory activity of the network. To investigate this hypoth-
esis, we have conducted a simulation study with varying
�tstim values for both the sequential and the simultaneous
conditions.

Figure9 compares the results obtained when items dis-
played simultaneously are shown for 1 s, while sequentially
stimulated items are displayed for 250 ms. This adjustment
aims to ensure comparable levels of attention allocation to all
items in the memory set for both stimulation protocols. As
can be seen, in terms of the emergence of serial order effects,

similar outcomes are observed when the stimulation time for
the sequentially presented items is reduced. Noteworthingly,
for the network to reach a sufficiently high level of exci-
tation, given the much shorter stimulation time (�tstim) in
the sequential stimulation protocol, the λstim applied to each
pool must be increased. Specifically, we have increased it
from 3.31 Hz/synapse to 3.63 Hz/synapse for both protocols.
Naturally, when the stimulation period is extended, the net-
work reaches comparable levels of excitation and engages
more recurrent activity with lower λstim levels. This is in
agreement with the notion of effective WM (eWM) intro-
duced in [13], which is also supported by [18].

The discrepancy between the outcomes depicted in Figs.
8(b) and 9(b) can be attributed to the heightened compe-
tition among stimulated pools for larger values of λstim ,
leading to a reduced K in the simultaneous condition for
S > 7 (K8,seq = 3.14, K9,seq = 3.17, K8,sim = 1.71, K9,sim

= 1.34). Importantly, λstim can be related, at the behavioural
level, to the stimulus type as well as to its intensity or
conspicuity, all of them critical aspects in the design of exper-
imental protocols.

Finally, since the increase of the synaptic strength due
to the facilitation mechanism is mostly triggered during the
stimulation phase, modifying the synaptic dynamics dur-
ing this stage might clearly have an impact on the overall
behaviour of the network. This can be achieved by varying
specific aspects of the protocols such as the type of stimuli
employed, the time during which each item is displayed, or
the specific recall task (e.g. recall a complete sequence vs
presence of particular item within a sequence). As empha-
sised throughout this work, the conclusions drawn from
investigations into WM capacity limits may vary depending
on the specific experimental design of the stimulation proto-
col. This underscores the need to establish benchmarks for
WM assessment [28]. It has also inspired the following sec-
tion, in which we revisit the notion of eWM [13] and assess
how variations in the experimental protocols, such as stim-
ulation strength λstim and stimulation time �tstim , affect K
and the emergence of serial effects in sequential protocols.

EffectiveWM Capacity (Ke)

In this section, we explore the coordinated influence of
the synaptic facilitation time constant τF alongside vari-
ous factors intricately linked to the specific experimental
protocol. These factors encompass the level of external
stimulation relative to the spontaneous background activity
(�λ = λstim − λext ), and the duration of the stimulation
�tstim . It is essential to highlight that both of these factors
are critically involved in the encoding stage ofWM. In fact, as
previously discussed, �λ is likely to reflect the type of stim-
ulus in terms of complexity and conspicuity, whereas �tstim
denotes the duration for which the stimuli are presented.
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Fig. 9 Serial order effects and WM capacity in sequential and simul-
taneous stimulation protocols. Results obtained from 100 simulated
trials with the following network parameters: ω+ = 2.3, ωinh = 0.97,
N = 1000 neurons, and τF = 750ms. The specific stimulation protocol
considered in these simulations makes use of: λstim = 3.63 Hz/synapse

and λext = 3.05 Hz/synapse. �tstim varies depending on the stimula-
tion protocol. For simultaneous stimulation �tstim = 1000 ms, whereas
for sequential stimulation �tstim = ISI = 250 ms. a Serial order effects,
and b WM capacity
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Considering that serial effects manifest exclusively in
sequential protocolswhen Nitems > K , our study remains fo-
cused on a stimulation protocol involving 9 items. Figure 10
illustrates several relevant features. First and foremost, as
previously discussed, τF exerts a pronounced influence on
network behaviour, resulting in a transition of emerging serial
effects from recency to primacy-like patterns. This quali-
tative shift in behaviour stems from the dynamic interplay
between excitation and inhibition in the network. Thus, sim-
ilar effects may be elicited by altering the balance between
excitation and inhibition through alternative means. This is
unsurprising in the light of the differential equation govern-
ing the dynamics of the utilisation parameter u (see Eq.3)
since �λ crucially modulates the generation of spikes trains
during the stimulation period.

The intensity of the stimulation received by the selective
pools (λstim) relative to the spontaneous background activity
of the network (λext , often linked with the arousal level) also
appears to have a significant impact on the behaviour of the
network. Indeed, increasing �λ leads to a transformation
of sequential effects from primacy-like to recency patterns.
This transformation is evident in the results corresponding
to �tstim = 500 ms and τF ≥ 750 ms in Fig. 10(b), where a
sudden transition appears. Interestingly, this transition occurs
at various �λ levels for different τF values, highlighting the
deep interdependence between these parameters.

Low�λ values trigger a gradual engagement of inhibition
as the network encodes new stimuli. Therefore, those memo-
ries enteringWMfirst aremore likely to remain stable during
the delay period, benefitting from the facilitated recurrent
connections. As the network approaches its capacity limit,
the encoding of additional memories becomes increasingly
challenging.

In contrast, when�λ values are large, inhibition is rapidly
recruited, which can destabilise previously encoded mem-
ories. As a result of the subsequent decrease in global
inhibition, the WM system is more likely to successfully
encode and retain the last items in the sequence. These effects
strongly depend on the time scale established by τF for
synaptic facilitation. Specifically, larger τF values promote
the stability of initially encoded items. As a consequence,
increasing�λ values are required for the emergence of serial
effects. The results displayed in Fig. 10, correspond to a fixed
λext = 3.05 Hz/synapse value. Similar results are obtained
when λext = 3.1 Hz/synapse for equivalent �λ values (see
Supplementary Material).

It is worth noting that �tstim and �λ exhibit a conjugate-
like behaviour in terms of the overall excitatory input
received by the network following stimulation (in agreement
with [18]). Similar results are obtained for smaller values
of �λ when �tstim is increased, and conversely. Note, for
instance, how incrementing the stimulation time from�tstim

= 250 ms to �tstim = 1000 ms for τF = 750 ms results in a
change of regime from primacy-like (�tstim = 500 ms) to
recency (�tstim = 1000 ms) in an initially quiescent network
(�tstim = 250 ms) for �λ = 0.26 Hz/synapse. Once more,
this reinforces the idea that encoding is contingent upon the
particular WM task, especially the stimulation protocol, as
predicted by the concept of eWM capacity [13].

Notably, the parameters τF ,�λ and�tstim not only affect
the emergence and nature of the serial effects in sequential
stimulation protocols but also play a crucial role in establish-
ing the overall effective network capacity (Ke), as depicted
in Fig. 11. In particular, increasing�λ initially leads to larger
Ke values, which is a result of the overall increase in network
excitability, while the recruited inhibition does not yet domi-
nate the behaviour of the network. Nonetheless, for large�λ

values, the competition between the different pools (as medi-
ated by the ramping inhibition) is so strong that the overall
network capacity may be again reduced. See, for instance,
the results obtained for �tstim = 1000 ms when �λ changes
from 0.26 to 0.64 Hz/synapse, and notice how Ke decreases
when τF ≥ 1000 ms.

Naturally, the functioning ofWM in general, including its
capacity, is also highly dependent on the connectivity param-
eters of the network. So far, we have examined a predeter-
mined set of values that enable the network to function in
accordance with the observed experimental outcomes. Nota-
bly, among these parameters, ωinh plays a prominent role, as
discussed in [14]. To evaluate the robustness of our proposed
model to variations in ωinh , and its interplay with the time
scale of the STFS process, Fig. 12 illustrates the influence of
modifyingωinh onWM capacity and the occurrence of serial
order effects for networks with and without STFS. Two dif-
ferent τF values (τF = 750 ms and τF = 1500 ms) have
been considered for the network endowed with STFS.

In Fig. 12(a), the shaded areas between the continuous
lines delineate the region of the parameter space (ωinh,

Nstim) where all the stimulated items are concurrently main-
tained in WM, for each of the networks. Above these lines,
only a subset of the cued pools persists in memory, while
below them (ωinh < 1.025 for the network without STFS,
andωinh < 0.94 for the networks endowedwith STFS), non-
cued memories may enter WM. Undoubtedly, when there is
a need to simultaneously retain several memories, it becomes
imperative to restrict the level of inhibition. This prerequi-
site imposes an upper threshold on ωinh , which decreases
as the demand for concurrent memory activation escalates.
The precise value of ωinh at which the upper and lower limit
coincide determines the largest WM capacity achievable by
the network. In this study, Kmax = 4 if the system does not
incorporate STFS, whereas for the networks endowed with
STFS, Kmax = 6 when τF = 750 ms, and Kmax = 10 when
τF = 1500 ms.
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Fig. 10 Serial order effects: Analysis of the serial order effects as a
function of the concerted action of τF , �λ (�λ = λstim − λext ), and
�tstim . In all the simulations (N = 100), λext = 3.05Hz/synapse. Each

bar indicates the frequency with which an item in a particular position
in the sequential memory set (as characterised by its pool ID) is held in
WM. a �tstim = 250 ms, b �tstim = 500 ms, and c �tstim = 1000 ms
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Fig. 10 continued

Figure12(b) shows the histograms depicting the percent-
age of trials in which each item, stimulated in the sequence
in the order denoted by its Pool ID, is retained inWM. These
histograms are generated from simulations of the network
using the ωinh values indicated in the figure. It is worth
noting that these values are also highlighted in Fig. 12(a)
to depict their locations within the (ωinh, Nstim) parameter
space and their association with the number of memories
concurrently held in WM. Although, as can be seen, STSF is
not a strict requirement for the recency effect to emerge, we
uphold the view that it exerts a distinct and crucial influence
on the behaviour of the network, and emphasise the particular
significance of τF in this endeavour. The inclusion of STFS
renders the system less susceptible to minor fluctuations in

ωinh . For instance, the range �ωinh within which the net-
work without STFS can sustain three items simultaneously
in WM is significantly narrower when compared to those of
the networks endowed with STFS. This robustness to small
changes is a significant advantage, as it better reflects the
way the brain operates.Moreover, STSF amplifies the overall
WM capacity of the network, bringing it into greater align-
ment with the capacities documented in the literature. The
histograms in the figure, resembling those in Fig. 10, illus-
trate the nature of the serial order effects observed for the
specific ωinh under consideration, once again underscoring
the relevance of τF in promoting the transition from recency
to primacy-like effects.

Fig. 11 WM capacity (Ke):
Analysis of Ke as a function of
the concerted action of τF , �λ

(�λ = λstim − λext ), and
�tstim . In all the simulations
(N = 100), ω+ = 2.3,
λstim = 3.31 Hz/synapse,
λext = 3.05 Hz/synapse
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Fig. 12 Interplay between the strength of the inhibitory-to-excitatory
synapses (ωinh) and the time constant of the STSF process (τF ). In
panel a, the shaded areas between the continuous lines delineate the
region of the parameter space (ωinh, Nitems)where all stimulated items
are concurrently maintained in WM. In the computational simulations,
both the number of sequentially cued pools (Nitems ) and ωinh are var-
ied to assess their effect on WM capacity, and the emergence of serial
order effects. Different colours correspond to networks with different
properties in terms of the synaptic facilitation mechanism. Above the

continuous lines, only a subset of the cued pools persists in memory,
while below them, non-cued memories may enter WM. In panel b, his-
tograms depict the percentage of trials in which each item, stimulated
in the sequence in the order denoted by its Pool ID, is retained in WM
for varying ωinh values: ωinh = 1.07 for the network without STFS,
and ωinh = 0.97 for the networks with STFS. The parameters consid-
ered in these simulations are: ω+ = 2.3, λstim = 3.31 Hz/synapse,
λext = 3.05 Hz/synapse

Conclusions and Discussion

Of particular interest to our study is the work by Edin et al.
[12], in which an attractor network is used to model visu-
ospatial WM and the mechanisms underlying WM capacity
are analysed in depth. The authors show that there exists an
upper boundary to the capacity limit arising from lateral inhi-

bition. Ourmodel aims to preserve these dynamicswhile also
accounting for the serial effects reported in the literature on
sequential protocols. In contrast to the model proposed by
Mi et al. [39], which is based on the synaptic theory of WM
and keeps a single memory representation active at any given
moment, our model displays persistent firing activity in all
objects sustained in WM (as in [40]).
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In agreement with previous studies [9, 14], we have found
that synaptic facilitation boosts the WM capacity limit by
effectively increasing the synaptic strengths only for those
pools to which a cue is applied. After the cue is removed, the
continued firing of neurons in these same pools maintains
synaptic facilitation. We suggest that STSF is a neurophysi-
ological mechanism with a key role in establishing the WM
capacity limits while also linking the system response to the
intrinsic dynamics of the experimental protocols. In particu-
lar, the time constant of the synaptic facilitation process (τF )
has been identified as a crucial factor in modulating WM
capacity and the emergence of serial order effects in sequen-
tial protocols.

Notably, the design of the experimental protocol, which
includes aspects such as the specific recall task, the nature
of the stimuli (related to �λ), and the duration of the stim-
uli display (�tstim) together with the interstimulus interval
(ISI), plays also a critical role on establishing the effective
limits toWMcapacity.While the network connectivity struc-
ture determines the excitation–inhibition balance that sets the
maximumWMcapacity the networkmay exhibit, the specific
display protocol establishwhether such limitmay be reached.
Accordingly, we have investigated the impact of stimulation
protocols on the key features ofWM function, particularly in
determining the effective capacity limits of the network for a
specific experimental task, and the emergence of serial order
effects. Unlike most computational studies that focus mainly
on the behaviour of the network during the steady-state, we
emphasise the importance of considering the encoding stage
during the display of the memory set. We begin our analysis
by evaluating both sequential and simultaneous displays of
multi-item memory sets, establishing a foundational level of
analysis. We then delve deeper by examining the impact of
the stimulation time on WM function, in conjunction with
the level of external excitation received by the network. We
hereby recall the notion of effectiveWM (eWM) [13], which
is a construct that considers the critical constraints imposed
on theWM system during the encoding stage. This approach
offers a comprehensive framework to investigate WM func-
tion and a plausible explanation of the neuronal mechanisms
underlying WM capacity limits.

Consistent with the findings in [13], the resulting excita-
tion achieved by the network in response to the stimulation
displays a conjugate-like behaviour concerning the variables
intensity level (λstim) and time (�tstim). This behaviour per-
sists even when the system is endowed with STSF. These
results are in accordance with the research presented in
[18], which outlines a multiscale neocortical model spanning
from molecular to network levels. The primary emphasis
of this study is to assess HCN modulation mechanisms
through a second-messenger signalling cascade across these
levels. This investigation demonstrates that prolonging the
stimulation duration, even at low intensities, leads to an

augmentation in the firing rate of the stimulated neuron pop-
ulation, and this firing rate continues to rise with extended
stimulation durations. Indeed, our findings suggest that these
two variables have similar effects on encoding. Specifically,
we observed that increasing λstim , and thus �λ, leads to a
reduction in the required �tstim to achieve a given effective
WM capacity (Ke). Conversely, longer�tstim values require
smaller �λ cue inputs to overcome the quiescent state and
reach the same Ke. Therefore, it is the combination of both
parameters that will establish the specific Ke for a particular
WM task.

Our results are arguably compatible with a resourcemodel
of WM and with the dynamic coding perspective outlined in
[41], which states that WM capacity limits are closely tied
to limits in encoding and/or readout. Indeed, as the number
of items in memory increases, the proportion of resources
dedicated to each item declines. In our model such dis-
tribution of resources may be interpreted in terms of the
steady-state firing rate, which is lower for larger memory
set sizes, thus degrading the stability of the memories and
(likely) the fidelity of storage [26]. In the proposed com-
putational model, the inhibition recruited as a result of the
increasing excitatory activity of the cued pools mediates the
competition between the different pools and determines the
effective capacity limit. In agreement with Gorgoraptis et al.
[26], when the memory set size is below the capacity limit no
differences are found between both display protocols. How-
ever, shall the dynamics of the inherent network competition
be altered, for instance by manipulating the relative saliency
of the items in the memory set, our prediction is that Ke will
reflect such effects. Indeed, as discussed in [13], when one
item is prioritised (e.g. either through top down modulation
or conspicuity), its recall is enhanced, an aspect which is
accompanied with corresponding decrements in recall rate
for other objects. The proposed model thus paves the way
to further investigate the interplay between attention and
WM, which becomes critical shall more realistic scenarios
be considered.

Although ours is a minimal model which does not attempt
to explain any aspects related to WM accuracy—something
which can only be tackled through the consideration of
bump attractor models—we argue that it offers valuable
insights into the critical role that STSF plays in WM func-
tion. Notably, it is able to reconcile numerous experimental
results stemming from broadly varying task designs, and
offers a principled explanation for the observed behaviour.
For instance, it provides an explanation to the fact that some
task designs lead to values of Ke ∼ 6–7 items while others
show strict limits around Ke ∼ 2–3 items. Synaptic facil-
itation has been shown to improve the stability of WM in
continuous attractor networks by decreasing both diffusion
and directed drifts [42], which underlie the melting of bump
attractor of overlapping representations. The introduction of
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STSF might then be beneficial to overcome this issue for
moderately overlapping representations while it is likely to
result in increasing Ke values as observed when discrete rep-
resentations are considered.

The literature also shows certain variability with regard
to the nature of the serial effects reported in sequential pro-
tocols. Whereas some authors highlight the emergence of
the recency effect and show no reliable primacy effects [26,
29, 32], other authors report experimental results whereby
both of them emerge [30, 31, 33, 36]. Interestingly, Lee et
al. [43] propose the existence of two types of codings (i.e.
stable and flexible), which take the distinct roles of retain-
ing and updating information in WM. In their view, stable
encoding of information favours the retention of previous
memory and, hence, results in the primacy effect. In con-
trast, flexible encoding enables update of recent memory,
thus resulting in the recency effect. They claim that it is the
combination of both types of codings that induces the emer-
gence of the joint appearance of the primacy and recency
serial-position effects. We suggest that the heterogeneity in
the τF values observed in PFC may underlie the combina-
tion of serial effects. Indeed, large τF (τF > 1200 ms) values
lead to a type of coding akin to the stable onewhereas smaller
values (τF < 1000 ms) lead to the so-called flexible coding.
The concerted action of τF (a parameter broadly grounded on
neurophysiology) and the variables �tstim and �λ (closely
related to the specificWM task and its associated experimen-
tal protocol) leads to the broad repertoire of results found in
the literature.

To summarise, we propose that the neurodynamical basis
of WM involves persistent activity during the delay period.
However, we acknowledge that this is not the only mech-
anism underlying WM. In fact, we do believe that most
likely both activity-silent and activity-based mechanisms
coexist and play complementary roles in WM function.
Nevertheless, it is appealing that, by itself, the proposed
model is able to account for a large variety of experimen-
tal results in a highly principled way. Moreover, we claim
that STSF is a key mechanism to account for the dynamic
allocation of resources in multi-item WM. Further research
will be needed to explore the relevance of each type of
mechanism and how they cooperate in the brain to shape
WM function.
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