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Chapter 1  

Introduction   

Nowadays, a typical embedded system requires high performance to perform tasks such 

as video encoding/decoding at run-time. It should consume little energy to work hours or 

even days using a lightweight battery. It should be flexible enough to integrate multiple 

applications and standards in one single device. It has to be designed and verified in 

short time-to-market despite substantially increased complexity. The designers are 

struggling to meet these huge challenges, which call for innovations of both architectures 

and design methodology. 

Coarse-grained reconfigurable architectures (CGRAs) are emerging as potential 

candidates to meet the above challenges. Many of them were proposed in recent years. 

These architectures often consist of tens to hundreds of functional units (FUs), which are 

capable of executing word-level operations instead of bit-level ones found in common 

Field Programmable Gate Arrays (FPGAs). This coarse granularity greatly reduces delay, 

area, power and configuration time compared with FPGAs. On the other hand, 

compared with traditional "coarse-grained" programmable processors, their massive 

computational resources enable them to achieve high parallelism and efficiency. 

However, existing CGRAs have yet been widely adopted mainly because of 

programming difficulty for such complex architecture. 

ADRES is a novel CGRA designed by Interuniversity Micro-Electronics Center (IMEC).  

It tightly couples a very-long instruction word (VLIW) processor and a coarse-grained 

array by providing two functional views on the same physical resources. It brings 

advantages such as high performance, low communication overhead and easiness of 

programming.  Finally, ADRES is a template instead of a concrete architecture. With the 

retargetable compilation support from DRESC (Dynamically Reconfigurable Embedded 

System Compile), architectural exploration becomes possible to discover better 

architectures or design domain-specific architectures. 

In this thesis, a performance of an MPEG-4 encoder in ADRES is presented. The thesis 

shows the code evolution to obtain a good implementation for a given architecture. 

Additionally the main features of ADRES and its compiler (DRESC) are presented.  

The thesis is organized as follows: firstly ADRES architecture is presented and 

compared with other current architectures. Then the principal characteristics of DRESC 

compiler, the design flowchart and some other necessary background are explained. 

The necessary requisites for mapping loops properly in the CGA are explained as well. 

Brief overviews of the MPEG-4 standard and MPEG-4 encoder are given. Finally the 

different code transformations, code issues and results are presented. 
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Chapter 2  

ADRES an architecture template  

2.1 Introduction 

Coarse-grained reconfigurable architectures (CGRAs) [1] are emerging technology that 

has been deeply influenced by some existing architectures, including FPGAs (Field 

Programmable Gate Arrays) [2] and VLIW (Very Long Instruction Word) processors [3]. 

Because CGRAs are highly parallel architectures, they are also similar with other parallel 

computing architectures like vector processors. Moreover, the ADRES architecture 

combines features of both CGRA and VLIW processors and borrows many techniques 

from processor compilation. To fully understand ADRES and its compilation techniques, 

it is necessary know all the related areas. Figure 1 shows the relations between CGRAs 

and other architectures, as well as the position of the ADRES architecture in relation to 

these architectures. CGRAs partly originated from fine-grained reconfigurable 

architectures represented by FPGAs. Basically, at the top-level they look very similar. 

Both comprise an array of basic units, configurable logic blocks for FPGAs and 

functional units for CGRAs. Both are connected by reconfigurable routing networks. The 

functionality of a target application can be implemented by specializing both the basic 

units and the routing networks. Both are highly parallel architectures that enable 

exploitation of massive parallelism. The limited routing resources impose great design 

challenges on both architectures as well. 

Much coarse-grained reconfigurable architecture (CGRA) has been developed in recent 

years. These architectures provide potential vehicles for future embedded system 

design. However, they still present many challenging issues, especially in how to support 

an efficient and automated design methodology. To attack these issues, the solution has 

to come from close interplay between both the architecture and design methodology 

developments. 
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Figure 1 ADRES in relation to other architectures 

 

 

2.2 Architecture Template Description 

 describes the system view of the ADRES architecture [4]. It is similar to a processor with 

an execution core attached to a memory hierarchy. Though architectural details at this 

moment are not well defined yet, we assume an ADRES array is connected to both data 

and instruction caches. At the next level, the caches are connected to a unified main 

memory. Though we assume two levels of memory hierarchy, more levels are possible, 

depending on application requirements. 

 
Figure 2: The ADRES system 
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The storage resources mainly refer to the register file (RFs) and memory blocks, which 
can store intermediate data. Currently, only the RFs are supported by the compiler. The 
routing resources include wires, multiplexers and busses. Basically, computational 
resources and storage resources are connected by the routing resources in the ADRES 
array. This is similar to other CGRAs. The ADRES array is a flexible template instead of 

a concrete instance.  
Figure 3 only shows one instance of the ADRES array with a topology resembling the 

MorphoSys architecture [8]. 

 
Figure 3 an instance of the ADRES array 
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Figure 4 shows an example of the detailed datapath. The FU performs coarse grained 

operations. To remove the control flow inside loops, the FU supports predicated 

operations. To guarantee timing, the outputs of FUs are required to be buffered by an 

output register. The results of the FU can be written to the RF, which is usually small and 

has fewer ports than the shared RF, or routed to other FUs. The multiplexers are used 

for routing data from different sources. The configuration Random Access Memory 

(RAM) provides bits to control these components. It stores a number of configuration 

contexts locally, which can be loaded on a cycle-by-cycle basis. The configurations can 

also be loaded from the memory hierarchy at the cost of extra delay if the local 

configuration RAM is not big enough.  

 
Figure 4 shows only one possibility of how the datapath can be constructed. Very 

different instances are possible. For example, the output ports of a RF can be connected 

to input ports of several neighboring FUs. The ADRES template has much freedom to 

build an instance out of these basic components. 
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Figure 4 an example of detailed datapath 

 

The most important feature of the ADRES architecture is the tight coupling between a 

VLIW processor and a coarse-grained reconfigurable array. Since the VLIW processor 

and CGRAs use similar components like FUs and RFs, a natural thought is to make 

them share those components though the FUs and RFs in the VLIW are typically more 
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VLIW processor and a reconfigurable array. These two virtual views share some 
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main memory hierarchy at this moment, depending on available ports. The instructions 

of the VLIW processor are loaded from the main instruction memory hierarchy. This 

requires typical steps like instruction fetching, dispatching and decoding. For the 

reconfigurable array part, all the resources, including the RF and FUs of the VLIW 

processor, form a big 2D array. The array is connected by partial routing resources. 

Dataflow like kernels are mapped to the array in a pipelined way to exploit high 

parallelism. The FUs and RFs of the array are simpler than those of the VLIW processor. 

The communication between these two virtual views is through the shared VLIW register 

file and memory access. The sharing is in the time dimension so that it does not increase 

the hardware cost. For example, it does not require more ports in the VLIW RF. 

 

 

2.2.1 Execution and Configuration Model 

There are two execution modes, VLIW mode and array mode, for the ADRES 
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pipelined but mapped effectively in an ILP way, while the array mode executes kernels 

pipelined on the entire array. The control is transferred between these two modes by 

detecting entry and exit conditions of pipelined loops. 

In the VLIW mode, the configuration is performed as in all other VLIW processors; in 

each cycle, an instruction is fetched and executed in each cycle from the instruction 

memory hierarchy. In the array mode, the configuration contexts are fetched from the on-

chip configuration memory. Each kernel may use one or more consecutive contexts. 

 

 

2.2.2 Functional Units 

An FU can perform a set of operations. In ADRES, only fixed-point operations are 

supported because they are considered sufficient for typical telecommunication and 

multimedia applications. The instruction set used in ADRES is constrained by the 

compiler front-end, i.e., the IMPACT framework. All FUs are fully pipelined so that one 

instruction can be issued at each cycle even when the latency of that instruction is 

bigger than one cycle. Different implementations may lead to different latency, which can 

be specified in the architecture description and is supported by the compiler. 

Unlike with most other CGRAs, predicated execution is introduced in the FUs in order to 

remove control-flow and do other transformations. Figure 5 shows the general picture of 

an FU. Basically, it has three source operands: pred, src1 and src2. pred is a 1-bit signal. 

If it is 1, the operation is executed; otherwise, the operation is nullified. src1 and src2 are 

normal data source operands. 

 
Figure 5 The functional unit in ADRES 

 

Some operations may only use one of them. The operation set comprises several groups: 

arithmetic, logic, shift memory, comparison and operations that generate predicates. 
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2.2.3 Register Files 

The register files (RFs) are used to store temporary data. There are two types of RFs: 

predicate and data RFs. The predicate RFs are 1-bit to store the predicate signal and the 

data RFs have the same data width as FUs. The modulo scheduling used for pipelining 

kernels imposes special requirements on the register file. 

The modulo scheduling used for pipelining kernels imposes special requirements on the 

register le. In the pipelined loops, different iterations are overlapped. Therefore, the life-

time of the same variable may overlap over different iterations. To accommodate this 

situation, each of the simultaneously live instances needs its own register. Furthermore, 

the name of the used register has to be clearly identified, either in software or in 

hardware. 

 

 

2.2.4 Routing Networks 

The routing networks consist of a data network and a predicate network. The data 

network routes the normal data among FUs and RFs, while the predicate network directs 

1-bit predicate signals. These two networks do not necessarily have the same topology 

and can not overlap because of different data widths. Apart from its main purpose of 

handling control-flow, the predicate signal together with its routing network also serves 

for other purposes: eliminating prologue and epilogue; controlling the WE (write enable 

port) of the VLIW register file. 

 
 

2.3 XML-Based Architecture Description Flow 

To describe an architecture instance within the vast space of the ADRES template, it 

uses an architecture flow based on both Extensible Markup Language (XML) and 

Hypertext Preprocessor (PHP) languages (Figure 6). 
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Figure 6 The architecture description flow of the ADRES template 

 

XML is a simple, very flexible text format. It is designed to describe and deliver 

structured documents over the Internet. Unlike other markup languages such as 

HyperText Markup Language (HTML), its tags and semantics are not predefined. 

Therefore, XML is a kind of meta-language. A new language can be easily derived from 

XML by defining tags and structural relationships between them. Since XML is widely 

used in Internet context, several implementations of XML parsers are readily available in 

the form of open-source libraries. These libraries can be linked into the target 

applications and provide built-in parsing capability.  

The overall architecture description comprises four sections: resource, connection, 

behavior and component. The resource section allocates a number of resources of 

different types.  

The resources include FUs, RFs and TRNs (transitory nodes). For FU, the names of 

input and output ports, data width and supported operation groups can be specified. For 

FU, the names of input and output ports, data width and supported operation groups can 

be specified. The operation groups themselves are defined in the behavior section. RFs 

are specified in a similar way.  

The connection section defines the topology of an ADRES instance. The behavior 

section defines some other architectural properties. For example, it specifies which RF is 

used as the one of the VLIW processor, how operations are grouped and the latency of 

each operation group. The area models of other components like FUs and RFs are 

integrated into the resource section for implementation convenience. Finally, the 

component section currently specifies area models of multiplexers so that the DRESC 
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framework can quickly estimate the area required for the interconnection for a given 

ADRES instance. 

 

 

2.4 ADRES compiler: DRESC 

2.4.1 The structure of DRESC compiler 

Figure 7 shows the overall structure of DRESC compiler [5]. DRESC is supported on 

IMPACT compiler framework [6] as a front-end to parse C source code, do some 

optimization and analysis, construct the required hyperblock [[11], and emit the 

intermediate representation (IR), which is called lcode. Moreover, IMPACT is also used 

as a library in DRESC implementation to parse lcode, on the basis of which DRESC’s 

own internal representation is constructed. 

 

 
Figure 7 structure of DRESC compiler 
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Taking lcode as input, various analysis passes are executed to obtain necessary 

information for later transformation and scheduling, for instance, pipelinable loops are 

identified and predicate-sensitive dataflow analysis is performed to construct a data 

dependency graph (DDG). Next, a number of program transformations are performed to 

build a scheduling-ready pure dataflow used by the scheduling phase. Since the target 

reconfigurable architectures are different from traditional processors, some new 

techniques are developed, while others are mostly borrowed from VLIW compilation 

domain. In the right-hand side of Figure 7, the architecture description and abstraction 

path is shown. An architecture parser translates the description to an internal 

architecture description format. From this internal format, an architecture abstraction 

step generates a modulo routing resource graph (MRRG) which is used by the modulo 

scheduling algorithm. The modulo scheduling algorithm plays a central role in the 

DRESC compiler because the major strength of coarse-grained reconfigurable 

architectures is in loop-level parallelism. At this point, both program and architecture are 

represented in the forms of graphs. The task of modulo scheduling is to map the 

program graph to the architecture graph and try to achieve optimal performance while 

respecting all dependencies. After that, the scheduled code is fed to a simulator.  

 

 

2.4.2 Program Analysis and Transformation 

The array part of the ADRES architecture relies on loop pipelining to achieve high 

parallelism. Consequently, the techniques to extract and prepare properly loops are 

essential to the whole DRESC compiler framework. The flow of these steps is shown in 

Figure 8.  
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Figure 8 The flow of transformation, analysis and optimization steps 

 

First, source-level transformations are applied to the application, currently based on 

manual C-to-C rewriting. This step tries to prepare pipelineable loops since the original 

source code may not be written in a pipelining-friendly way. Next the IMPACT compiler 
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designed for VLIW compilation, and emits an assembly-based intermediate 

representation, Lcode. Taking Lcode as input, the data-flow analysis implemented in 
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graphs (DDG) representing the loop bodies and relevant information. However, they still 

cannot be directly scheduled on the ADRES architecture. For example, to reduce 

configuration overhead the prologue and epilogue should be properly handled in order to 
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• Calculation of Minimum Initiation Interval (MII).  

• Operation Ordering.  

 

 

2.4.3 Modulo scheduling 

Modulo scheduling is one of many software pipelining techniques [7]. Its objective is to 

engineer a schedule for one iteration of the loop such that this same schedule is 

repeated at regular intervals with respect to intra- or inter-iteration dependency and 

resource constraints. This interval is termed the initiation interval (II), essentially 

reflecting the performance of the scheduled loop. Various effective heuristics have been 

developed to attack this problem for both unified and clustered VLIW. However, they 

can’t be applied to the case of a coarse-grained reconfigurable matrix because the 

nature of the problem becomes more difficult. 

For unified VLIW, scheduling means to decide when to place operation. For clustered 

VLIW, we also have to decide where to assign the operation, this is a placement problem. 

For coarse-grained reconfigurable architecture, there is one additional task: determining 

how to connect placed operations. This is essentially a routing problem. If we view time 

as one dimension of P&R space, the scheduling can be defined as a P&R problem in 3D 

space, where routing resources are asymmetric and modulo constraints are applied.  

This scheduling problem is more complex, especially if the nature of P&R space and 

scarce routing resources are considered. In FPGA’s P&R algorithms, it is easy to run the 

placement algorithm first by minimizing a good cost function that measures the quality of 

placement. After the minimal cost is reached, the scheduling algorithm connects placed 

nodes. The coupling between these two sub-problems is very loose. In ADRES, it is 

difficult to separate placement and routing as two independent problems. It is almost 

impossible to find a placement algorithm and cost function which cans force the 

routability during the routing phase. The solution applied in ADRES is to solve these two 

sub-problems in one framework.  

The algorithm is described in Figure 9. Like other modulo scheduling algorithms, the 

outermost loop tries successively larger II, starting with an initial value equal to MII, until 

the loop has been scheduled. For each II, it first generates an initial schedule which 

respects dependency constraints, but may overuse resources. For example, more than 

one operation may be scheduled on one FU at the same cycle. 

In the inner loop, the algorithm iteratively reduces resource overuse and tries to come up 

with a legal schedule. At every iteration, an operation is ripped up from the existing 

schedule, and is placed randomly. The connected nets are rerouted accordingly. Then a 

cost function is computed to evaluate the new placement and routing. A simulated 

annealing strategy is used to decide whether we accept the new placement or not. If the 
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new cost is smaller than the old one, the new P&R of this operation will be accepted. 

Even if the new cost is bigger, there is still a chance to accept the move, depending on 

“temperature”. This method helps to escape from local minimum. 

The temperature is gradually decreased from a high value. So the operation is 

increasingly difficult to move. The cost function is constructed by taking account into 

overused resources. The penalty associated with them is increased every iteration. In 

this way, placer and router would try to find alternatives to avoid congestion. This idea is 

borrowed from the Pathfinder algorithm. In the end, if the algorithm runs out of time 

budget without finding a valid schedule, it starts with the next II. This algorithm is time-

consuming. It takes minutes to schedule a loop of medium size. 

 
Figure 9 The modulo scheduling algorithm core 

II := MII; 
 
while  not scheduled do 
    InitMrrg(II); 
     InitTemperature(); 
     InitPlaceAndRoute(); 
 
   while  not scheduled do  
       for  each op in sorted operation list 
           RipUpOp(); 
 
            for  i := 1 to random_pos_to_try do  
                pos := GenRandomPos(); 
                success := PlaceAndRouteOp(pos); 
 
                if  success then  
                  new_cost := ComputeCost(op); 
                  accepted := EvaluateNewPos(); 
                  if  accepted then  
                    break; 
                  else 
                    continue; 
                endif 
            endfor 
 
            if  not accepted then  
              RestoreOp(); 
            else 
              CommitOp(); 
 
             if  get a valid schedule then  
                return scheduled; 
          endfor 
 
          if  run out of time budget then  
            break; 
         
          UpdateOverusePenalty(); 
          UpdateTemperature(); 
 
  endwhile 
  II++; 
endwhile 
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Chapter 3  

Source-Level Transformations 

Since applications written in C language are often intended for software implementation, 

their loops may not be appropriate for pipelining. Therefore, some source-level 

transformations techniques are needed to prepare proper loops for mapping on the 

ADRES array [4]. Generally, there are two types of transformations. One type is to 

remove constraints for pipelining because a loop is pipelineable only if it meets some 

strict requirements. For example, it cannot contain function calls inside the loop body 

and cannot jump out in the middle of the loop body. To meet these requirements, 

techniques such as function inlining have to be applied to make code pipelineable. The 

other type of transformations helps to improve performance because a loop may not 

produce good performance in its original form though it is pipelineable. For example, if 

there are too few iterations in the loop, loop coalescing can be used to increase total 

iterations by combining nested loops. 

 

 

3.1 Constraint-Removing Transformations 

A loop is pipelineable only if it meets the following conditions: 

• The loop body does not contain control-flow unless if-conversion can be applied. 

• The loop body does not contain function calls. 

• The loop body does not contain exit points other than the one at the end of the 

loop body. 

Removing Control-flow and Early Exit : The control-flow and the multiple exit points 

are partly addressed by aggressive hyperblock formation. Nonetheless, the automatic 

compilation technique sometimes cannot figure out how to deal with control-flow that 

requires application-specific knowledge. Figure 10 shows an IDCT (inverse discrete 

cosine transform) example from the MPEG-2 decoder. The original source code is 

optimized for a traditional processor. There is a piece of shortcut code that tries to 

identify a special case and jump out the loop early. This piece of code is not pipelineable 

on the ADRES array. Therefore, it is removed by source-level transformation. 
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Figure 10 Transformations for an IDCT loop 

 

Function inlining  is a widely used optimization technique to reduce the overhead 

associated with function calls. However, it comes at the expense of increased code size 

if the inlined function is called in multiple places. Applied to the ADRES architecture, its 

primary purpose is to make loop pipelining feasible because the function call is not 

allowed inside a pipelineable loop. In Figure 10, the original loop includes a function 

idctrow, which performs 1D-IDCT on a row of pixels. After transformation, this function is 

inlined in the loop body to enable the pipelining. 

 

 

3.2 Performance-Enhancing Transformations 

Loop Coalescing : Currently the DRESC compiler can only pipeline the innermost loop 

of a nested loop. If the outer loops contribute to a significant portion of total execution 

time, or the total number of iterations of the innermost loops is too small so that the 

overhead of prologue and epilogue is dominant, only pipelining the innermost loops 

won't produce good performance according to Amdahl's law. One technique that helps to 

solve this problem is loop coalescing. Coalescing combines a loop nest into a single loop, 

with the original indices computed from the resulting single induction variable. Figure 11 

describes an example. This transformation is originally developed for multiprocessor-

based parallel computing. It can effectively increase the significance of the innermost 

loop though at the cost of recomputing the indices. Normally, coalescing two innermost 

loops should be sufficient to form a significant innermost loop for pipelining while still 

keeping the overhead low.  

 

 

 

for (i=0; i< 8; i++) 
idctrow(block + 8*i); 
... 
void idctrow(short *blk) 
{ 
if (!((x1 = blk[4]<<11) | (x2 = blk[6]) |...) 
    ...) 
{  /*shorcut */  } 
 
x0 = (blk[0]<<11) + 128 
x8 = W7*(x4+x5);)>>8; 
... 
blk[6] = (x3-x2)>>8; 
blk[7] = (x7-x1)>>8; 
} 

short block[12][64]; 
... 
for (i=0; i< 8 * block_count ; i++){  
n = i / 8; /* n is block no. */ 
m = i % 8; /* m is row no. */ 
blk = block[n] + 8 * m; 
 
x0 = (blk[0] << 11) + 128; 
x1 = blk[4] << 11; 
... 
blk[6] = (x3-x2)>>8; 
blk[7] = (x7-x1)>>8; 
} 
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Figure 11 Example of loop coalescing 

 

Loop Unrolling : The ADRES array is much bigger than other processor architectures. 

When a loop is mapped to the ADRES array, the loop body should be big enough to 

efficiently utilize the resources. Considering a loop consisting of only 10 operations, 

when it is mapped to an 8x8 array the utilization is at most 15.6% (10/64) and 

instruction-per-cycle is at most 10 if the loop is fully pipelined. One solution to this 

problem is known as loop unrolling. Generally, loop unrolling is the process of expanding 

a loop so each new iteration contains several copies of a single iteration. It also adjusts 

loop termination code and eliminates redundant branch instructions. Traditionally, it is an 

optimization technique that can reduce the total number of instructions executed by a 

processor and can increase instruction-level parallelism. Applied to the ADRES 

architecture, it also helps to increase the size of loop bodies so that pipelining is more 

efficient on a big array. Figure 12 shows one example. The original loop body is very 

small and cannot efficiently utilize an ADRES array. After unrolling the loop 4 times, the 

loop body contains about 4 times more static operations (the number of operations in the 

compiled code) than the original loop body, while the total number of dynamic operations 

(the number of operations actually executed) is about the same. Both the original loop 

and the transformed one can be fully pipelined to achieve 1 cycle/per iteration. Therefore 

the performance is increased 4 times after loop unrolling.  

 

for( i = 0; i < n; i++){ 
     for( j = 0; j < m; j++){  
           a[i,j] = a[i,j] + c; 
      } 
  } 
 

for (t = 0; t < n*m; t++){  
i = t/m; 
j = t%m; 
a[i,j] = a[i,j] + c; 
} 
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Figure 12 Example of loop unrolling 

 

Loop unrolling involves a trade-off between the loop body size and the total number of 

iterations. If the loop is unrolled too many times, the total number of operations will 

increase undesirably while the performance doesn't increase accordingly. A bigger loop 

body requires more configuration contexts. At the same time, the total number of 

iterations will shrink so that the overhead of prologue and epilogue becomes prominent. 

Increasing Iterations:  Loop coalescing is one way to increase the total number of 

iterations in order to reduce the prologue and epilogue overhead in nested loops. In fact, 

increasing the total number of iterations can be very application-specific. If the designer 

understands the application better, more opportunities may be discovered to increase 

total number of iterations of a loop. Figure 10 also shows one example of this 

transformation applied to IDCT. The original loop is based on a basic block (8x8) 

consisting of only 8 iterations. After transformation, the IDCT loop is performed on a 

macroblock, which usually contains a number of basic blocks (shown as block count). 

Hence, the total number of iterations increase to 8 x block count so that the prologue 

and epilogue overhead is greatly reduced. 

Tree Height Reduction : in a pipelined loop, the schedule length determines the total 

number of pipeline stages. A higher number of pipeline stages has a negative impact on 

performance due to the increased prologue and epilogue overhead. Sometimes the 

schedule length can be reduced by a technique known as tree height reduction. Figure 

13 describes a simple example. Before and after the transformation the tree heights are 

for (i=0; i<64; i++) 
{ 
 val = Block_Ptr[i]; 
 
 if (val>2047) 
    val = 2047; 
 
 else if (val<-2048) 
    val = -2048; 
 
 Block_Ptr[i] = val;  
 sum+= val; 
} 
 

for(i = 0; i < block_count; i 
+= 4){ 
/* inner loop is unrolled 4 
times */ 
val1 = Block_Ptr[i]; 
 
if (val1>2047) 
   val1 = 2047; 
else if (val1<-2048) 
   val1 = -2048; 
 
Block_Ptr[i] = val1; 
... 
val4 = Block_Ptr[i+3]; 
if (val4>2047) 
    val4 = 2047; 
else if (val4<-2048) 
    val4 = -2048; 
Block_Ptr[i+3] = val4; 
... 
} 
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7 and 3 cycles respectively. Though some algorithm was developed to automatically 

perform this transformation, it can be easily done at source-level by the developer. 

 

 
Figure 13 Example of tree height reduction 

 

Reducing Memory Access:  though the ADRES array has abundant computing 

resources, it still has resource bottlenecks, especially related to the memory bandwidth. 

Pipelining usually demands very high memory bandwidth. Consider for example an 

iteration that contains 10 memory accesses (both reads and writes) and an ADRES 

instance that has 2 memory ports. In this case, each iteration requires at least 5 cycles 

to meet the memory bandwidth constraint. For many kernels the memory access 

bandwidth can be reduced by replacing array variables with scalar ones. In normal 

processors, the scalar variables are stored in the register file. If there are too many 

scalar variables, they have to be spilled to the memory in which case the memory 

access is not eliminated. In the ADRES architecture, the scalar variables are stored in 

register files distributed throughout the array. These RFs are cheap to use and don't 

introduce a resource bottleneck for memory access. Normally after transform the code, 

the memory accesses decrease at the expense of an increased amount of operations. 

With abundant FUs available in the ADRES array, it is worth to trade memory accesses 

for more operations if the memory bandwidth is a bottleneck. 

 

 

3.3 Guidelines for Source-Level Transformations 

The required source-level transformations are very diverse and sometimes application-

specific. In many cases, several transformations are performed together on one loop. So 

in this section are given some examples to illustrate the transformations instead of 

defining formal algorithms for the transformations. While some transformations such as 

function inlining and tree height reduction are good candidates for future automation, it is 

very difficult to automate other transformations, especially the application-specific ones. 

 
sum = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 

 

 
sum = ((x1 + x2) + (x3 + x4)) + ((x5 + x6) + (x7 + x8)) 
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Currently they are performed manually by the application designer. Nonetheless, it 

doesn't require a lot of effort to modify a number of loops at source-level for typical 

applications.  

• Remove obstacles of pipelining for the candidate loop. 

• Make the candidate loop significant in terms of execution time. 

• Transform the candidate loop to have sufficient iterations. 

• Balance resource utilization and total number of configuration contexts. 

• Reduce memory access if the memory bandwidth is a bottleneck. 

• Reduce total number of pipeline stages to minimize prologue/epilogue overhead. 
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Chapter 4  

MPEG-4  

As it has already been said, in order to evaluate the capabilities of ADRES an MPEG-4 

encoder has been chosen. This chapter tries to give a general overview of the MPEG-4 

natural video coding. Some functionalities are described briefly as well as some basic 

principles of the standard. Additionally the importance of each part in cycles terms is 

showed. Further information of the specific parts of the MPEG-4 encoder will be 

explained more accurately in following chapters. 

 

 

4.1 MPEG-4 standard 

ISO/IEC Standard 14496 Part 2 (MPEG-4 Visual [[9,[10]) improves on the popular 

MPEG-2 standard both in terms of compression efficiency (better compression for the 

same visual quality) and flexibility (enabling a much wider range of applications). It 

achieves this in two main ways, by making use of more advanced compression 

algorithms and by providing an extensive set of ‘tools’ for coding and manipulating digital 

media. MPEG-4 Visual consists of a ‘core’ video encoder/decoder model together with a 

number of additional coding tools. The core model is based on the well-known hybrid 

DPCM/DCT (Differential Pulse Code Modulation/Discrete Cosine Transform) coding 

model (see description section) and the basic function of the core is extended by tools 

supporting (among other things) enhanced compression efficiency, reliable transmission, 

coding of separate shapes or ‘objects’ in a visual scene, mesh-based compression and 

animation of face or body models. 

MPEG-4 Visual attempts to satisfy the requirements of a wide range of visual 

communication applications through a toolkit-based approach to coding of visual 

information. Some of the key features that distinguish MPEG-4 Visual from previous 

visual coding standards include: 

• Efficient compression of progressive and interlaced ‘natural’ video sequences 

(compression of sequences of rectangular video frames). The core compression tools 

are based on the ITU-T H.263 standard and can out-perform MPEG-1 and MPEG-2 

video compression. Optional additional tools further improve compression efficiency. 

• Coding of video objects (irregular-shaped regions of a video scene). This is a 

new concept for standard-based video coding and enables (for example) independent 

coding of foreground and background objects in a video scene. 
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• Support for effective transmission over practical networks. Error resilience tools 

help a decoder to recover from transmission errors and maintain a successful video 

connection in an error-prone network environment and scalable coding tools can help to 

support flexible transmission at a range of coded bitrates. 

• Coding of still ‘texture’ (image data). This means, for example, that still images 

can be coded and transmitted within the same framework as moving video sequences. 

Texture coding tools may also be useful in conjunction with animation-based rendering. 

• Coding of animated visual objects such as 2D and 3D polygonal meshes, 

animated faces and animated human bodies. 

• Coding for specialist applications such as ‘studio’ quality video. In this type of 

application, visual quality is perhaps more important than high compression. 

MPEG-4 Visual provides its coding functions through a combination of tools, objects and 

profiles. A tool is a subset of coding functions to support a specific feature (for example, 

basic video coding, interlaced video, coding object shapes, etc.). An object is a video 

element (e.g. a sequence of rectangular frames, a sequence of arbitrary-shaped regions, 

a still image) that is coded using one or more tools. For example, a simple video object 

is coded using a limited subset of tools for rectangular video frame sequences, a core 

video object is coded using tools for arbitrarily-shaped objects and so on. A profile is a 

set of object types that a CODEC is expected to be capable of handling.  

One of the key contributions of MPEG-4Visual is a move away from the ‘traditional’ view 

of a video sequence as being merely a collection of rectangular frames of video. Instead, 

MPEG-4 Visual treats a video sequence as a collection of one or more video objects. 

MPEG-4 Visual defines a video object as a flexible ‘entity that a user is allowed to 

access (seek, browse) and manipulate (cut and paste)’. A video object (VO) is an area of 

the video scene that may occupy an arbitrarily-shaped region and may exist for an 

arbitrary length of time. An instance of a VO at a particular point in time is a video object 

plane (VOP). 

Notwithstanding the potential flexibility offered by object-based coding, the most popular 

application of MPEG-4 Visual is to encode complete frames of video. The tools required 

to handle rectangular VOPs (typically complete video frames) are grouped together in 

the so-called simple profiles. The basic tools are similar to those adopted by previous 

video coding standards, DCT-based coding of macroblocks with motion compensated 

prediction. The Simple profile is based around the well-known hybrid DPCM/DCT model 

(it will be described in the description section) with some additional tools to improve 

coding efficiency and transmission efficiency. Because of the widespread popularity of 

Simple profile, enhanced profiles for rectangular VOPs have been developed. The input 

to an MPEG-4 Visual encoder and the output of a decoder is a video sequence in 4:2:0, 

4:2:2 or 4:4:4 progressive or interlaced formats.  
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4.2 MPEG-4 encoder description 

The major video coding standards released since the early 1990s have been based on 

the same generic design (or model) of a video CODEC that incorporates a motion 

estimation and compensation front end (sometimes described as DPCM), a transform 

stage and an entropy encoder. The model is often described as a hybrid DPCM/DCT 

CODEC. Any CODEC that is compatible with H.261, H.263, MPEG-1, MPEG-2, MPEG-4 

Visual and H.264 has to implement a similar set of basic coding and decoding functions 

(although there are many differences of detail between the standards and between 

implementations). Figure 14 depicts a generic DPCM/DCT hybrid encoder. In the 

encoder, video frame n (Fn) is processed to produce a coded (compressed) bitstream. 

 
Figure 14 Encoder data flow 

 

There are two main data flow paths in the encoder, left to right (encoding) and right to 

left (reconstruction). The encoding flow is as follows: 

1. An input video frame Fn is presented for encoding and is processed in units of a 

macroblock (corresponding to a 16 × 16 luma region and associated chroma 

samples). 

2. Fn is compared with a reference frame, for example the previous encoded frame 

(F’n−1). A motion estimation function finds a 16 × 16 region in F’n−1 (or a sub-

sample interpolated version of F’n−1) that ‘matches’ the current macroblock in Fn 
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(i.e. is similar according to some matching criteria). The offset between the 

current macroblock position and the chosen reference region is a motion vector 

(MV). 

3. Based on the chosen MV, a motion compensated prediction P is generated (the 

16 × 16 region selected by the motion estimator). 

4. P is subtracted from the current macroblock to produce a residual or difference 

macroblock D. 

5. D is transformed using the DCT. Sometimes, D is split into 8 × 8 or 4 × 4 sub-

blocks and each sub-block is transformed separately. 

6. Each sub-block is quantized (X). 

7. The DCT coefficients of each sub-block are reordered and run-level coded. 

8. Finally, the coefficients, motion vector and associated header information for 

each macroblock are entropy encoded to produce the compressed bitstream. 

The reconstruction data flow is as follows: 

1. Each quantized macroblock X is rescaled and inverse transformed to produce a 

decoded residual D’. Note that the nonreversible quantization process means 

that D’ is not identical to D (i.e. distortion has been introduced). 

2. The motion compensated prediction P is added to the residual D’ to produce a 

reconstructed macroblock and the reconstructed macroblocks are saved to 

produce reconstructed frame F’n. After encoding a complete frame, the 

reconstructed frame F’n  may be used as a reference frame for the next encoded 

frame F’n+1 

Notice that not all the frames follows this process because sometimes it is necessary to 

send to the decoder all the information frame and not only de difference with the 

reference frame. Frames that haven not reference frames are called INTRA frames and 

the others are called INTER frames.  

 

 

4.3 Code mapped  

Before start changing the code it is necessary to analyze the code in order to know 

where it is necessary to concentrate efforts.  

Graphic 1 shows us which parts of an MPEG-4 encoder has more specific weight in 

terms of cycles. Main parts are Motion Estimation block, where a 55,04% of total cycles 

are spent, and Texture Coding block with 20,45%. Therefore the main optimizing effort is 

spent in these 2 blocks. 

Additionally Motion Compensation Block and Texture Update Block have rather 

importance, 10,62% and 8,12% respectively, and for this reason are also mapped. 
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Hence, code cycles spent in these four parts together are more than 94% of the total 

amount of cycles in VLIW mode.  

 

 
Graphic 1 Cycles percentages spent in different parts of MPEG-4 encoder (VLIW mode, initial 

code) 
 

 

 

 
 

   
 

10.62%

1.00%

4.57%

0.02%

55.04%
8.12%

0.19%
20.45%

Texture Coding VLC Coding 
Packetize Stream Texture Update 
Motion Estimation Entropy Coding 
Motion Compensation Rest 



CHAPTER 5: TEXTURE CODING 
 

 26 

Chapter 5  

Texture Coding 

5.1 Introduction 

The first step of the TC function consists of choosing the block type: 

• Blocktype 0: no computation is made. 

• Blocktype 1: only 8 coefficients are computed. 

• Blocktype 2: all 64 coefficients are calculated. 

By distinguish 3 kind of blocks is possible to avoid calculating unnecessary coefficients. 

Due to the Discrete Cosine Transform (DCT) a great number of coefficients are 0 or near 

to 0. Finally, these coefficients can be discarded in the Quantization step.  

The selection of the blocktype is carried out calculating with the Sum of Absolute 

Differences (SAD). The SAD finds the similarity between two macroblocks (MB). A 

greater similarity between the two matrices results in a smaller SAD value. Depending 

on his level the block types are chosen. In order to do this 2 thresholds are settled: if the 

SAD block is minor than the first threshold then the block is type 0 and the next steps 

are skipped; if the SAD block is between the 2 thresholds then the block is type 1 and 

only 8 coefficients will be computed; and if the second threshold is surpassed then the 

next steps will be executed for all 64 coefficients. Therefore, all the blocks in mode 

INTRA will be type 2. 

Once the block type decision has been carried out, the next steps depend on the block 

type. As the number of iterations is greater when a block is type 2, we focus the 

optimization in this part of the code.   

Figure 15 shows in general terms how Texture Coding function behaves.  

As we compute all coefficients when the block is type 2, because the major number of 

cycles is spent here, but in order to decrease as much as possible the cycles of Texture 

Coding, the functions in mode 1 are also mapped. These are the functions mapped in 

CGA: 

• _DRESC_BlockDirDCTQuantH263 

• _DRESC_BlockDirDequantH263IDCT 

• _DRESC_DCTrows 

• _DRESC_DCTcols 

• _DRESC_Q_invQ 

• _DRESC_IDCTcols 

• _DRESC_IDCTrows 
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Figure 15 Texture Coding flowchart 

 

To optimize the code 3 main steps are applied. In the first step, the code is modified in 

order to map into CGA (remove functions calls inside the loops, merging loops…). Once 

the different functions (DCT_Rows, DCT_Cols…) could be mapped, the code is adapted 

to obtain better results (decrease the number of cycles). Finally the last transformation 

step is to pass from block level to Macro Block level; the reason is to increase the 

amount of iterations in each loop. At the end of this process the optimization of kernels 

for blocks type 1 is performed. 

 

 

5.2 Block Level 

The original code was written in a way that the functions are inside the loop. Therefore, 

first the code was changed to split the loop in different loops for the different functions, 

as well to create de quantization-dequantization function (called Q_invQ). 
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Figure 16 Initial and final schematic block level code 

 

The first 2 functions were basically transformed to enable the mapping in the CGA. 

Therefore, the functions DCTrows and DCTcols, where a DCT is carried out first for the 

rows in the block and then for the columns, remained essentially the same as in the 

original code only changing the pertinent code to avoid function calls inside the loops. 

These transformations results in the following scheduling characteristics 

 

Kernel NrCycles SD II PS IPC Length 

DCT_Rows 107 78,47% 9 4 12,55 34 

DCT_Cols 98 76,56% 8 5 12,25 33 

Table 1 Scheduling results for DCT 

 

 

5.2.1 Quantization/DeQuantization function 

This function has a higher complexity and many code transformations are applied. As 

the quantization is different depending on mode of the Macro Block (INTER or INTRA), 

there were 3 different loops in the original code: one for the INTRA blocks, one for the 

INTER blocks and the other to reconstruct coefficients. 

In INTRA mode, the first coefficient has a special treatment, because it is the DC 

coefficient. It is quantized as follows: 
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Whereas the other coefficients have this other quantization: 

Qp
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jiQF ⋅= 2
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In INTER mode all the coefficients inside the block are quantized in the same way: 
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The formula to reconstruct the coefficients is as follows: 










≠−⋅+⋅
≠⋅+⋅
=

=
evenisQpjiQFifQpjiQF

oddisQpjiQFifQpjiQF

jiQFif

jiF

0]][[1)1]][[2(

0]][[)1]][[2(

0]][[0

]][[
 

First, a function for the quantization-dequantization was created, (_DRESC_Q_invQ). 

Once the function was created, there were 4 loops. The Figure 17 shows the loop 

disposition. 

 
Figure 17 DRESC_Q_invQ original schematic disposition 

 

Therefore, to able the mapping in CGA, the technique of loop coalescing was applied. 

Unfortunately the function still had 3 loops, because of the different quantization 

between modes, and also the last loop to reconstruct the coefficients.  

To merge the 2 modes a parameter (called QuantA) was created. It has 2 different 

values depending on the mode: 0 for mode INTRA and –Qp/2 for mode INTER. In 

addition, another parameter to select the sign of the quantized coefficients is created. At 

this point, to merge the loops 2 possibilities were tested: 

1. Calculate the 64 coefficients and in INTRA mode recalculate the DC coefficient 

afterwards. 

2. Calculate the first coefficient depending on the mode and choose the value of 

QuantA, and then calculate the 63 remaining coefficients. 

Finally it’s easy to put the code to reconstruct the coefficients at the end of the loop. 

 

 

   
for (rows) 

     for (columns) 
         INTRA_Quantization 
     for (columns) 
         INTER_Quantization 
     for (columns) 

         Dequantization 
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Graphic 2 Q_invQ implementation results 

 

Graphic 2 shows the different results. First results are so worst because of a high 

dependency with the variable CBF. CBF indicates in which columns must be applied the 

IDCT, by setting to one the correspondent bit per column. As the code was changed this 

shift operation was removed and the number of cycles decreased dramatically. 

The graph also shows that the first option (to calculate all the coefficients and then 

recalculate DC if block is mode INTRA) was worse than the second. Apparently this is 

logical because in this option the first coefficient is evaluated twice. 

There is the possibility to unroll the loop in the first option, to try to decrease the CGA 

Cycles, unfortunately this option was tried but the CGA couldn’t map, because of the 

architecture resources. 

The Table 2 shows the scheduling results for the 2 options tested. 

 

Kernel 

Option 
NrCycles SD II PS IPC Length 

1st Option 228 85,42% 3 11 13,67 36 

2n Option 222 77,08% 3 11 12,33 29 

Table 2 Scheduling results for different Q_invQ options 
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5.2.2 IDCT_cols function 

This function already existed in the original code but there was a function call inside. So 

the first step is to put the main loop inside the function and change the function call by 

pasting the function code. Then some if statements that only adds overhead were 

removed. 

At this point 2 options were tested: 

1. Maintaining if CBF conditions. 

2. Removing if CBF conditions. 

CBF was used to know if the IDCT has to be applied in the block or not, on one hand the 

amount of iterations was reduced, but on the other hand this added more dependencies 

that means more cycles. 

With the CBF condition it was possible to skip a block and only the IDCT is applied if the 

MB is mode INTRA. 

The number of CGA cycles is the same for the 2 options because if statements are 

outside the loop, but the total cycles are different in the options. Whereas for with if 

conditions the number of cycles are 262.806 that means an average of 92,43 

cycles/block without this conditions the total number of cycles is 292.562 an the average 

is 104 cycles/block. 

 

Kernel NrCycles SD II PS IPC Length 

IDCT_cols 88 79,46% 7 5 12,71 31 

Table 3 IDCT_cols scheduling results 

 

 

5.2.3 IDCT_rows function 

Like in the other functions there was a function call inside the loop that was removed and 

replaced for code. Then 2 options were tested as there was also the clipping inside the 

same loop, it was tested the possibility to split the loop in 2 loops (one for the IDCT and 

the other for the clipping) but finally the results were worst if the loop was split. 

shows the scheduling characteristics for these 2 options: 

 

Kernel Option NrCycles SD II PS IPC Length 

1IDCT+CLIP 122 82,39% 11 3 13,18 33 

IDCT 99 72,92% 9 3 11,66 27 

CLIP 68 69,79% 6 4 11,16 20 
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Total CLIP + IDCT 167      

Table 4 IDCT_rows scheduling results 

 

5.3 MacroBlock Level 

The idea of going to MacroBlock level is to increase the amount of iterations to reduce 

the “length effect” that means a decrease in the number of cycles. 

In the original code, the TextureCoding function was running inside a loop for each 

block. Therefore the function was called 6 times in a MB and each time the function went 

over rows, columns... The transformation consisted in coalescing the main loop with the 

smaller function loops (Figure 18).  

However the different block types were an issue. The solution consisted in create 3 

arrays (for each type of block) where the number of block in the MB was stored in order 

to compute the correct number of coefficients for each block. Then the coalescing 

technique was applied.  

 

 
Figure 18  Schematic code in block and macroblock level 

 

Another problem was that in MB level there were more reads at memory than in the 

block level because it is necessary to store the data in buffers between the different 

functions. Initially the data was written in the correct position in the MB and then it was 

changed by writing in consecutive form, and only wrote correctly the TC outputs 

(Quantized coefficients and reconstructed coefficients), but not the intermediate buffers 

employed. In this way the total number of reads at memory decreases. 

 

for (blocks) 
       ModeDecision; 

     for (blocksmode2 in MB) 
            DCTrows; 
     for (blocksmode2 in MB) 

   DCTcols; 
     for (blocksmode2 in MB) 

   Quantization; 
     for (blocksmode2 in MB) 

   IDCTcols; 
     for (blocksmode2 in MB) 
  IDCTrows; 
 

  for (rows) 
     DCTRows 
  for (columns)  

DCTCols 
  for (coefficients) 

 Quant/DeQuant 
  for (columns) 

         IDCTCols 
  for (rows)  
        IDCTRows 
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Figure 19 Changes in memory accesses 

 

Where mode2[k] is the array which indicates block position in MB and i and j are used to 

access the different coefficients. What this means is that firstly the outputs were in the 

correct way but then it was changed to write consecutively. 

Another way was tried but with worst results. To carry out the DCT and IDCT (over rows 

and columns), it is necessary to compute 8 coefficients in each iteration, that means 8 

reads to the memory. To avoid this, instead of reading 8 times 16 bits (short type), the 

memory was read 4 times as integer type (32 bits) and then make shifts to store the 

correct value in the scalar variables. In this way the code had 10 cycles more per block. 

 

 
Figure 20 Different options to read from the memory: short type (left) or integer type (right) 

 

Where In is a pointer, X1...X7 are short scalars and In0...In3 are integer scalars. 

There was another issue with CBF condition. A buffer was needed to store the value of 

CBF for each block; as a result of this the number of reads at memory was high.  

 

DCT_Rows tested 
NrCycles 

average1 
SD II PS IPC Length 

Changing buffer  82,79 76,56% 8 7 12,25 43 

Normal read/write 101,36 82,5% 10 5 13,2 49 

Table 5 Scheduling results for different options to read at memory 

                                                      
1 Cycles average depends on the number of blocks type 2 in a MB. All statistics are taken with a 300 

frames qcif foreman sequence. 

 
 In=errorMB[mode2[j]] + 8*i;  
 X6 = In[0]; 
 X1 = In[1]; 
 X3 = In[2]; 
 X8 = In[3]; 
 X4 = In[4]; 
 X5 = In[5]; 
 X2 = In[6]; 
 X7 = In[7]; 
 

In=errorMB[mode2[j]] + 8*i;  
In0 = *(int*) (in); 
In1 = *(int*) (in+2); 
In2 = *(int*) (in+4); 
In3 = *(int*) (in+6); 
X6 = (short) (in0); 
X1 = (short) (in0 >> 16); 
X3 = (short) (in1); 
X8 = (short) (in1 >> 16); 
X4 = (short) (in2); 
X5 = (short) (in2 >> 16); 
X2 = (short) (in3); 
X7 = (short) (in3 >>  16); 

 
Input=inputMB[mode2[k]]; 

Output=outputMB[mode2[k]];  
 

 
Input=inputMB[mode2[k]] + 8*i;          

Output=outputMB[j] +i; 
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There are 2 things which are necessary to indicate. Firstly the number of cycles is an 

average because sometimes the number of iterations in the function is different. This is 

due to the different number of blocks in mode 2 in the MB. The second thing is that the II 

is reduced from 10 to 8, and in the block level it was 9. Therefore, this is an important 

point to be considered in future. In DCT_cols function happens the same. The reduction 

of load/store at memory allows to decrease the II and of course the number of cycles. 

 

 
NrCycles 

average 
SD II PS IPC Length 

DCT_cols  79,80 73,44% 8 5 11.75 36 

Table 6 Scheduling results for DCT_Cols in MB level 
 

In Quantization/DeQuantization function, the problematic with accessing to the memory 

was more visible because of the number of iterations is higher, 64*Nrblocks instead of 

8*Nrblocks, in the other functions.  

The clipping in this function and in IDCT_Rows functions, are different from the available 

intrinsic clipping functions. Therefore a new function was created. The reason is that the 

previously created intrinsic functions make the clipping as follows: 

MaxvalValue

MaxvalValueMaxVal

≤≤
≤≤−

0
 

Whereas in the code has to be: 

MaxvalValue

MaxvalValueMaxVal

≤≤
≤≤−−

1

1
 

 

Once the function was mapped in MB level some transformations were made. Firstly the 

order of calculations is reverted to 1rst option, that means to calculate the 64 coefficients 

for all blocks and then, if it was necessary, the DC coefficients for INTRA mode blocks. 

Therefore there are 2 loops in the function. It wasn’t necessary another loop to know the 

value of parameter QuantA because all blocks in the same MB are in the same mode. 

As it was necessary to write the quantized coefficients in the correct block, the pass of 

mode2 array, which indicates the position, was a ballast to decrease the cycles. In 

addition, the CBF parameter is transformed to an array, which means more accesses to 

the memory and more cycles. 

Finally with the use of intrinsics the number of cycles decreased but not enough to reach 

the block level results. 
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Graphic 3  Q_invQ Implementations in MB Level 

 

Quantization 

using intrinsics 

NrCycles 

average 
SD II PS IPC Length 

64 loop 265,79 75% 4 8 12 30 

DC coeff loop 1,26 65,62% 2 12 10,5 23 

Total 267,06      

Table 7 Q_invQ scheduling results in Mb level 

 

In the IDCT_Cols function the effect of changing the way to access at memory was so 

important and the number of iterations decreased dramatically. To carry out these 

accesses, the if CBF conditions were removed. This couldn’t be possible in the 

IDCT_Rows function.  

 

IDCT_Cols 
NrCycles 

average 
SD II PS IPC Length 

With CBF 

conditions 
100 64,77% 11 4 10,36  

Changing 

reads/writes 
65,08 86,46% 6 7 13,83 39 

Table 8 Different scheduling results for IDCT_Cols in MB level 

 

In IDCT_Rows function it wasn’t possible to avoid the CBF condition outside the function. 

In order to know which blocks have to be computed it was created another loop before 

the function. In this loop was stored the position of the block in a new array if the CBF of 
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this block was 1. This is the reason because it wasn’t possible to decrease so much the 

number of cycles, as the input needs to know the position of block and the output must 

be correct. 

 

 
NrCycles 

average 
SD II PS IPC Length 

IDCT_Rows 86,86 84,38% 8 6 13,5 45 

Table 9 IDCT_Rows scheduling results obtained in MB level 
 
 

5.4 Block Type 1  

Although in this mode there are only 2 functions to map in the CGA (BlockDirDCT- 

QuantH263 and BlockDirDequantH263IDCT), inside of this functions there were several 

loops. These 2 functions make all the computation for 8 coefficients. The first function 

choose in which direction has to make the computation (compares adds of rows versus 

columns and the highest is chosen), and then makes DCT for this 8 coefficients and the 

quantization. The second function makes inverse process. Firstly makes the 

dequantization, then the IDCT and finally stores the results. 

To be able the mapping in CGA some transformations in the code were made.  Firstly 

splitting the main loop and pasting the function code inside. Then, the coalescing of 

loops and some variable transformations (in order to maintain the code functionality and 

to avoid some unnecessary accesses at memory) were made. Finally the clipping 

intrinsic function was added. 

 

BlockDirDCTQuantH263 
NrCycles 

average 
SD II PS IPC Length 

Adding Rows & Cols 95,64 83,04% 7 5 13,28 32 

Tmp_DC 78,29 82,81% 4 6 13,25 23 

Choosing direction 48,51 59,34% 4 8 9,5 30 

DCT 53,32 71,63% 13 4 11,46 43 

Quantization 45,26 57,81% 4 7 9,25 27 

Table 10 BlockDirDCTQuantH263 scheduling results 
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BlockDirDequantH263IDCT 
NrCycles 

average 
SD II PS IPC Length 

Dequantization 62,93 75% 3 12 12 36 

IDCT 21,26 78,13% 2 13 12,5 27 

Write coefficients 73,45 83,33% 6 6 13,33 36 

Table 11 BlockDirDequantH263IDCT scheduling results 

 

 

5.5 Comparison between block and MB levels  

As the graphic shows in all functions, except in Quantization, the results were better 

because of the major number of iterations. 

 
Graphic 4 CGA Cycles comparison between block and MB levels 

 

 
Block 

Level 

Final 

Implementation 

Cycles / frame 401.019 326.590 

Cycles / block average 675,11 549,81 

Kernel Cycles / block average  blocktype =  2 587,41 544,58 

Kernel Cycles / block (worst case) blocktype = 2  637 648 

Kernel Cycles / block average 587,41 425,33 

Table 12 Block and MB level statistics (Q_invQ in block level) 
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The graphic show us that results are better when the code is implemented in a MB level, 

in spite of the Q_invQ function, where the CGA cycles in MB level couldn’t be reach the 

block level because of the major number of accesses at memory that is translated in a 

major II. For this reason in the final implementation in Q_invQ function is only mapped 

the inner loop (64 iterations).  

Table 12 shows a comparison between the block level implementation and the final 

implementation.  The final code decreases in 19% the total number of cycles, therefore it 

is worth to increase the number of iterations in the loops in spite of some operations that 

is necessary to add. Next graph (Graphic 5) shows a comparison between the initial 

code in VLIW mode, the final code in VLIW mode, and the final code mapped in CGA for 

3 different sequences2.  As it was expected cycles decrease dramatically by mapping 

into CGA (70%). 

 
Graphic 5 CGA mode and VLIW mode results 

 

Here follows a simple calculation of the max number of cycles required to be able to 

have HDTV Texture Coding operating real time on a single ADRES: 

• HDTV resolution = 1.280 * 720 

• HDTV framerate = 30 fps 

• MPEG-4 input = YUV 4:2:0 

• MacroBlock size = 16*16 

• Blocks per Macroblock (YUV) = 6 

• ADRES clock = 300 MHz = 300 M cycles/s 

 

                                                      
2 Results obtained with 4cif crew sequence are wrong, see Conclusions chapter to see details. 
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• Pixels per frame = 1.280*720 = 921.600 

• MBs per frame = 921.600 / 256 = 3.600 

• Blocks per frame = 3.600 * 6 = 21.600 

• Blocks per second = 21.600 * 30 = 648.000 

• Cycles per block = 300.000.000/648.000 = 463 

The necessary clock-speed required for a single ADRES given the current number of 

cycles: 

• Current number of cycles per block = 549,81 

• Current number Texture Coding cycles per second = 549,81 * 648.000 =   

  = 356.276.880 = 356,27 MHz 

Therefore to implement the texture coding block taking into account that is necessary to 

implement the others blocks the clock-speed necessary will be 356,27 MHz. 
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Chapter 6  

Motion Estimation 

 
Due to the large amount of cycles that are involving this block of the MPEG-4 encoder 

(55% of total encoder cycles), it is important to optimize properly this part. Furthermore 

Motion Estimation (ME) is one of the most power-consuming components of any 

predictive video codec.  

The goal of ME is to find a 16 × 16-sample region (a MB) in a reference frame that 

closely matches the current macroblock. The reference frame is a previously encoded 

frame from the sequence and may be before or after the current frame in display order. 

An area in the reference frame centered on the current macroblock position (the search 

area) is searched and the 16 × 16 region within the search area that minimizes a 

matching criterion is chosen as the ‘best match’. The information of the ‘best match’ 

called Motion Vector (MV) is then transmitted to the Motion Compensation (MC) block as 

2 components: horizontal and vertical. A MV can be expressed in integer or half-pixel 

accuracy.  

The chapter is organized as follows: first a brief introduction of the ME applied algorithm 

is given. Then the next sections contain the different transformations for each part of the 

block and the statistics of each loop. At the end some general statistics for al the ME 

block are presented. 

 

 

6.1 Motion Estimation description process  

A large number of ME algorithms have already exploited the statistical properties of MVs 

distribution to achieve very good performances in terms of computational complexity 

reduction. The number of searched locations has been sharply reduced in comparison 

with the Full Search algorithms, while preserving the performance [12]. The algorithm 

follows the basic rules of these others algorithms: 

• The algorithm should exploit the spatial correlation of MVs within a frame. Often, 

this is done through the prediction of the search starting point. It could also be 

used to adapt the search parameters, e.g., the size of the search pattern. 

• To exploit the MVs’ center-biased distribution, the checking points should be 

chosen on a pattern that is compact around the initial and central position. 
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• For faster convergence toward an optimum, the checking points should be 

chosen adaptively, in the direction of an improvement of the matching criterion 

gradient descent algorithms). 

• Finally, the search should stop as soon as possible, i.e., once the matching 

criterion is good enough (typically, below some threshold). Making it unnecessary 

to investigate all the positions of a pre-defined pattern. 

The algorithm only operates on Y-inter MBs, as in intra MBs the MC is not needed. 

Instead, if the MB is coded as mode intra (see Texture Coding chapter) only the 

calculation of the Sum of Absolute Differences (SAD), which in this case is the sum of 

the pixel values as there is not reference, is performed. 

The algorithm starts to operate calculating the SAD from the current MB, which is 

predicted from the neighboring MB MVs. Then check if this SAD, and make the same 

with other SADs if it is the case, is below a certain threshold. If it is not the case, it 

continues calculating and checking the neighboring SADs. 

 

 
Figure 21 Different search zones. Darkest are search first 

 

If there is not SAD that reaches the minimum threshold, the minimum SAD calculated 

previously is chosen as the new center. When the minimum SAD is improved on a 

square that position is used to predict the optimal position (center) in the next square. 

Actually, the predicted position is the one pointed by the vector originated in the center 

of the search and passing through the last optimal position. The predicted position leads 

to the search strategy depicted on Figure 22 Checking points process. Only the neighbors 

of the predicted position are investigated before going to the next square. The search is 

stopped as soon as there is not further improvement or the threshold is reached.  
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Figure 22 Checking points process. 

 

When this process is finished de mode decision is performed: if the SAD of the best MB 

is below the mean absolute value difference of the current MB, it will be encoded as an 

inter MB, otherwise it will be coded as an intra MB. 

Finally if the SAD found is bigger than another threshold, it is necessary to perform the 

Half Pixel ME, which basically consists on: 

• Calculate the interpolate pixel values (8 values per current pixel). 

• Calculate the 8 SADs of these half pixels MBs. 

• Choose the best option between this 8 options and the current pixel (see 

optimizations in half pixel). 

 

 

6.2 Code transformations  

In ME the use of intrinsics become to be more relevant. Intriniscs allow taking advantage 

of working with integer types (4 bytes) instead of short types (1 byte) or unsigned char 

types (1 byte), with the correspondence gain of cycles. These are the intrinsics 

implemented in the ME: 

• Innersum4: calculates the sum of the 4 bytes in a 32-bit integer. 

• Subabs4: calculates the absolute difference of each corresponding byte from two 

32-bit integers. 

• Pack2: stores two 16-bit values in a 32-bit integer  

• Spacku4: saturates the Low Significant Byte (LSB) and Most Significant Byte 

(MSB) parts of two 32-bit integers into 8-bit unsigned integers, and packs the 

results into a 32-bit integer. 

• Avgu4: calculates the average of each corresponding byte from 32-bit integers. 
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6.2.1 Calculate INTER – MB SAD 

As the name of the function says, this function calculates the SAD of an INTER MB. The 

process is easy. Consists on making the subtraction from the pixels of 2 MBs, one pixel 

of the current frame and the other of the reference frame, and adding the absolute value 

of this difference. 

The transformations (Figure 23) consist on coalescing the loops to go over columns and 

over rows, and changing the normal 8-bit operations for the 32-bit operations with the 

intrinsics: Subabs4 to perform the absolute subtraction of 4 bit and Innersum4 to add 

these absolute differences in one integer. 

After this initial transformation, the loop is unrolled to decrease cycles, as the initial 

Scheduling Density (SD) was not to much high (71,88%). 

In order to read from the frames (memories), 8 integers pointers are created (because 

the loop is unrolled). It is also possible to use integers instead of pointers but there is not 

cycling difference between the 2 options. Another possibility could be to create just 2 

pointers (one per frame) and increment the pointers. This option was already tested and 

as a result the number of cycles was increased (4 cycles only). Nevertheless with this 

option the result are better in the INTRA-MB SAD. 

 

 
Figure 23 Code transformations in INTER-MB SAD 

 

Kernel NrCycles SD II PS IPC Length 

INTER-MB SAD 70 75,00% 3 7 12 21 

Table 13 INTER-MB SAD schedule results 

 

 

 

 

 

 
     for (rows in MB) 
          for (columns in MB) 
 SAD+= abs(RecYframe - NewYframe)  
 

for (rows in MB) 
 SAD+= Innersum4(Subabs4(RecYframe - NewYframe) 
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6.2.2 Calculate INTRA – MB SAD 

The difference between an intra-MB SAD and an inter-MB SAD is that in intra-MB there 

is not reference frame. This means that is not necessary to subtract the pixels as the 

reference is 0. The Figure 24 and Table 14 show the transformations made and the 

results obtained. 

 
Figure 24 Code transformations in INTRA-MB SAD 

 

 

Kernel NrCycles SD II PS IPC Length 

INTRA-MB 

SAD 
54 75,00% 2 11 12 21 

Table 14 INTRA-MB SAD schedule results 

 
 
6.2.3 Choose Mode 

This function is used to choose the mode (inter or intra) that the MB will be codified. The 

selection of the mode is performed by comparing the SAD of the MB with the absolute 

difference between the mean of the MB and each pixel. If the SAD is below this 

difference the MB will be encoded as inter MB. 

 

 
     for (rows in MB) 
          for (columns in MB) 
 SAD+=  NewYframe  

for (rows in MB) 
 SAD+= Innersum4 (NewYframe) 
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Figure 25 Code transformations in ChooseMode function 

 

Notice that as shows the calculations are only performed if the MB SAD reaches a 

threshold (512). This if condition is changed by 2 if conditions (one per each loop). The if 

condition produces an influence between the loops. This influence consists on if both 

loops are unrolled it is not possible that the loops reach the lower number of cycles 

obtained when only one is unrolled. 

 

Kernel NrCycles SD II PS IPC Length 

Calculate_Mean  51 68,75% 2 9 11 18 

Difference 54 76,56% 2 13 13 22 

Table 15 ChooseMode schedule results 

 

 

 

 

 

 
  if min_SAD> 512 
  {for (rows) 
          for (columns) 
               Calculate_MB_mean 
    
    for (rows) 
          for (columns) 
  Activity = Element – MB_mean 
 
 ChooseMode depending on the Activity  
   } 

 

if min_SAD> 512 
{   
 for (columns) 

          Calculate_MB_mean    (InnerSum4) 
   } 
 
if min_SAD> 512 
  {  for (columns) 
      Activity = Innersum4(Subabs4(Element - MB_mea n) 
   
 ChooseMode depending on the Activity 
   } 
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6.2.4 Full – Pixel Motion Estimation 

In the Full-Pixel Motion Estimation the original algorithm is changed in order to increase 

the number of iteration in the first “spiral” loop. In the first “spiral” the calculation of the 

different SADs is performed until the threshold is reached, which is not so common. This 

condition is eliminated to unroll the loop and calculate all 9 SADs together. In addition to 

make the loop more regular (without if conditions) the original loop is divided. Therefore 

there are 2 loops: the first to calculate the 9 SADs and second, with several if statements 

to set and store some parameters for next searches. The Figure 1 depicts schematically 

the transformations in the first spiral. This second loop can not be mapped in the CGA 

because it’s really irregular. 

 
Figure 26 Code transformations in Full-Pel ME 

 

Applying this changes the number of cycles spending in the first spiral pass from 1167 to 

603 cycles (almost decrease a 50%).  

 

Kernel NrCycles SD II PS IPC Length 

First Spiral 421 67,71% 6 5 10,83 27 

Table 16 Scheduling results for Full-Pel ME 

 

 

6.2.5 Half – Pixel Motion Estimation 

As already said in the ME description process section, after the Full-Pixel ME is 

performed, if the mode MB is inter, the Half-Pixel ME is performed. The goal of Half-

Pixel ME is to find a better match for the current MB by calculating the interpolated 

samples.  

The process consists on calculate the 8 SADs from the 8 neighbors of the best match 

found in the Full-Pixel ME, and check if one of these is better than the current pixel. In 

order to calculate the SADs it is necessary to interpolate all the values from the MB. 

Figure 27 depicts the different kinds of interpolated values. 

 
for (MB+Neighbours) 
      if (!goodEnough) 
          Calculate_MB_SAD 
          if (MB && SAD<Threshold) 
               goodEnough = True  
     ... 
 

 
for ((rowsXcolumns)/4) 
     Calculate_MB_SAD1 
              ...                       (use of                
     intrinsics) 
     Calculate_MB_SAD9    
for (MB+Neighbours)  
              ... 
Choose_best_SAD 
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Figure 27 Half-pixel types 

 

In the initial code the calculation of both interpolation values and SAD of MB were made 

in the same, which also was inside another loop (to go over the 8 half-pixel neighbors). 

In the final implementation 2 different loops are used. In the first loop the interpolated 

values are calculated (using intrinsics, details in appendix A) and stored. In the second 

loop all 8 SADs are calculated (also with intrinsics). The reason is to take advantage of 

the intrinsics (decrease the total number of iterations), avoid recalculating the 

interpolation values and the possibility to calculate the 8 half-pixel SADs in the same 

loop (unrolling the loop). In addition another small loop is created in order to choose the 

minimum SAD. 

 

 where start of the current MB 
Full Pixel 
Half-pixel corner interpolated values 
Half-pixel right/left interpolated values 

Half-pixel up/down interpolated values 

is the average of the 4 surrounding full-pixels 

is the average of the above and below 
surrounding full-pixels 

is the average of the left and right surrounding 
full-pixels 
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Figure 28 Code transformations in Half-Pel ME 

 

Another two options were tested with worst results (Graphic 6). These options consist on 

calculate the vertical and horizontal interpolated values from the reference frame 

(memory) and then the 4 surrounded half-pixels by making the interpolation from the 

previous half-pixels. The reason to try these options was to avoid to accesses to the 

memory. Unfortunately to perform these implementations, it is necessary to increase the 

number of conditions inside the loop or to create several loops. 

 

 
Figure 29 Scheme of interpolation value using previous calculated values 

 

 
01        02 
      x1  x2 
03  x3  04 

tmp1 = (O3 + O4); 
x1 = tmp1 / 2; 
tmp2 = (O2 + O4); 
x2 = (tmp1 + tmp2)/2; 
x3 = tmp2 / 2; 
 

 
for (k=0; k<17x20 ;k+=4) 
      interH (2 values) 
      interV (2 values) 
      interVH (4 values) 
for (k=0; k<16x16; k+=4) 
      (int) NewFrame 
      (int) Interpolated0 
            … 
      (int) Interpolated7 
      sad0 += Innersum4(Subabs4(interpolate0,Newfra me)) 
                … 
      sad7 += Innersum4(Subabs4(interpolate7,Newfra me)) 
 
1 more loop to choose the lowest sad 
          
 

for (0 to 8 neighbors) 
     for (rows in MB) 
         for(columns in MB) 
               Calculate_interpolated (4 values) 
               differ = interpolated – NewFrame 
               sad+=differ    
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Graphic 6 Total cycles in Half-Pel ME for different option tested. 

 

Table 17 shows the scheduling results for Half-Pel ME with the final implementation. The 

final loop for choosing the minimum SAD has not a high  

 

Kernel NrCycles SD II PS IPC Length 

Interpol_values 626 73,21% 7 5 11,7143 30 

Calc_SADs 346 67,50% 5 5 10,5 25 

Choose_min_SAD  37 33,33% 3 4 5,33 12 

Table 17 Half-Pel ME schedule results 

 

 

6.3 General statistics 

Graphic 2 shows a comparison between the initial code in VLIW mode, the final code in 

VLIW mode, and the final code mapped in CGA for 3 different sequences. Final code in 

VLIW mode has 77,89% less cycles than the initial code. Notice that there are big 

differences depending on the sequences tested. E.g. the ME block of the mobile cif 

sequence requires 24,9% more cycles than foreman qcif sequence. The reason is that 

the mobile sequence has a lot of motion in background and the algorithm needs more 

cycles to find the correct MB. 
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Graphic 7  ME comparison between different sequences and CGA/VLIW modes 

As in the previous chapter, to have some means of comparison, here follows a simple 

calculation of the maximum number of cycles required to be able to have HDTV Motion 

Estimation operating realtime on a single ADRES: 

• Cycles per MB = 300.000.000 / 108.000 = 2.778 

• Current number of ME cycles per MB = 3.510 

The necessary clock-speed required for a single ADRES given the current number of 

cycles: 

• Number of ME cycles per second = 3510 * 108.000 = 379,08 MHz  

Therefore to implement the motion estimation block in a single ADRES, the necessary 

clock will be 689,09 MHz. 
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Chapter 7  

Texture Update  

 
 

Texture Update block represents de 8,12% of the total code in VLIW. In this block the 

MBs from the Texture Coding block are added with the MB coming from the Motion 

Compensation block, in order to create the MBs that will make the reference frames. 

Unfortunately it is not so easy because there are different kinds of blocks, which mean 

different codifications. This chapter starts with the description of the initial code and 

follows in next sections with different options tested, giving only scheduling details for 

the final implemented code.  

 

 

7.1 Initial code 

In the initial code the texture update block operates in a block level, because each one 

of the 6 blocks in a MB (4Y and 2UV), can have a different kind of codification. In order 

to know which kind of block is coded, a parameter called TextureUpdateMode is passed 

to the block. This parameter comes from the Texture Coding block and its value 

depends on how the block is coded there: 

• TextureUpdateMode=0 � Motion vectors are 0 and the block is skipped (no 

quantization perform, see chapter 5). 

• TextureUpdateMode=1  � Motion vectors are not 0 and the block is skipped. 

• TextureUpdateMode=2  � Only the first row it is codified. 

• TextureUpdateMode=3  � Only the first column it is codified. 

• TextureUpdateMode=4  � The block is mode INTER and all the coefficients are 

computed. 

• TextureUpdateMode=5 � The block is mode INTRA but is not coded, only the 

DC coefficient. 

• TextureUpdateMode=6 � The block is mode INTRA and all the coefficients are 

codified. 

The consequence of the different block types is that to perform the block (that will 

construct the future reference frames), it has to be chosen the correct values from the 

reconstructed MBs (from Texture Coding block) and, if it is necessary, with the MB 

values that come from the Motion Compensation block. 

The Figure 30 shows the schematic initial code of Texture Update section. 
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Figure 30 Schematic initial code in Texture Update block 

 

 

7.2 Final code 

With the experience acquired in previous sections I tried to: 

• Make one big loop in order to take advantage of increasing the total number of 

iterations to map in the CGA. As there are 6 blocks in the initial code (even 

coalescing the loops over rows and columns), the initial code only maps the inner 

loop (64 iterations). Indeed it is the same than in the Texture Coding block (pass 

the function in a MB level). 

• Remove if statements: in order to make more regular the loop and reduce the II, 

to reduce the cycles. 

It is difficult to apply this 2 points at the same time, because the dependencies are not in 

a MB level (e.g. in the Quantization/invQuantization in Texture Coding block there are 2 

different quantization depending on the MB mode). Therefore the selection of the 

different adds must be done before the loop. 

It is easy to see in the code that: 

• If the blocks are type 0 or 1 no information from the Texture Coding block has to 

be added. 

• If the blocks are type 5 or 6 no information from the Motion Compensation block 

has to be added. 

To avoid if statements and to avoid to add extra information, 2 new pointer arrays (of 

size 6 i.e. 6 blocks), one empty block (only 0s inside) and block to store the DC 

coefficient are created. The purpose of the pointers is that before the loop, and 

depending on the block type, they point to the block information (from MC or TC) or if it 

is a mode which does not need that information block they point to the 0s block. Figure 

31 shows schematically this process. There are more issues but this is basically the 

process. 

 
for (blocks in MB) 
     if blockY 
           for (rows) 
                 for (cols) 
                     code recYframe depending on te xtureUpdateMode  
     if blockUV 
           for (rows) 
   for (cols) 
                     code recUVframe depending on t extureUpdateMode  
 

4 if conditions inside the loops 
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Figure 31 Schematic blocktype selection process 

 

Aside from the pointers, some new variables are created to read in the correct order the 

values from the information blocks. For example, once we know that it’s necessary to 

read the block from TC, it is necessary to know if we need to read the entire block or just 

the first column or first row (modes 3 and 2). For this reason there are new if conditions 

outside the loops. Although they have rather influence in total amount of Texture Update 

cycles (about the 33% of cycles are spent outside the loops), the results are still better 

than other options. 

Once this code works properly next step is to reduce the amount of iterations by 

applying intrinsics that means other issues. There are several intrinsic operation to carry 

out the Texture Update with intrinsics, also depending on the mode it is possible to it 

with less intrinsics operations, but this means  to add if statements. At the end it was not 

possible to use the same intrinsic code for all the block types and for the type 3 it is 

necessary to add if statements, but even with this drawback the results obtained are 

better (see for comparisons between different codes). 

The shows the code (schematically) from the main loop. Aside from this loop 3 more 

loops are created: one (already explained) to select the where the pointers has to point 

depending on the block type, another loop is just to full of zeros the 0s_block. The third 

loop is created to fill the DC coefficients in case the block is type 5. This is performed in 

a separate loop because if it was made in the pointers loop the results would be wrong 

in CGA mode (read-store values in same iteration). 

 

*Point1[blocks in MB]; 
*Point2[blocks in MB]; 
 
for (i=0:blocks in MB) 
      Point1[i] = &zero_block[0]; 
      Point2[i] = &zero_block[0]; 
     
    if (textureUpdateMode < 5) 
        Point1[i] = &MCblock[i][0];  
     
    if (textureUpdateMode > 1) 

  Point2[i] = &TCblock[i][0]; 
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Figure 32 Main loop in Texture Update 

 

The Table 18 shows the final scheduling results. Notice that the II of the main loop is 20, 

which is a high number; on the other hand there are only 16 iterations. This II could be 

reduced if it was possible to remove if conditions inside the loop. This option was already 

tested and the II was 16, which mean a reduction of 64 cycles per MB. For specific 

intrinsics code see appendix A. 

 

Kernel NrCycles SD II PS IPC Length 

Array0s 47 43,75% 5 2 7 6 

Mode 

parameters 
27 71,88% 2 7 11,5 14 

Fill mode5 32 40,63% 2 10 6,5 19 

Main loop 361 76,56% 20 2 12,25 40 

Table 18 Scheduling results for Texture Update block 

 

Graphic 8 shows the different options tested during the progress to the best option. The 

first option is just the initial code coalescing the row-columns loops. The second option 

corresponds to the initial code but also coalescing the outside loop that is going over the 

different blocks. Indeed it means to pass from the block level to a MB level, increasing 

the iterations from 64 to 384. Here it is possible to appreciate the same problem than in 

the quantization function in TC (see the Texture Coding chapter), because the 

for (k=0 to MBvalues; k+=4) 
read *(int*)&point1[0][blocktype_params]; 
read *(int*)&point2[0][blocktype_params]; 
read *(int*)&point2[0][blocktype_params]; 
 
if UpdateMode[0]=3 
 Calculate RefFramevalues IntrinsicsMode3 
else 
 Calculate RefFramevalues Intrinsics 
   … 
 
read *(int*)&point1[5][blocktype_params]; 
read *(int*)&point2[5][blocktype_params]; 
read *(int*)&point2[5][blocktype_params]; 
 
if UpdateMode[5]=3 
 Calculate RefFramevalues  IntrinsicsMode_3 
else 
 Calculate RefFramevalues  Intrinsics 
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architecture doesn’t have enough resources to maintain the same II than in less 

iterations (ResMII).  

 

 
Graphic 8 Comparison between different options tested 

 

The result of next option (unroll ifs in the graph) corresponds at the original code (all ifs 

statements inside loop) but unrolling the loop 6 times. It means that all 6 blocks in the 

MB are updated together. 

The next option consists on avoiding the if statements, by creating pointers and the Zero 

array. Finally, there is the final code with the application of intrinsic functions. 

It has to be noticed the option of “splitting loops”. In this option the code is implemented 

in different loops depending on the block type. In this way it is no possible to unroll the 

loop to perform the 6 blocks together but on the other hand there are not if statements 

inside loops mapped in the CGA and it takes profit to the intrinsic functions. 

 

 

7.3 General statistics 

The total amount of cycles per MB spent in the Texture Update block, adding the 

different loops and the control code is 704 for a foreman qcif sequence, 703 for a mobile 

cif sequence and 706 for crew 4cif sequence (Graphic 9). 
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Graphic 9 TU comparison between different sequences and CGA/VLIW modes 

 

Like in the other previous chapters here follows a simple calculation of the maximum 

number of cycles required to be able to have HDTV motion estimation operating realtime 

on a single ADRES: 

• Cycles per MB = 300.000.000 / 108.000 = 2.778 

• Current number of TextureUpdate cycles per MB = 705 

The necessary clock-speed required for a single ADRES given the current number of 

cycles: 

• Number of TextureUpdate cycles per second =  705* 108.000 = 76,14MHz  

Therefore to implement the motion estimation block in a single ADRES, the necessary 

clock will be 76,14 MHz. 
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Chapter 8  

Motion Compensation  

Motion Compensation block together with Motion Estimation block are the key blocks for 

the MPEG-4 standard (also in others standards) because they allow to reduce the 

redundancy between transmitted frames by forming a predicted frame and subtracting 

this from the current frame.  

The motion compensation process consists on, once the “best” matching region in the 

reference frame is selected, typically a macroblock, the region is subtracted from the 

current macroblock to produce a residual macroblock (luminance and chrominance). 

After the Motion Compensation block, this macroblock is encoded and transmitted 

together with a motion vector describing the position of the best matching region (relative 

to the current macroblock position).Within the encoder, the residual is encoded and 

decoded and added to the matching region to form a reconstructed macroblock which is 

stored as a reference for further motion-compensated prediction. It is necessary to use a 

decoded residual to reconstruct the macroblock in order to ensure that encoder and 

decoder use an identical reference frame for motion compensation. 

Therefore in the Motion Compensation block the goal is to subtract the current 

macroblock from the reference macroblock or if it is an intra macroblock to copy the 

values to the reference frame. 

 

 

8.1 Initial code 

In the initial code, the function where the motion compensation is performed is called 6 

times. Actually there are two different functions: one called four times per macroblock for 

luminance blocks and the other function, for the chrominance blocks. However the 

motion vectors, which indicate the “best” matching region are transmitted per each 

macroblock (the regions are 16x16 pixels), each per block in a macroblock. The two 

functions are doing the same by their respective kind of blocks. 

Firstly the code distinguishes between the different modes (inter or intra). If the 

macroblock is coded as an intra macroblock, then the process only consists on copying 

the values from the current frame to the reference frame.  

Otherwise, if the macroblock is transmitted as inter mode, the process is more 

complicated. It is necessary to know if the motion vector coordinates correspond with an 

entire position or with half-pixel position. Each entire pixel position is considered to be 

equivalent to 2 units whereas a half-pixel position is 1 unit. Therefore if the coordinates 
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received are not multiple of 2, half-pixel motion estimation, the pixel interpolation must 

be carried out. 

The original code has 2 main loops for the inter macroblocks. They distinguish if the 

macroblocks need vertical interpolation (see Figure 27 in Motion Estimation chapter) or 

not. In order to distinguish for those blocks where the horizontal interpolation is needed 

to obtain the correct values, there is an if statements inside each loop. 

Once the correct values are obtained 3 things are made: 

• Subtract the current frame with the obtained values to obtain the “error macro 

block”, which after being codified is sent to decoder. 

• Calculate the Sum of Absolute Differences (SAD) between the current 

macroblock and the estimated one. The SADs are used in texture coding block 

(see texture coding for more details). 

• Store the reference values in a macroblock array. The reason to store the values 

is that they are necessary in order to “construct” the reference frames (see 

texture update chapter). 

Figure 33 depicts schematically how the code flows in the initial implementation. Actually 

it is more complicated (more variables…) but it shows how the code operates. The code 

is exactly the same for the luminance(Y) and for the chrominance (UV) blocks with the 

only difference that the values are taken from the UV frames. 

 
Figure 33 Motion Compensation schematic code 

for (Y blocks in MB) 
 if (mode==INTRA) 
 for (rows in block) 
             for (columns in block)      
          errorMB = CurrentFramePixel       
 else if (NO vertical interpolation) 
             for (rows in block) 
                  for (columns in block)  
                      if (horizontal interpolation)  
      refPixel = Calculate horizontal interpolation  value 
   else 
                          refPixel = Read value 
                      endif 
              
                      MB_TextureUpdate = refPixel; 
                      errorMB = CurrentframePixel –  refPixel; 
                      SAD += absolute(CurrentframeP ixel – refPixel); 
          else 
             for (rows in block) 
                  for (columns in block)  
                      if (horizontal interpolation)  
      refPixel = Calculate V&H interpolation value 
                      else 
                          refPixel = Calculate vert ical interpolation value 
                      endif 
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8.2 Final Code 

The Motion Compensation block code has suffered so many transformations in order to 

reduce the total amount of cycles to make the calculations. During the evolution process 

to the final code, many different options have tested. compares some these options. 

The final code maintains the structure but making transformations in loops to find the 

best option. There are also two functions (one for Y blocks and one for UV blocks). For 

the Y blocks, and for UV blocks as well, in intra mode the copy process is carried out in 

all blocks together (loop unrolled and of course coalescing previously rows and 

columns).  

Then the code is different for the two kinds of blocks. The great difference between the 

final and the initial code is the way to calculate the interpolated values. In the final code 

the interpolated values are not calculated again (average of 2 or 4 pixels) because they 

have been already calculated in the motion estimation block. Therefore a new array 

where these values are stored is passed to the function. However this is only possible 

for the Y blocks, as the motion estimation is only executed for this blocks.  

The code for the inter-Y blocks only distinguishes whether the interpolation is needed or 

not. To select the correct option another parameter is passed to the function. This 

parameter is used to indicate which half-pixel neighbor from the entire position has been 

choosen. If the parameter is 0 no interpolation is required. This means that the values 

are read from the reference frame whereas the others are read from the interpolation 

array. The interpolation array allows reducing the cycles because it avoid to read more 

times from the memory and to make again the average. On the other hand more bytes 

(2040 bytes) are stored to the memory. 
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Figure 34 Final schematic code for Y-blocks 

 

For the inter-UV blocks, the process to know if the interpolation is required remains the 

same as in the initial code (see initial code section). But then there are not if conditions 

inside the loops. There are 4 loops depending on the kind of interpolation: 

1. No interpolation loop 

2. Only horizontal interpolation is required. 

3. Only vertical interpolation is required. 

4. Horizontal/vertical interpolation is required. 

On one hand, with this way it is possible to reduce cycles by removing if statements 

inside the loops. On the other hand the size code is much larger. 

All the loops, either Y or UV blocks, are unrolled. That means that in case of Y blocks all 

4 error blocks, 4 SADs… are calculated together and for the UV all 2 blocks are carried 

out at the same time. 

A final important point is the application of intrinsics and the consequent reduction of 

cycles. 

   if (mode==INTRA)  
      for (elements in a block/4) 
       errorMB0 = CurrentFramePixel1 
  … 
 errorMB3 = CurrentFramePixel3 
   else if (NO half-pixel) 
               for (elements in a block/4) 
            refPixel0 = Read value from frame 
            MB_TextureUpdate0 = refPixel0; 
                    errorMB0 = CurrentframePixel0 –  refPixel0; 
                    SAD0 += absolute(CurrentframePi xel0 – refPixel0); 
                               … 
                    refPixel3 = Read value 
            MB_TextureUpdate3 = refPixel3; 
                    errorMB3 = CurrentframePixel3 –  refPixel3; 
                    SAD3 += absolute(CurrentframePi xel3 – refPixel3); 
           else 
                for (elements in a block/4) 
                    refPixel0 =  Read value from in terpolation array 
                    MB_TextureUpdate0 = refPixel0; 
                    errorMB0 = CurrentframePixel0 –  refPixel0; 
                    SAD0 += absolute(CurrentframePi xel0 – refPixel0); 
                                … 
                    refPixel3 = Read value 
            MB_TextureUpdate3 = refPixel3; 
                    errorMB3 = CurrentframePixel3 –  refPixel3; 
                    SAD3 += absolute(CurrentframePi xel3 – refPixel3); 
 

 Reduction of iterations 
because of intrinsics 
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Figure 35 Final schematic code for UV blocks 

 

The Graphic 10 compares CGA cycles for different options tested in Y-blocks. From left 

to right here are the options explained: 

• Initial code: it is the starting code, only coalescing the rows-columns loops, but 

maintaining the rest of code. 

• Remove conditions inside: in the original code there were if statements inside 

loops to select if the horizontal interpolation is necessary. Here the horizontal 

interpolation is always carried out when the vertical interpolation is not needed. 

When the interpolation vertical has to be done 2 loops were created to avoid 

conditions inside, because there were rounding errors. 

• Coalescing external loop: it means increasing the iterations from 64 to 4x64 

(pass to a MB level). 

• Read from interpolated values in ME: instead of calculating the interpolated 

values, these are read from Motion Estimation. 

• Unroll: in 64 iterations the 4-Y blocks are performed. 

• Final code: change the code in order to introduce intrinsic functions, reducing 

iterations from 64 to 16. 

   if (mode==INTRA)  
      for (elements in a block/4) 
         errorMB5 = CurrentFramePixel5 
   errorMB6 = CurrentFramePixel6 
    
   else if (NO vertical interpolation) 
                if (Horizontal interpolation)  
                   for (elements in a block/4) 
                refPixel5 = Read value from frame 
                MB_TextureUpdate5 = refPixel5; 
                        errorMB5 = CurrentframePixe l5 – refPixel5; 
                        SAD5 += absolute(Currentfra mePixel5 – refPixel5); 
                                   … 
               else 
                   for (elements in a block/4)  
     refPixel5 = Calculate H_interpolation from frame                       
                        MB_TextureUpdate5 = refPixe l5; 
                        errorMB5 = CurrentframePixe l5 – refPixel5; 
                        SAD5 += absolute(Currentfra mePixel5 – refPixel5); 
                                   … 
           if (Vertical interpolation) 
               if (NO Horizontal interpolation)                
                    for (elements in a block/4)  
     refPixel5 = Calculate V_interpolation from frame                       
                                        … 
               else 
                    for (elements in a block/4)  
     refPixel5 = Calculate H&V_interpolation from f rame                      
                                        … 
  

Reduction of iterations 
because of intrinsics 
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Graphic 10 Comparison between different options tested 

 

Concerning to the UV-blocks the steps followed are the same than with the Y-blocks, 

with the big difference that it is not possible to read already calculated interpolated 

values from ME block. Therefore there are not big differences in CGA Cycles per block 

comparing with the Y-blocks.  

Table 19 shows the scheduling results for all loops in Motion Compensation block. 

Kernel NrCycles SD II PS IPC Length 

Y-blocks Intra  125 73,96% 6 5 11,83 28 

Y-blocks No Interpolation  213 80,11% 11 4 12,82 36 

Y-blocks Interpolation  213 80,11% 11 4 12,82 36 

UV-blocks Intra 76 93,75% 3 9 15 27 

UV-blocks No Interpolation  128 86,44% 6 6 13,83 31 

UV-blocks H-Interpolation 149 91,96% 7 6 14,71 36 

UV-blocks V-Interpolation 166 83,59% 8 5 13,38 37 

UV-blocks V&H-Interpolation 251 82,22% 13 4 13,16 42 

Table 19 Motion Compensation scheduling results 
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Notice that the number of cycles column is not cycles per block. Therefore, it is not 

possible to compare between the results from Y-blocks and results from UV-blocks. 

It is also important to mark that the 2 inter Y-blocks loops have the same number of 

cycles (213). That means there is not difference between interpolate or not. In contrast, 

inter UV-blocks the difference between interpolated and no-interpolated blocks is at least 

21 cycles. 

 

 

8.3 General statistics 

The total amount of cycles per MB spent in the entire Motion Compensation block, which 

means adding the different loops and the control code for difference sequence is: 

• For a foreman qcif sequence:  620,32 cycles 

• For a mobile cif sequence:    638,55 cycles 

• For a crew 4cif sequence:  622,40 cycles 

Graphic 11 MC comparison between different sequences and CGA/VLIW modes 

compares these sequences with original and final code in VLIW mode. 

 

 
Graphic 11 MC comparison between different sequences and CGA/VLIW modes 

Like in the other previous chapters here follows a simple calculation of the maximum 

number of cycles required to be able to have HDTV motion estimation operating realtime 

on a single ADRES: 
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• Cycles per MB = 300.000.000 / 108.000 = 2.778 

• Current number of Motion Compensation cycles per MB = 620,32 

The necessary clock-speed required for a single ADRES given the current number of 

cycles: 

• Number of Motion Compensation cycles per second = 620,32 * 108.000 = 

 = 66.995.087,27 = 66,99MHz  
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Chapter 9  

Conclusions and future work

The conclusions can be divided in 3 different parts: regarding to results achieved, 

concerning methodology to optimize code, for mapping kernels, reading at memories, 

etcetera and finally with reference to ADRES and used tools. 

 

9.1 Results achieved 

As it was expected, having a look to the general results (Graphic 12) and the results 

showed during the different chapters, it is possible to appreciate that the implemented 

code decreases the original implemented code. The magnitude of speed-up depends on 

the part of code:  

• Texture Coding is 2,17. 

• Motion Estimation is 4,52. 

• Motion Compensation is 2,03. 

• Texture Update 2,35. 

Whereas the total application speed-up is 3,48. When the code is mapped in the CGA 

the VLC encoder block acquires more weight in the total code, it passes from a 4,57% in 

the original code in VLIW mode to a 29,29% in the final code in CGA mode (the main 

part). Therefore, it should be recommendable to map in the CGA the VLC encoder 

loops. 

Mapping all applications in one single ADRES for a foreman 300 frames qcif sequence 

these numbers are obtained: 

• Current total number of cycles per 300 QCIF frames = 487.946.546 

• Total number of cycles per QCIF frame = 487.946.546 / 300 = 1.626.488,48 

• Total number of cycles per MB =  1.626.488,48/ 99 = 16429,17 

• Total number of cycles per second required for HDTV =  16.429,17 * 108.000 

=1.774.351.076,36  = 1,77 GHz 

This  frequency is still far from the ADRES clock (300MHz),but if the different blocks are 

mapped in different ADRES then the results are close to be achieved. 
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Graphic 12 Cycles/MB Full MPEG-4 encoder 

 
 

9.2 Code analysis 

With the experience acquired and the results obtained during the optimization code I see 

that one of the main gain in terms of reducing cycles is with the use of intrinsic functions. 

In IDCTrows and Q_invQ (Texture coding block) cycles did not decrease so much using 

intrinsic function. This is because in these particular functions, intrinsics are used to 

avoid if statements, but no for taking advantage of reading integers instead of shorts, 4-

bytes instead of 1-byte. In contrast in Motion Estimation, Texture Update and Motion 

Compensation blocks it is possible to reduce rather the amount of cycles. E.g. in ME 

interpolation loop, the cycles pass from 1.474 cycles to 346 cycles. The loss of cycles is 

higher even if it is necessary to add more operations to obtain the correct code (i.e. 

packing, unpacking…) or to add some if statements, like in the Texture Update block 

where the cycles in the main loop decrease from 738 to 361. In this loop the II pass from 

11 to 20, but the there are only 16 iterations instead of the 64. Therefore intrinsic 

functions always are something to take into account when you are optimizing a code. 

Another important thing to consider is try to carry out the calculations for all blocks 

together in the same loop. What it means is to do all the calculations with the same 

number of iterations. Unfortunately this is not good or not possible in all the occasions. 

For example in texture coding block is not possible to calculate 6 times in one loop the 

DCT over rows because there are too many operations and it would be necessary a lot 

of new variables to store… On the other hand, to calculate 9 SADs, to perform the 
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Texture Update (6 blocks) or Motion Compensation (4 blocks), all are carried out in the 

same loop without increase the iterations. Therefore this is like unroll the loop. 

Coalescing loops is a technique extensively applied in the code, especially for mapping 

rows-columns loops. This is always a good technique to apply wit columns and rows to 

increase the iterations mapped in the CGA without increasing the II. But when the loop 

to coalesce is the macroblock loop (to go over the 6 blocks for example), then it is 

necessary to consider some things. As it is always necessary to add some control 

instructions (e.g. for reading correct values from the memory), sometimes it is not 

possible to maintain the II because there are not enough available resources in the CGA 

(e.g. more multipliers are needed or it is necessary to store more variables… 

ResMII<RecMII) and then the advantage to reduce 6 times the length is not worth 

(illustrated in Figure 36). Coalescing the loops there are only 1 prologue-epilogue 

(length) instead of 6 (if we are talking about coalescing with the MB loop), but our II has 

been increased. Therefore, before coalesce loops, it is necessary to evaluate, if it is 

possible to maintain the II, the number of iterations that we are going to map… 

 
Figure 36 Total cycles coalescing or not coalescing loops 

 

Another important thing (already explained in Texture Coding chapter) is the way to read 

at memory. Whenever it could be possible, it is better to read integers (4-bytes) instead 

of shorts or another 1-byte type, if no much operations has to be added later (see 

Texture Coding chapter). 
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To talk more concretely about specific code optimizations here is a list of top code 

optimizations: 

• General use of intrinsic functions. In general the main gain in cycles is produced 

calculating integer operations instead of short operations by the use of existing 

intrinsic functions, even if the code adds more complexity, because intrinsic allow 

us to reduce iterations. 

• Use of intrinsics to calculate interpolated values for the half-pel ME. 

• Calculate the 9 SADs for the first spiral in full-pel ME. 

• Coalesce the loops in TC block in order to go over MBs instead over rows or 

columns. 

• Avoid conditions in TU block and unroll the loop to Update all blocks together. 

 

9.3 About ADRES and its compiler 

The uses of new intrinsic functions are very useful to decrease cycles but sometimes it is 

necessary to apply several intrinsics to make a single operation. For example to perform 

interpolation, many different intrinsics are applied. It could be possible to create a new 

intrinsic to calculate faster the interpolation. In Texture Update block and Motion 

Compensation it is necessary to read some unsigned char as integers. There is not an 

intrinsic function to do it; therefore it is necessary to make it in different steps. 

Concerning to DRESC compiler, it is very useful to exploit loop-level parallelism, 

because it makes some automatic optimizations, such as reduce the prologue-epilogue 

length or the possibility to know which alap factor give us the best results. On the other 

hand it should be useful to incorporate in DRESC automatic tools that allow the 

programmer to roll unroll the loops automatically.    

 

9.4 Future work 

Once the different blocks (Texture Coding, Motion Estimation, Motion Compensation and 

Texture Update) are mapped in the CGA, the total number of cycles decrease, and 

consequently, the percentages of code spent in each block change too. New 

percentages (Graphic 13) shows us that now VLCencoder  block has more important 

weight, therefore, this block should be useful to map this block in the CGA too. 
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Graphic 13 Cycles percentages spent in different parts of MPEG-4 encoder (CGA mode, final 

code) 
 
In Motion Estimation the use of intrinsic functions is generalized. It is necessary to read 

integer values instead of short or unsigned char values. For this reason there are several 

memory accesses that are unaligned. It is necessary to make some modifications in the 

final code to avoid this. Modifications consist on read 2 values aligned and then pack the 

correct values from the 2 integers in another one to operate correctly. This will add more 

complexity and some more cycles to the code. 
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Appendix A 

Intrinsics 

Here it follows more specific description about code with intrinsics implemented in 

Motion Estimation, Motion Compensation and Texture Update blocks. 

 

Motion Estimation 

This is the process to calculate the 4 interpolated values in the Half-Pixel Motion 

Estimation function: 

 
Figure 37 intrinsic process to make interpolation in Half-Pixel ME 

 
  The coefficients to read are type short (8-bit), therefore it is possible to use a set 

of intrinsic functions to use 32-bit operations. 

 1) 4 integers are read in each iteration with an offset of 1 position right or down. 

 2) Using the PACK2 intrinsic function it is possible to obtain 4 integers with the 

correct position to perform the average (see matrix). 
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1    2     3    4     5    6     7    8    9 
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A1 A2 B1 B2 A3 A4 B3 B4 A2 A3 B2 B3 A4 A5 B4 B5 

(C1 + rounding control + 2) / 4 
                … 
(C4 + rounding control + 2) / 4 
 

    C1     C2    C3     C4 

 C1  C2  C3  C4 

1) 

2) 

3) 
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5) 

+ + + + 
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 3) INNERSUM4 intrinsic is applied, in order to sum the 4 shorts packed inside 

the integer (C1, C2, C3, C4). 

 4) The number is averaged. 

 5) Finally the 4 numbers obtained are packed with the PACK4 intrinsic and 

stored in the array. 

 Here follows the code:  

 
Figure 38 Intrinsic code in Half-Pixel Motion Estimation 

 

To calculate horizontal and vertical interpolated values it is only necessary to read the 

correct values and apply the AVGU4 intrinsic function. In this case if rounding control it is 

not 0 is necessary to make an OR operation between the 2 integers read and one AND 

with a 01010101 vector in order to make correctly the integer division. 

 

 

4interpolated =  

=PACK4((I_INNERSUM4(I_PACK2(pix00,pix10),0)+2- rounding_control)/4,                                                                                                                                                       

   (I_INNERSUM4(I_PACK2(pix01,pix11),0)+2-rounding_ control)/4,             

   (I_INNERSUM4(I_PACK2(pix00>>16,pix10>>16),0)+2-r ounding_control)/4,

   (I_INNERSUM4(I_PACK2(pix01>>16,pix11>>16),0)+2-r ounding_control)/4); 

 

Vinterpolated = (rounding_control==0)?I_AVGU4(pix01 ,pix11):((pix01 & pix11) + 

(((pix01 ^ pix11) & ~BYTE_VEC32(0x01)) >> 1)); 

 

Hinterpolated = (rounding_control==0)?I_AVGU4(pix10 ,pix11):((pix10 & pix11) + 

(((pix10 ^ pix11) & ~BYTE_VEC32(0x01)) >> 1)); 
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Motion Compensation 

Here it follows the intrinsic process in Motion Compensation: 

 

 
Figure 39 Intrinsic process in MC 

 
 1) First it is necessary to read the values as integer, from the current frame and 

from the reference frame. 

 2) Then using the PACK2 function and SHLMB the LSB and  the MSB part of the 

integers are split in 2 new integers. 

 3) Then using the SUB2 function the new integers from the current frame and 

from the reference frame are subtracted. 

 4) Finally the integers are stored in the correct place. 

This figure shows the code: 

 
Figure 40 Motion Compensation Intrinsic Code 

     recPix0 = *(unsigned int*)&recYframe[prevRecFr ameIdx][yu+j][xl+i]; 
     newPix0 = *(unsigned int*)&newFrameY[Off_Row+j ][Off_Col+i];        
      
     recPixA0 = I_PACK2(I_SHLMB(recPix0<<16,0), rec Pix0&0xff);   
     recPixB0 = I_PACK2(I_SHLMB(recPix0,0), I_SHLMB (recPix0<<8,0)); 
     newPixA0 = I_PACK2(I_SHLMB(newPix0<<16,0), new Pix0&0xff); 
     newPixB0 = I_PACK2(I_SHLMB(newPix0,0), I_SHLMB (newPix0<<8,0)); 
      
     partA0 = I_SUB2(newPixA0, recPixA0); 
     partB0 = I_SUB2(newPixB0, recPixB0);    
 
     *(int*)&errorMacroBlock[0][j*8+i+0] = partA0; 
     *(int*)&errorMacroBlock[0][j*8+i+2] = partB0; 
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Texture Update 

For the Texture Update there are 2 different code depending on the block type. If the 

block is type 3 the code is different (see Texture Update chapter).  

 
Figure 41 Intrinsic process for TU block 

 
 1) First the correct integer values are read from the arrays. 

 2) Then using the PACK2 function and SHLMB the LSB and the MSB part of the 

integers are split in 2 new integers. 

 3) Then using the ADD2 function the new integers from the 2 arrays are added. 

 4) Finally using the function SPACK4 the values are packed in one integer and 

stored in the correct place. 

 If the block is type 3 the it is only used the positions A1 and A2. These positions 

are copied and packed in a integer and then the process remains the same. 
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Figure 42 Texture Update Intrinsic Code 

PixelA0 = *(unsigned int*)&(TmpUChar[0][d0*j+i*e0]) ;  
PixelB0 = *(int*)&(TmpShort[0][f0*j+i*g0]); 
PixelE0 = *(int*)&(TmpShort[0][f0*j+i*g0+2]); 
 
PixelC0 = I_PACK2(I_SHLMB(PixelA0<<16,0), PixelA0&0 xff);   
PixelD0 = I_PACK2(I_SHLMB(PixelA0,0), I_SHLMB(Pixel A0<<8,0)); 
if (textureUpdateMode[0]==3) 
     { 
 PixelF0 = I_PACK2(PixelB0,PixelB0); 
 partA0 = I_ADD2(PixelC0, PixelF0); 
 partB0 = I_ADD2(PixelD0, PixelF0); 
       } 
 else 
     {  
 partA0 = I_ADD2(PixelC0, PixelB0); 
 partB0 = I_ADD2(PixelD0, PixelE0); 
      } 
rec_pix0 = I_SPACKU4(partB0, partA0); 
 *(unsigned 

int*)&recYframe[recFrameIdx][YPADDING+v*16+j][YPADD ING+h*16+i] = 
rec_pix0;  
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Appendix B 

Example of scheduled kernel 
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DRESC_Q_invQ - loop id:9 (II=3, Stages=9)  
=========================== Context 0 =========================== 
rphicon12_p st_i_pcon12_p subcon12_p lsl         
lsl        asr        pred_lt    asr         
pred_lt    add        st_c2_pcon12_p lsl         
mulcon12_p intr19_gp  add        addcon12_p  
=========================== Context 1 =========================== 
con12_p    lsl        pred_gtstart_ctrl_p movcon12_p  
add_u      and        add_u      lsl         
pred_eq    lslcon12_p lslcon12_p mov         
divcon12_p rphicon12_p mul        ...         
=========================== Context 2 =========================== 
pred_eq    eq         ld_c2_pcon12_p add         
phicon12_p mov        sub        ...         
st_c2_pcon12_p add        and        rphicon12_p  
pred_ne    add_ucon12_p ...        mov         
Operation  Cont:0  Cont:1  Cont:2   Loop Total 
=================================================== 
     add:  3   0   2   5  
   add_u:  0   2   1   3  
     and:  0   1   1   2  
     asr:  2   0   0   2  
 con12_p:  0   1   0   1  
     div:  0   1   0   1  
      eq:  0   0   1   1  
intr19_gp:  1   0   0   1  
 ld_c2_p:  0   0   1   1  
     lsl:  3   4   0   7  
     mov:  0   2   2   4  
     mul:  1   1   0   2  
     phi:  0   0   1   1  
 pred_eq:  0   1   1   2  
pred_gtstart_ctrl_p:  0   1   0   1  
 pred_lt:  2   0   0   2  
 pred_ne:  0   0   1   1  
    rphi:  1   1   1   3  
 st_c2_p:  1   0   1   2  
  st_i_p:  1   0   0   1  
     sub:  1   0   1   2  
=================================================== 
Total OPs:     16 15 14 45 
  % array: (100%) (94%) (88%) (94%) 
(routing):* -0 -0 -0 -0 
Real OPs: 16 15 14 45 
 % array: (100%) (94%) (88%) (94%) 
 
INFO: II:3  Pipeline Stages: 9 
INFO: Instructions:  Total:45   IPC:15.0   Sch Density 93.8% 
INFO:     (0% routing ops, 13% guarded ops)
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