DSpace Repository

ICA as a preprocessing technique for classification

Show simple item record

dc.contributor Universitat de Vic. Escola Politècnica Superior
dc.contributor Universitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributor International Conference ICA (5è : 2004: Granada)
dc.contributor ICA 2004
dc.contributor.author Sánchez Poblador, Víctor Manuel
dc.contributor.author Monte-Moreno, Enric
dc.contributor.author Solé-Casals, Jordi
dc.date.accessioned 2014-04-29T11:51:18Z
dc.date.available 2014-04-29T11:51:18Z
dc.date.created 2004
dc.date.issued 2004
dc.identifier.citation V. Sanchez-Poblador, E. Monte-Moreno, J. Solé-Casals “ICA as a preprocessing technique for classification”, Independent Component Analysis and Blind Signal Separation: Fifth International Conference, ICA 2004, Granada, Spain, September 22-24, 2004. Proceedings, ISBN: 3-540-23056-4. DOI: 10.1007/b100528. Chapter: p. 1165. LNCS, Publisher: Springer-Verlag Heidelberg ISSN: 0302-9743. Volume 3195/2004 ca_ES
dc.identifier.isbn 3-540-23056-4
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/10854/3011
dc.description.abstract In this paper we propose the use of the independent component analysis (ICA) [1] technique for improving the classification rate of decision trees and multilayer perceptrons [2], [3]. The use of an ICA for the preprocessing stage, makes the structure of both classifiers simpler, and therefore improves the generalization properties. The hypothesis behind the proposed preprocessing is that an ICA analysis will transform the feature space into a space where the components are independent, and aligned to the axes and therefore will be more adapted to the way that a decision tree is constructed. Also the inference of the weights of a multilayer perceptron will be much easier because the gradient search in the weight space will follow independent trajectories. The result is that classifiers are less complex and on some databases the error rate is lower. This idea is also applicable to regression ca_ES
dc.format application/pdf
dc.format.extent 8 p. ca_ES
dc.language.iso eng ca_ES
dc.publisher Springer ca_ES
dc.rights (c) Springer (The original publication is available at www.springerlink.com)
dc.rights Tots els drets reservats ca_ES
dc.subject.other Tractament del senyal ca_ES
dc.subject.other Separació (Tecnologia) ca_ES
dc.title ICA as a preprocessing technique for classification ca_ES
dc.type info:eu-repo/semantics/conferenceObject ca_ES
dc.identifier.doi https://doi.org/10.1007/b100528
dc.relation.publisherversion http://link.springer.com/chapter/10.1007%2F978-3-540-30110-3_147
dc.rights.accesRights info:eu-repo/semantics/openAccess ca_ES

Files in this item

Show simple item record

Search RIUVic


Browse

Statistics