

Master Thesis

Treball Final de Carrera

PERFORMANCE EVALUATION OF

MPEG-4 VIDEO ENCODER ON

ADRES

Enric Mumbrú Bassas

ENGINYERIA D’ORGANITZACIÓ INDUSTRIAL

Director: Moisès Serra Serra

Daily supervisor: Eric Delfosse

Acknowledgements

I want to say thanks to David because he convinced me to go to Belgium and make this

project. This give me the opportunity to work in one of most important research centers

in microelectronics, to meet a new country and a new culture and the most important to

meet new people, new friends. Thanks also to my family and friends, who support me in

that important decision. Thanks also to my new friends here that I meet in Belgium for all

the time spent. Finally thanks to Eric and David, again, because they helped me in my

daily work.

Glossary

Acronyms and Abbreviations

ADRES Architecture for Dynamically Reconfigurable Embedded Systems

CFG Control-Flow Graph

CGRA Coarse-Grained Reconfigurable Architecture

CPLD Complex Programmable Logic Device

DCT Discrete Cosine Transform

DLP Data-Level Parallelism

DPCM Differential Pulse Code Modulation

DRESC Dynamically Reconfigurable Embedded System Compiler

FPGA Field Programmable Gate Arrays

FU Functional Unit

IDCT Inverse Discrete Cosine Transform

II Initiation Interval

ILP Instruction Level Parallelism

IMEC Interuniversitary MicroElectronics Center

IMPACT Illinois Microarchitecture Project utilizing Advanced Compiler Technology

IPC Instructions Per Cycle

IR Intermediate Representation

MB MacroBlock

MC Motion Compensation

ME Motion Estimation

MPEG Motion Picture Expert Group

MRRG Modulo Routing Resource Graph

MV Motion Vector

PHP Hypertext Preprocessor

P&R Placement and Routing

RAM Random Access Memory

RF Register File

SA Simulated Annealing

SAD Sum of Absolute Differences

SD Scheduling Density

SIMD Single Instruction Multiple Data

SSA Static Single Assignment

TC Texture Coding

VLIW Very Long Instruction Word

VOP Video Object Plane

XML eXtensible Markup Language

CONTENTS

Contents

1 Introduction .. 1

2 ADRES an architecture template .. 2

2.1 Introduction ... 2

2.2 Architecture Template Description ... 3

2.2.1 Execution and Configuration Model .. 6

2.2.2 Functional Units... 6

2.2.3 Register Files... 7

2.2.4 Routing Networks .. 7

2.3 XML-Based Architecture Description Flow... 7

2.4 ADRES compiler: DRESC .. 9

2.4.1 The structure of DRESC compiler... 9

2.4.2 Program Analysis and Transformation.. 10

2.4.3 Modulo scheduling... 12

3 Source-Level Transformations .. 14

3.1 Constraint-Removing Transformations... 14

3.2 Performance-Enhancing Transformations ... 15

3.3 Guidelines for Source-Level Transformations.. 18

4 MPEG-4 ... 20

4.1 MPEG-4 standard ... 20

4.2 MPEG-4 encoder description ... 22

4.3 Code mapped ... 23

5 Texture Coding .. 25

5.1 Introduction ... 25

5.2 Block Level.. 26

5.2.1 Quantization/DeQuantization function .. 27

5.2.2 IDCT_cols function .. 30

5.2.3 IDCT_rows function ... 30

5.3 MacroBlock Level.. 31

5.4 Block Type 1 ... 35

5.5 Comparison between block and MB levels .. 36

6 Motion Estimation .. 39

CONTENTS

6.1 Motion Estimation description process... 39

6.2 Code transformations ... 41

6.2.1 Calculate INTER – MB SAD.. 42

6.2.2 Calculate INTRA – MB SAD.. 43

6.2.3 Choose Mode .. 43

6.2.4 Full – Pixel Motion Estimation ... 45

6.2.5 Half – Pixel Motion Estimation .. 45

6.3 General statistics .. 48

7 Texture Update .. 50

7.1 Initial code ... 50

7.2 Final code.. 51

7.3 General statistics .. 54

8 Motion Compensation.. 56

8.1 Initial code ... 56

8.2 Final Code... 58

8.3 General statistics .. 62

9 Conclusions and future work ... 64

9.1 Results achieved... 64

9.2 Code analysis ... 65

9.3 About ADRES and its compiler... 67

9.4 Future work ... 67

List of Tables

Figure 1 ADRES in relation to other architectures ... 3

Figure 2: The ADRES system .. 3

Figure 3 an instance of the ADRES array .. 4

Figure 4 an example of detailed datapath.. 5

Figure 5 The functional unit in ADRES... 6

Figure 6 The architecture description flow of the ADRES template 8

Figure 7 structure of DRESC compiler ... 9

Figure 8 The flow of transformation, analysis and optimization steps............................. 11

Figure 9 The modulo scheduling algorithm core.. 13

CONTENTS

Figure 10 Transformations for an IDCT loop.. 15

Figure 11 Example of loop coalescing ... 16

Figure 12 Example of loop unrolling... 17

Figure 13 Example of tree height reduction ... 18

Figure 14 Encoder data flow... 22

Figure 15 Texture Coding flowchart ... 26

Figure 16 Initial and final schematic block level code.. 27

Figure 17 DRESC_Q_invQ original schematic disposition .. 28

Figure 18 Schematic code in block and macroblock level .. 31

Figure 19 Changes in memory accesses... 32

Figure 20 Different options to read from the memory: short type (left) or integer type

(right) ... 32

Figure 21 Different search zones. Darkest are search first ... 40

Figure 22 Checking points process. ... 41

Figure 23 Code transformations in INTER-MB SAD.. 42

Figure 24 Code transformations in INTRA-MB SAD.. 43

Figure 25 Code transformations in ChooseMode function .. 44

Figure 26 Code transformations in Full-Pel ME ... 45

Figure 27 Half-pixel types ... 46

Figure 28 Code transformations in Half-Pel ME .. 47

Figure 29 Scheme of interpolation value using previous calculated values.................... 47

Figure 30 Schematic initial code in Texture Update block... 51

Figure 31 Schematic blocktype selection process ... 52

Figure 32 Main loop in Texture Update .. 53

Figure 33 Motion Compensation schematic code.. 57

Figure 34 Final schematic code for Y-blocks ... 59

Figure 35 Final schematic code for UV blocks... 60

Figure 36 Total cycles coalescing or not coalescing loops.. 66

Figure 37 intrinsic process to make interpolation in Half-Pixel ME.................................. 69

Figure 38 Intrinsic code in Half-Pixel Motion Estimation.. 70

Figure 39 Intrinsic process in MC... 71

Figure 40 Motion Compensation Intrinsic Code... 71

Figure 41 Intrinsic process for TU block... 72

Figure 42 Texture Update Intrinsic Code ... 73

CONTENTS

List of Tables

Table 1 Scheduling results for DCT ... 27

Table 2 Scheduling results for different Q_invQ options ... 29

Table 3 IDCT_cols scheduling results.. 30

Table 4 IDCT_rows scheduling results... 31

Table 5 Scheduling results for different options to read at memory 32

Table 6 Scheduling results for DCT_Cols in MB level ... 33

Table 7 Q_invQ scheduling results in Mb level .. 34

Table 8 Different scheduling results for IDCT_Cols in MB level...................................... 34

Table 9 IDCT_Rows scheduling results obtained in MB level ... 35

Table 10 BlockDirDCTQuantH263 scheduling results ... 35

Table 11 BlockDirDequantH263IDCT scheduling results .. 36

Table 12 Block and MB level statistics (Q_invQ in block level) 36

Table 13 INTER-MB SAD schedule results ... 42

Table 14 INTRA-MB SAD schedule results ... 43

Table 15 ChooseMode schedule results .. 44

Table 16 Scheduling results for Full-Pel ME .. 45

Table 17 Half-Pel ME schedule results .. 48

Table 18 Scheduling results for Texture Update block .. 53

Table 19 Motion Compensation scheduling results ... 61

List of Graphics

Graphic 1 Q_invQ implementation results ... 29

Graphic 2 Q_invQ Implementations in MB Level ... 34

Graphic 3 CGA Cycles comparison between block and MB levels 36

Graphic 4 CGA mode and VLIW mode results .. 37

Graphic 5 Total cycles for different option tested in Half-Pel ME 48

Graphic 6 ME comparison between different sequences and CGA/VLIW modes 49

Graphic 7 Comparison between different options tested... 54

Graphic 8 TU comparison between different sequences and CGA/VLIW modes........... 55

Graphic 9 Comparison between different options tested... 61

Graphic 10 MC comparison between different sequences and CGA/VLIW modes........ 62

CHAPTER 1: INTRODUCTION

 1

Chapter 1

Introduction

Nowadays, a typical embedded system requires high performance to perform tasks such

as video encoding/decoding at run-time. It should consume little energy to work hours or

even days using a lightweight battery. It should be flexible enough to integrate multiple

applications and standards in one single device. It has to be designed and verified in

short time-to-market despite substantially increased complexity. The designers are

struggling to meet these huge challenges, which call for innovations of both architectures

and design methodology.

Coarse-grained reconfigurable architectures (CGRAs) are emerging as potential

candidates to meet the above challenges. Many of them were proposed in recent years.

These architectures often consist of tens to hundreds of functional units (FUs), which are

capable of executing word-level operations instead of bit-level ones found in common

Field Programmable Gate Arrays (FPGAs). This coarse granularity greatly reduces delay,

area, power and configuration time compared with FPGAs. On the other hand,

compared with traditional "coarse-grained" programmable processors, their massive

computational resources enable them to achieve high parallelism and efficiency.

However, existing CGRAs have yet been widely adopted mainly because of

programming difficulty for such complex architecture.

ADRES is a novel CGRA designed by Interuniversity Micro-Electronics Center (IMEC).

It tightly couples a very-long instruction word (VLIW) processor and a coarse-grained

array by providing two functional views on the same physical resources. It brings

advantages such as high performance, low communication overhead and easiness of

programming. Finally, ADRES is a template instead of a concrete architecture. With the

retargetable compilation support from DRESC (Dynamically Reconfigurable Embedded

System Compile), architectural exploration becomes possible to discover better

architectures or design domain-specific architectures.

In this thesis, a performance of an MPEG-4 encoder in ADRES is presented. The thesis

shows the code evolution to obtain a good implementation for a given architecture.

Additionally the main features of ADRES and its compiler (DRESC) are presented.

The thesis is organized as follows: firstly ADRES architecture is presented and

compared with other current architectures. Then the principal characteristics of DRESC

compiler, the design flowchart and some other necessary background are explained.

The necessary requisites for mapping loops properly in the CGA are explained as well.

Brief overviews of the MPEG-4 standard and MPEG-4 encoder are given. Finally the

different code transformations, code issues and results are presented.

CHAPTER 2: ADRES AN ARCHITECTURE TEMPLATE

 2

Chapter 2

ADRES an architecture template

2.1 Introduction

Coarse-grained reconfigurable architectures (CGRAs) [1] are emerging technology that

has been deeply influenced by some existing architectures, including FPGAs (Field

Programmable Gate Arrays) [2] and VLIW (Very Long Instruction Word) processors [3].

Because CGRAs are highly parallel architectures, they are also similar with other parallel

computing architectures like vector processors. Moreover, the ADRES architecture

combines features of both CGRA and VLIW processors and borrows many techniques

from processor compilation. To fully understand ADRES and its compilation techniques,

it is necessary know all the related areas. Figure 1 shows the relations between CGRAs

and other architectures, as well as the position of the ADRES architecture in relation to

these architectures. CGRAs partly originated from fine-grained reconfigurable

architectures represented by FPGAs. Basically, at the top-level they look very similar.

Both comprise an array of basic units, configurable logic blocks for FPGAs and

functional units for CGRAs. Both are connected by reconfigurable routing networks. The

functionality of a target application can be implemented by specializing both the basic

units and the routing networks. Both are highly parallel architectures that enable

exploitation of massive parallelism. The limited routing resources impose great design

challenges on both architectures as well.

Much coarse-grained reconfigurable architecture (CGRA) has been developed in recent

years. These architectures provide potential vehicles for future embedded system

design. However, they still present many challenging issues, especially in how to support

an efficient and automated design methodology. To attack these issues, the solution has

to come from close interplay between both the architecture and design methodology

developments.

CHAPTER 2: ADRES AN ARCHITECTURE TEMPLATE

 3

Figure 1 ADRES in relation to other architectures

2.2 Architecture Template Description

 describes the system view of the ADRES architecture [4]. It is similar to a processor with

an execution core attached to a memory hierarchy. Though architectural details at this

moment are not well defined yet, we assume an ADRES array is connected to both data

and instruction caches. At the next level, the caches are connected to a unified main

memory. Though we assume two levels of memory hierarchy, more levels are possible,

depending on application requirements.

Figure 2: The ADRES system

Inside the ADRES array (Figure 3), we find many basic components, including
computational resources, storage resources and routing resources. The computational
resources are functional units (FUs), which are capable of executing a set of operations.

 FPGAs

CPLDs
Fine-Grained

Reconfigurable
Architecture

CGRAs

Coarse-Grained
Reconfigurable

Architecture

Coarse-Grained
Reconfigurable

Architecture

Stream
processor

VLIW
(unified,
clustered

)

Vector
processor

Conventional Coarse-Grained Architecture

ADRES Core

I Cache D

Main Memory

CHAPTER 2: ADRES AN ARCHITECTURE TEMPLATE

 4

The storage resources mainly refer to the register file (RFs) and memory blocks, which
can store intermediate data. Currently, only the RFs are supported by the compiler. The
routing resources include wires, multiplexers and busses. Basically, computational
resources and storage resources are connected by the routing resources in the ADRES
array. This is similar to other CGRAs. The ADRES array is a flexible template instead of

a concrete instance.
Figure 3 only shows one instance of the ADRES array with a topology resembling the

MorphoSys architecture [8].

Figure 3 an instance of the ADRES array

RF

FU

VLIW view

Reconfigurable array view

Instruction fetch
Instruction dispatch
Instruction decode

DATA Cache

FU FU FU FU FU FU FU

FU FU FU FU FU FU FU FU
RF RF RF RF RF RF RF RF

FU FU FU FU FU FU FU FU
RF RF RF RF RF RF RF RF

FU FU FU FU FU FU FU FU
RF RF RF RF RF RF RF RF

FU FU FU FU FU FU FU FU
RF RF RF RF RF RF RF RF

FU FU FU FU FU FU FU FU
RF RF RF RF RF RF RF RF

FU FU FU FU FU FU FU FU
RF RF RF RF RF RF RF RF

FU FU FU FU FU FU FU FU
RF RF RF RF RF RF RF RF

CHAPTER 2: ADRES AN ARCHITECTURE TEMPLATE

 5

Figure 4 shows an example of the detailed datapath. The FU performs coarse grained

operations. To remove the control flow inside loops, the FU supports predicated

operations. To guarantee timing, the outputs of FUs are required to be buffered by an

output register. The results of the FU can be written to the RF, which is usually small and

has fewer ports than the shared RF, or routed to other FUs. The multiplexers are used

for routing data from different sources. The configuration Random Access Memory

(RAM) provides bits to control these components. It stores a number of configuration

contexts locally, which can be loaded on a cycle-by-cycle basis. The configurations can

also be loaded from the memory hierarchy at the cost of extra delay if the local

configuration RAM is not big enough.

Figure 4 shows only one possibility of how the datapath can be constructed. Very

different instances are possible. For example, the output ports of a RF can be connected

to input ports of several neighboring FUs. The ADRES template has much freedom to

build an instance out of these basic components.

CHAPTER 2: ADRES AN ARCHITECTURE TEMPLATE

 6

Figure 4 an example of detailed datapath

The most important feature of the ADRES architecture is the tight coupling between a

VLIW processor and a coarse-grained reconfigurable array. Since the VLIW processor

and CGRAs use similar components like FUs and RFs, a natural thought is to make

them share those components though the FUs and RFs in the VLIW are typically more

complex and powerful. The whole ADRES architecture has two virtual functional views: a

VLIW processor and a reconfigurable array. These two virtual views share some

physical resources because their executions will never overlap with each other thanks to

the processor/coprocessor execution model. For the VLIW processor, several FUs are

allocated and connected together through one multi-port register file. The FUs used in

VLIW are generally more powerful. For example, some of them have to support the

branch and subroutine call operations. Additionally, only these FUs are connected to the

main memory hierarchy at this moment, depending on available ports. The instructions

of the VLIW processor are loaded from the main instruction memory hierarchy. This

requires typical steps like instruction fetching, dispatching and decoding. For the

reconfigurable array part, all the resources, including the RF and FUs of the VLIW

processor, form a big 2D array. The array is connected by partial routing resources.

Dataflow like kernels are mapped to the array in a pipelined way to exploit high

parallelism. The FUs and RFs of the array are simpler than those of the VLIW processor.

The communication between these two virtual views is through the shared VLIW register

file and memory access. The sharing is in the time dimension so that it does not increase

the hardware cost. For example, it does not require more ports in the VLIW RF.

2.2.1 Execution and Configuration Model

There are two execution modes, VLIW mode and array mode, for the ADRES

architecture. These two modes work mutually exclusive and take advantage of the tight

coupling of the architecture. The VLIW mode executes the code that can not be

FU

mux mux mux

reg reg reg

pred src1 src2

dst1pred_dst1 pred_dst2

RF

From different src.

To different dest.

Conf. RAM

conf.
counter

buffer

CHAPTER 2: ADRES AN ARCHITECTURE TEMPLATE

 7

pipelined but mapped effectively in an ILP way, while the array mode executes kernels

pipelined on the entire array. The control is transferred between these two modes by

detecting entry and exit conditions of pipelined loops.

In the VLIW mode, the configuration is performed as in all other VLIW processors; in

each cycle, an instruction is fetched and executed in each cycle from the instruction

memory hierarchy. In the array mode, the configuration contexts are fetched from the on-

chip configuration memory. Each kernel may use one or more consecutive contexts.

2.2.2 Functional Units

An FU can perform a set of operations. In ADRES, only fixed-point operations are

supported because they are considered sufficient for typical telecommunication and

multimedia applications. The instruction set used in ADRES is constrained by the

compiler front-end, i.e., the IMPACT framework. All FUs are fully pipelined so that one

instruction can be issued at each cycle even when the latency of that instruction is

bigger than one cycle. Different implementations may lead to different latency, which can

be specified in the architecture description and is supported by the compiler.

Unlike with most other CGRAs, predicated execution is introduced in the FUs in order to

remove control-flow and do other transformations. Figure 5 shows the general picture of

an FU. Basically, it has three source operands: pred, src1 and src2. pred is a 1-bit signal.

If it is 1, the operation is executed; otherwise, the operation is nullified. src1 and src2 are

normal data source operands.

Figure 5 The functional unit in ADRES

Some operations may only use one of them. The operation set comprises several groups:

arithmetic, logic, shift memory, comparison and operations that generate predicates.

CHAPTER 2: ADRES AN ARCHITECTURE TEMPLATE

 8

2.2.3 Register Files

The register files (RFs) are used to store temporary data. There are two types of RFs:

predicate and data RFs. The predicate RFs are 1-bit to store the predicate signal and the

data RFs have the same data width as FUs. The modulo scheduling used for pipelining

kernels imposes special requirements on the register file.

The modulo scheduling used for pipelining kernels imposes special requirements on the

register le. In the pipelined loops, different iterations are overlapped. Therefore, the life-

time of the same variable may overlap over different iterations. To accommodate this

situation, each of the simultaneously live instances needs its own register. Furthermore,

the name of the used register has to be clearly identified, either in software or in

hardware.

2.2.4 Routing Networks

The routing networks consist of a data network and a predicate network. The data

network routes the normal data among FUs and RFs, while the predicate network directs

1-bit predicate signals. These two networks do not necessarily have the same topology

and can not overlap because of different data widths. Apart from its main purpose of

handling control-flow, the predicate signal together with its routing network also serves

for other purposes: eliminating prologue and epilogue; controlling the WE (write enable

port) of the VLIW register file.

2.3 XML-Based Architecture Description Flow

To describe an architecture instance within the vast space of the ADRES template, it

uses an architecture flow based on both Extensible Markup Language (XML) and

Hypertext Preprocessor (PHP) languages (Figure 6).

CHAPTER 2: ADRES AN ARCHITECTURE TEMPLATE

 9

Figure 6 The architecture description flow of the ADRES template

XML is a simple, very flexible text format. It is designed to describe and deliver

structured documents over the Internet. Unlike other markup languages such as

HyperText Markup Language (HTML), its tags and semantics are not predefined.

Therefore, XML is a kind of meta-language. A new language can be easily derived from

XML by defining tags and structural relationships between them. Since XML is widely

used in Internet context, several implementations of XML parsers are readily available in

the form of open-source libraries. These libraries can be linked into the target

applications and provide built-in parsing capability.

The overall architecture description comprises four sections: resource, connection,

behavior and component. The resource section allocates a number of resources of

different types.

The resources include FUs, RFs and TRNs (transitory nodes). For FU, the names of

input and output ports, data width and supported operation groups can be specified. For

FU, the names of input and output ports, data width and supported operation groups can

be specified. The operation groups themselves are defined in the behavior section. RFs

are specified in a similar way.

The connection section defines the topology of an ADRES instance. The behavior

section defines some other architectural properties. For example, it specifies which RF is

used as the one of the VLIW processor, how operations are grouped and the latency of

each operation group. The area models of other components like FUs and RFs are

integrated into the resource section for implementation convenience. Finally, the

component section currently specifies area models of multiplexers so that the DRESC

PHP Arch.
Description

XML Arch.
Description

Arch. xsd

PHP
Interpreter

Arch.
Abstraction

MRRG
Abstraction

XML
Parser

CHAPTER 2: ADRES AN ARCHITECTURE TEMPLATE

 10

framework can quickly estimate the area required for the interconnection for a given

ADRES instance.

2.4 ADRES compiler: DRESC

2.4.1 The structure of DRESC compiler

Figure 7 shows the overall structure of DRESC compiler [5]. DRESC is supported on

IMPACT compiler framework [6] as a front-end to parse C source code, do some

optimization and analysis, construct the required hyperblock [[11], and emit the

intermediate representation (IR), which is called lcode. Moreover, IMPACT is also used

as a library in DRESC implementation to parse lcode, on the basis of which DRESC’s

own internal representation is constructed.

Figure 7 structure of DRESC compiler

IMPACT front-end

Transformations

profiling/partitioning

Register

ILP front-end Dataflow analysis

Kernel scheduling

Code generation

LCODE

C

Architecture parser

Architecture
abstraction

Architecture simulator

Architecture

CGA scheduling

Mapping

Object code Assembler Linker Executable

CHAPTER 2: ADRES AN ARCHITECTURE TEMPLATE

 11

Taking lcode as input, various analysis passes are executed to obtain necessary

information for later transformation and scheduling, for instance, pipelinable loops are

identified and predicate-sensitive dataflow analysis is performed to construct a data

dependency graph (DDG). Next, a number of program transformations are performed to

build a scheduling-ready pure dataflow used by the scheduling phase. Since the target

reconfigurable architectures are different from traditional processors, some new

techniques are developed, while others are mostly borrowed from VLIW compilation

domain. In the right-hand side of Figure 7, the architecture description and abstraction

path is shown. An architecture parser translates the description to an internal

architecture description format. From this internal format, an architecture abstraction

step generates a modulo routing resource graph (MRRG) which is used by the modulo

scheduling algorithm. The modulo scheduling algorithm plays a central role in the

DRESC compiler because the major strength of coarse-grained reconfigurable

architectures is in loop-level parallelism. At this point, both program and architecture are

represented in the forms of graphs. The task of modulo scheduling is to map the

program graph to the architecture graph and try to achieve optimal performance while

respecting all dependencies. After that, the scheduled code is fed to a simulator.

2.4.2 Program Analysis and Transformation

The array part of the ADRES architecture relies on loop pipelining to achieve high

parallelism. Consequently, the techniques to extract and prepare properly loops are

essential to the whole DRESC compiler framework. The flow of these steps is shown in

Figure 8.

CHAPTER 2: ADRES AN ARCHITECTURE TEMPLATE

 12

Figure 8 The flow of transformation, analysis and optimization steps

First, source-level transformations are applied to the application, currently based on

manual C-to-C rewriting. This step tries to prepare pipelineable loops since the original

source code may not be written in a pipelining-friendly way. Next the IMPACT compiler

framework parses the C code, does its own analysis and optimization steps, which are

designed for VLIW compilation, and emits an assembly-based intermediate

representation, Lcode. Taking Lcode as input, the data-flow analysis implemented in

DRESC includes detection of pipelineable loops, detection of live-in and live-out

variables, and data dependence analysis. These steps generate data dependence

graphs (DDG) representing the loop bodies and relevant information. However, they still

cannot be directly scheduled on the ADRES architecture. For example, to reduce

configuration overhead the prologue and epilogue should be properly handled in order to

obtain the kernel-only code. Hence, some new optimization and transformation

techniques are developed. Each transformation or optimization pass is followed

repeatedly by the data dependence analysis step to update the DDG. Finally, the

analyzed and optimized DDGs are fed to the modulo scheduler to exploit parallelism.

The principal steps are:

• Identifying Pipelinable Loops.

• Data Dependence Graph Construction.

• Normalized Static Single Assignment Form (SSA).

• Live-in and Live-out Analysis

• Removing Explicit Prologue and Epilogue.

src-level
transformations

IMPACT
compiler

framework

Optimization &
transformation

passes

Data
dependence

analysis

Detect
pipelineable

loops

Detect live –in
–out vars

C-code

To module
scheduling

To VLIW
compilation

CHAPTER 2: ADRES AN ARCHITECTURE TEMPLATE

 13

• Calculation of Minimum Initiation Interval (MII).

• Operation Ordering.

2.4.3 Modulo scheduling

Modulo scheduling is one of many software pipelining techniques [7]. Its objective is to

engineer a schedule for one iteration of the loop such that this same schedule is

repeated at regular intervals with respect to intra- or inter-iteration dependency and

resource constraints. This interval is termed the initiation interval (II), essentially

reflecting the performance of the scheduled loop. Various effective heuristics have been

developed to attack this problem for both unified and clustered VLIW. However, they

can’t be applied to the case of a coarse-grained reconfigurable matrix because the

nature of the problem becomes more difficult.

For unified VLIW, scheduling means to decide when to place operation. For clustered

VLIW, we also have to decide where to assign the operation, this is a placement problem.

For coarse-grained reconfigurable architecture, there is one additional task: determining

how to connect placed operations. This is essentially a routing problem. If we view time

as one dimension of P&R space, the scheduling can be defined as a P&R problem in 3D

space, where routing resources are asymmetric and modulo constraints are applied.

This scheduling problem is more complex, especially if the nature of P&R space and

scarce routing resources are considered. In FPGA’s P&R algorithms, it is easy to run the

placement algorithm first by minimizing a good cost function that measures the quality of

placement. After the minimal cost is reached, the scheduling algorithm connects placed

nodes. The coupling between these two sub-problems is very loose. In ADRES, it is

difficult to separate placement and routing as two independent problems. It is almost

impossible to find a placement algorithm and cost function which cans force the

routability during the routing phase. The solution applied in ADRES is to solve these two

sub-problems in one framework.

The algorithm is described in Figure 9. Like other modulo scheduling algorithms, the

outermost loop tries successively larger II, starting with an initial value equal to MII, until

the loop has been scheduled. For each II, it first generates an initial schedule which

respects dependency constraints, but may overuse resources. For example, more than

one operation may be scheduled on one FU at the same cycle.

In the inner loop, the algorithm iteratively reduces resource overuse and tries to come up

with a legal schedule. At every iteration, an operation is ripped up from the existing

schedule, and is placed randomly. The connected nets are rerouted accordingly. Then a

cost function is computed to evaluate the new placement and routing. A simulated

annealing strategy is used to decide whether we accept the new placement or not. If the

CHAPTER 2: ADRES AN ARCHITECTURE TEMPLATE

 14

new cost is smaller than the old one, the new P&R of this operation will be accepted.

Even if the new cost is bigger, there is still a chance to accept the move, depending on

“temperature”. This method helps to escape from local minimum.

The temperature is gradually decreased from a high value. So the operation is

increasingly difficult to move. The cost function is constructed by taking account into

overused resources. The penalty associated with them is increased every iteration. In

this way, placer and router would try to find alternatives to avoid congestion. This idea is

borrowed from the Pathfinder algorithm. In the end, if the algorithm runs out of time

budget without finding a valid schedule, it starts with the next II. This algorithm is time-

consuming. It takes minutes to schedule a loop of medium size.

Figure 9 The modulo scheduling algorithm core

II := MII;

while not scheduled do
 InitMrrg(II);
 InitTemperature();
 InitPlaceAndRoute();

 while not scheduled do
 for each op in sorted operation list
 RipUpOp();

 for i := 1 to random_pos_to_try do
 pos := GenRandomPos();
 success := PlaceAndRouteOp(pos);

 if success then
 new_cost := ComputeCost(op);
 accepted := EvaluateNewPos();
 if accepted then
 break;
 else
 continue;
 endif
 endfor

 if not accepted then
 RestoreOp();
 else
 CommitOp();

 if get a valid schedule then
 return scheduled;
 endfor

 if run out of time budget then
 break;

 UpdateOverusePenalty();
 UpdateTemperature();

 endwhile
 II++;
endwhile

CHAPTER 3: SOURCE-LEVEL TRANSFORMATIONS

 15

Chapter 3

Source-Level Transformations

Since applications written in C language are often intended for software implementation,

their loops may not be appropriate for pipelining. Therefore, some source-level

transformations techniques are needed to prepare proper loops for mapping on the

ADRES array [4]. Generally, there are two types of transformations. One type is to

remove constraints for pipelining because a loop is pipelineable only if it meets some

strict requirements. For example, it cannot contain function calls inside the loop body

and cannot jump out in the middle of the loop body. To meet these requirements,

techniques such as function inlining have to be applied to make code pipelineable. The

other type of transformations helps to improve performance because a loop may not

produce good performance in its original form though it is pipelineable. For example, if

there are too few iterations in the loop, loop coalescing can be used to increase total

iterations by combining nested loops.

3.1 Constraint-Removing Transformations

A loop is pipelineable only if it meets the following conditions:

• The loop body does not contain control-flow unless if-conversion can be applied.

• The loop body does not contain function calls.

• The loop body does not contain exit points other than the one at the end of the

loop body.

Removing Control-flow and Early Exit : The control-flow and the multiple exit points

are partly addressed by aggressive hyperblock formation. Nonetheless, the automatic

compilation technique sometimes cannot figure out how to deal with control-flow that

requires application-specific knowledge. Figure 10 shows an IDCT (inverse discrete

cosine transform) example from the MPEG-2 decoder. The original source code is

optimized for a traditional processor. There is a piece of shortcut code that tries to

identify a special case and jump out the loop early. This piece of code is not pipelineable

on the ADRES array. Therefore, it is removed by source-level transformation.

CHAPTER 3: SOURCE-LEVEL TRANSFORMATIONS

 16

Figure 10 Transformations for an IDCT loop

Function inlining is a widely used optimization technique to reduce the overhead

associated with function calls. However, it comes at the expense of increased code size

if the inlined function is called in multiple places. Applied to the ADRES architecture, its

primary purpose is to make loop pipelining feasible because the function call is not

allowed inside a pipelineable loop. In Figure 10, the original loop includes a function

idctrow, which performs 1D-IDCT on a row of pixels. After transformation, this function is

inlined in the loop body to enable the pipelining.

3.2 Performance-Enhancing Transformations

Loop Coalescing : Currently the DRESC compiler can only pipeline the innermost loop

of a nested loop. If the outer loops contribute to a significant portion of total execution

time, or the total number of iterations of the innermost loops is too small so that the

overhead of prologue and epilogue is dominant, only pipelining the innermost loops

won't produce good performance according to Amdahl's law. One technique that helps to

solve this problem is loop coalescing. Coalescing combines a loop nest into a single loop,

with the original indices computed from the resulting single induction variable. Figure 11

describes an example. This transformation is originally developed for multiprocessor-

based parallel computing. It can effectively increase the significance of the innermost

loop though at the cost of recomputing the indices. Normally, coalescing two innermost

loops should be sufficient to form a significant innermost loop for pipelining while still

keeping the overhead low.

for (i=0; i< 8; i++)
idctrow(block + 8*i);
...
void idctrow(short *blk)
{
if (!((x1 = blk[4]<<11) | (x2 = blk[6]) |...)
 ...)
{ /*shorcut */ }

x0 = (blk[0]<<11) + 128
x8 = W7*(x4+x5);)>>8;
...
blk[6] = (x3-x2)>>8;
blk[7] = (x7-x1)>>8;
}

short block[12][64];
...
for (i=0; i< 8 * block_count ; i++){
n = i / 8; /* n is block no. */
m = i % 8; /* m is row no. */
blk = block[n] + 8 * m;

x0 = (blk[0] << 11) + 128;
x1 = blk[4] << 11;
...
blk[6] = (x3-x2)>>8;
blk[7] = (x7-x1)>>8;
}

CHAPTER 3: SOURCE-LEVEL TRANSFORMATIONS

 17

Figure 11 Example of loop coalescing

Loop Unrolling : The ADRES array is much bigger than other processor architectures.

When a loop is mapped to the ADRES array, the loop body should be big enough to

efficiently utilize the resources. Considering a loop consisting of only 10 operations,

when it is mapped to an 8x8 array the utilization is at most 15.6% (10/64) and

instruction-per-cycle is at most 10 if the loop is fully pipelined. One solution to this

problem is known as loop unrolling. Generally, loop unrolling is the process of expanding

a loop so each new iteration contains several copies of a single iteration. It also adjusts

loop termination code and eliminates redundant branch instructions. Traditionally, it is an

optimization technique that can reduce the total number of instructions executed by a

processor and can increase instruction-level parallelism. Applied to the ADRES

architecture, it also helps to increase the size of loop bodies so that pipelining is more

efficient on a big array. Figure 12 shows one example. The original loop body is very

small and cannot efficiently utilize an ADRES array. After unrolling the loop 4 times, the

loop body contains about 4 times more static operations (the number of operations in the

compiled code) than the original loop body, while the total number of dynamic operations

(the number of operations actually executed) is about the same. Both the original loop

and the transformed one can be fully pipelined to achieve 1 cycle/per iteration. Therefore

the performance is increased 4 times after loop unrolling.

for(i = 0; i < n; i++){
 for(j = 0; j < m; j++){
 a[i,j] = a[i,j] + c;
 }
 }

for (t = 0; t < n*m; t++){
i = t/m;
j = t%m;
a[i,j] = a[i,j] + c;
}

CHAPTER 3: SOURCE-LEVEL TRANSFORMATIONS

 18

Figure 12 Example of loop unrolling

Loop unrolling involves a trade-off between the loop body size and the total number of

iterations. If the loop is unrolled too many times, the total number of operations will

increase undesirably while the performance doesn't increase accordingly. A bigger loop

body requires more configuration contexts. At the same time, the total number of

iterations will shrink so that the overhead of prologue and epilogue becomes prominent.

Increasing Iterations: Loop coalescing is one way to increase the total number of

iterations in order to reduce the prologue and epilogue overhead in nested loops. In fact,

increasing the total number of iterations can be very application-specific. If the designer

understands the application better, more opportunities may be discovered to increase

total number of iterations of a loop. Figure 10 also shows one example of this

transformation applied to IDCT. The original loop is based on a basic block (8x8)

consisting of only 8 iterations. After transformation, the IDCT loop is performed on a

macroblock, which usually contains a number of basic blocks (shown as block count).

Hence, the total number of iterations increase to 8 x block count so that the prologue

and epilogue overhead is greatly reduced.

Tree Height Reduction : in a pipelined loop, the schedule length determines the total

number of pipeline stages. A higher number of pipeline stages has a negative impact on

performance due to the increased prologue and epilogue overhead. Sometimes the

schedule length can be reduced by a technique known as tree height reduction. Figure

13 describes a simple example. Before and after the transformation the tree heights are

for (i=0; i<64; i++)
{
 val = Block_Ptr[i];

 if (val>2047)
 val = 2047;

 else if (val<-2048)
 val = -2048;

 Block_Ptr[i] = val;
 sum+= val;
}

for(i = 0; i < block_count; i
+= 4){
/* inner loop is unrolled 4
times */
val1 = Block_Ptr[i];

if (val1>2047)
 val1 = 2047;
else if (val1<-2048)
 val1 = -2048;

Block_Ptr[i] = val1;
...
val4 = Block_Ptr[i+3];
if (val4>2047)
 val4 = 2047;
else if (val4<-2048)
 val4 = -2048;
Block_Ptr[i+3] = val4;
...
}

CHAPTER 3: SOURCE-LEVEL TRANSFORMATIONS

 19

7 and 3 cycles respectively. Though some algorithm was developed to automatically

perform this transformation, it can be easily done at source-level by the developer.

Figure 13 Example of tree height reduction

Reducing Memory Access: though the ADRES array has abundant computing

resources, it still has resource bottlenecks, especially related to the memory bandwidth.

Pipelining usually demands very high memory bandwidth. Consider for example an

iteration that contains 10 memory accesses (both reads and writes) and an ADRES

instance that has 2 memory ports. In this case, each iteration requires at least 5 cycles

to meet the memory bandwidth constraint. For many kernels the memory access

bandwidth can be reduced by replacing array variables with scalar ones. In normal

processors, the scalar variables are stored in the register file. If there are too many

scalar variables, they have to be spilled to the memory in which case the memory

access is not eliminated. In the ADRES architecture, the scalar variables are stored in

register files distributed throughout the array. These RFs are cheap to use and don't

introduce a resource bottleneck for memory access. Normally after transform the code,

the memory accesses decrease at the expense of an increased amount of operations.

With abundant FUs available in the ADRES array, it is worth to trade memory accesses

for more operations if the memory bandwidth is a bottleneck.

3.3 Guidelines for Source-Level Transformations

The required source-level transformations are very diverse and sometimes application-

specific. In many cases, several transformations are performed together on one loop. So

in this section are given some examples to illustrate the transformations instead of

defining formal algorithms for the transformations. While some transformations such as

function inlining and tree height reduction are good candidates for future automation, it is

very difficult to automate other transformations, especially the application-specific ones.

sum = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8

sum = ((x1 + x2) + (x3 + x4)) + ((x5 + x6) + (x7 + x8))

CHAPTER 3: SOURCE-LEVEL TRANSFORMATIONS

 20

Currently they are performed manually by the application designer. Nonetheless, it

doesn't require a lot of effort to modify a number of loops at source-level for typical

applications.

• Remove obstacles of pipelining for the candidate loop.

• Make the candidate loop significant in terms of execution time.

• Transform the candidate loop to have sufficient iterations.

• Balance resource utilization and total number of configuration contexts.

• Reduce memory access if the memory bandwidth is a bottleneck.

• Reduce total number of pipeline stages to minimize prologue/epilogue overhead.

CHAPTER 4: MPEG-4

 21

Chapter 4

MPEG-4

As it has already been said, in order to evaluate the capabilities of ADRES an MPEG-4

encoder has been chosen. This chapter tries to give a general overview of the MPEG-4

natural video coding. Some functionalities are described briefly as well as some basic

principles of the standard. Additionally the importance of each part in cycles terms is

showed. Further information of the specific parts of the MPEG-4 encoder will be

explained more accurately in following chapters.

4.1 MPEG-4 standard

ISO/IEC Standard 14496 Part 2 (MPEG-4 Visual [[9,[10]) improves on the popular

MPEG-2 standard both in terms of compression efficiency (better compression for the

same visual quality) and flexibility (enabling a much wider range of applications). It

achieves this in two main ways, by making use of more advanced compression

algorithms and by providing an extensive set of ‘tools’ for coding and manipulating digital

media. MPEG-4 Visual consists of a ‘core’ video encoder/decoder model together with a

number of additional coding tools. The core model is based on the well-known hybrid

DPCM/DCT (Differential Pulse Code Modulation/Discrete Cosine Transform) coding

model (see description section) and the basic function of the core is extended by tools

supporting (among other things) enhanced compression efficiency, reliable transmission,

coding of separate shapes or ‘objects’ in a visual scene, mesh-based compression and

animation of face or body models.

MPEG-4 Visual attempts to satisfy the requirements of a wide range of visual

communication applications through a toolkit-based approach to coding of visual

information. Some of the key features that distinguish MPEG-4 Visual from previous

visual coding standards include:

• Efficient compression of progressive and interlaced ‘natural’ video sequences

(compression of sequences of rectangular video frames). The core compression tools

are based on the ITU-T H.263 standard and can out-perform MPEG-1 and MPEG-2

video compression. Optional additional tools further improve compression efficiency.

• Coding of video objects (irregular-shaped regions of a video scene). This is a

new concept for standard-based video coding and enables (for example) independent

coding of foreground and background objects in a video scene.

CHAPTER 4: MPEG-4

 22

• Support for effective transmission over practical networks. Error resilience tools

help a decoder to recover from transmission errors and maintain a successful video

connection in an error-prone network environment and scalable coding tools can help to

support flexible transmission at a range of coded bitrates.

• Coding of still ‘texture’ (image data). This means, for example, that still images

can be coded and transmitted within the same framework as moving video sequences.

Texture coding tools may also be useful in conjunction with animation-based rendering.

• Coding of animated visual objects such as 2D and 3D polygonal meshes,

animated faces and animated human bodies.

• Coding for specialist applications such as ‘studio’ quality video. In this type of

application, visual quality is perhaps more important than high compression.

MPEG-4 Visual provides its coding functions through a combination of tools, objects and

profiles. A tool is a subset of coding functions to support a specific feature (for example,

basic video coding, interlaced video, coding object shapes, etc.). An object is a video

element (e.g. a sequence of rectangular frames, a sequence of arbitrary-shaped regions,

a still image) that is coded using one or more tools. For example, a simple video object

is coded using a limited subset of tools for rectangular video frame sequences, a core

video object is coded using tools for arbitrarily-shaped objects and so on. A profile is a

set of object types that a CODEC is expected to be capable of handling.

One of the key contributions of MPEG-4Visual is a move away from the ‘traditional’ view

of a video sequence as being merely a collection of rectangular frames of video. Instead,

MPEG-4 Visual treats a video sequence as a collection of one or more video objects.

MPEG-4 Visual defines a video object as a flexible ‘entity that a user is allowed to

access (seek, browse) and manipulate (cut and paste)’. A video object (VO) is an area of

the video scene that may occupy an arbitrarily-shaped region and may exist for an

arbitrary length of time. An instance of a VO at a particular point in time is a video object

plane (VOP).

Notwithstanding the potential flexibility offered by object-based coding, the most popular

application of MPEG-4 Visual is to encode complete frames of video. The tools required

to handle rectangular VOPs (typically complete video frames) are grouped together in

the so-called simple profiles. The basic tools are similar to those adopted by previous

video coding standards, DCT-based coding of macroblocks with motion compensated

prediction. The Simple profile is based around the well-known hybrid DPCM/DCT model

(it will be described in the description section) with some additional tools to improve

coding efficiency and transmission efficiency. Because of the widespread popularity of

Simple profile, enhanced profiles for rectangular VOPs have been developed. The input

to an MPEG-4 Visual encoder and the output of a decoder is a video sequence in 4:2:0,

4:2:2 or 4:4:4 progressive or interlaced formats.

CHAPTER 4: MPEG-4

 23

4.2 MPEG-4 encoder description

The major video coding standards released since the early 1990s have been based on

the same generic design (or model) of a video CODEC that incorporates a motion

estimation and compensation front end (sometimes described as DPCM), a transform

stage and an entropy encoder. The model is often described as a hybrid DPCM/DCT

CODEC. Any CODEC that is compatible with H.261, H.263, MPEG-1, MPEG-2, MPEG-4

Visual and H.264 has to implement a similar set of basic coding and decoding functions

(although there are many differences of detail between the standards and between

implementations). Figure 14 depicts a generic DPCM/DCT hybrid encoder. In the

encoder, video frame n (Fn) is processed to produce a coded (compressed) bitstream.

Figure 14 Encoder data flow

There are two main data flow paths in the encoder, left to right (encoding) and right to

left (reconstruction). The encoding flow is as follows:

1. An input video frame Fn is presented for encoding and is processed in units of a

macroblock (corresponding to a 16 × 16 luma region and associated chroma

samples).

2. Fn is compared with a reference frame, for example the previous encoded frame

(F’n−1). A motion estimation function finds a 16 × 16 region in F’n−1 (or a sub-

sample interpolated version of F’n−1) that ‘matches’ the current macroblock in Fn

Fn

(current)

F'n-1
(reference)

F'n
(reconstructed)

Motion

Estimate

Motion

Compensate

+

-

Coded

Bitstream

D'n

X

P

Dn difference MB D'n reconstructed difference MB

X quantized MBs P Predicted MB

Fn Current frame F'n-1 Reference frame

F'n reconstructed frame

DCT Quant Reorder

Entropy

encoder

X

IDCT Rescale

+

+

Dn

CHAPTER 4: MPEG-4

 24

(i.e. is similar according to some matching criteria). The offset between the

current macroblock position and the chosen reference region is a motion vector

(MV).

3. Based on the chosen MV, a motion compensated prediction P is generated (the

16 × 16 region selected by the motion estimator).

4. P is subtracted from the current macroblock to produce a residual or difference

macroblock D.

5. D is transformed using the DCT. Sometimes, D is split into 8 × 8 or 4 × 4 sub-

blocks and each sub-block is transformed separately.

6. Each sub-block is quantized (X).

7. The DCT coefficients of each sub-block are reordered and run-level coded.

8. Finally, the coefficients, motion vector and associated header information for

each macroblock are entropy encoded to produce the compressed bitstream.

The reconstruction data flow is as follows:

1. Each quantized macroblock X is rescaled and inverse transformed to produce a

decoded residual D’. Note that the nonreversible quantization process means

that D’ is not identical to D (i.e. distortion has been introduced).

2. The motion compensated prediction P is added to the residual D’ to produce a

reconstructed macroblock and the reconstructed macroblocks are saved to

produce reconstructed frame F’n. After encoding a complete frame, the

reconstructed frame F’n may be used as a reference frame for the next encoded

frame F’n+1

Notice that not all the frames follows this process because sometimes it is necessary to

send to the decoder all the information frame and not only de difference with the

reference frame. Frames that haven not reference frames are called INTRA frames and

the others are called INTER frames.

4.3 Code mapped

Before start changing the code it is necessary to analyze the code in order to know

where it is necessary to concentrate efforts.

Graphic 1 shows us which parts of an MPEG-4 encoder has more specific weight in

terms of cycles. Main parts are Motion Estimation block, where a 55,04% of total cycles

are spent, and Texture Coding block with 20,45%. Therefore the main optimizing effort is

spent in these 2 blocks.

Additionally Motion Compensation Block and Texture Update Block have rather

importance, 10,62% and 8,12% respectively, and for this reason are also mapped.

CHAPTER 4: MPEG-4

 25

Hence, code cycles spent in these four parts together are more than 94% of the total

amount of cycles in VLIW mode.

Graphic 1 Cycles percentages spent in different parts of MPEG-4 encoder (VLIW mode, initial

code)

10.62%

1.00%

4.57%

0.02%

55.04%
8.12%

0.19%
20.45%

Texture Coding VLC Coding
Packetize Stream Texture Update
Motion Estimation Entropy Coding
Motion Compensation Rest

CHAPTER 5: TEXTURE CODING

 26

Chapter 5

Texture Coding

5.1 Introduction

The first step of the TC function consists of choosing the block type:

• Blocktype 0: no computation is made.

• Blocktype 1: only 8 coefficients are computed.

• Blocktype 2: all 64 coefficients are calculated.

By distinguish 3 kind of blocks is possible to avoid calculating unnecessary coefficients.

Due to the Discrete Cosine Transform (DCT) a great number of coefficients are 0 or near

to 0. Finally, these coefficients can be discarded in the Quantization step.

The selection of the blocktype is carried out calculating with the Sum of Absolute

Differences (SAD). The SAD finds the similarity between two macroblocks (MB). A

greater similarity between the two matrices results in a smaller SAD value. Depending

on his level the block types are chosen. In order to do this 2 thresholds are settled: if the

SAD block is minor than the first threshold then the block is type 0 and the next steps

are skipped; if the SAD block is between the 2 thresholds then the block is type 1 and

only 8 coefficients will be computed; and if the second threshold is surpassed then the

next steps will be executed for all 64 coefficients. Therefore, all the blocks in mode

INTRA will be type 2.

Once the block type decision has been carried out, the next steps depend on the block

type. As the number of iterations is greater when a block is type 2, we focus the

optimization in this part of the code.

Figure 15 shows in general terms how Texture Coding function behaves.

As we compute all coefficients when the block is type 2, because the major number of

cycles is spent here, but in order to decrease as much as possible the cycles of Texture

Coding, the functions in mode 1 are also mapped. These are the functions mapped in

CGA:

• _DRESC_BlockDirDCTQuantH263

• _DRESC_BlockDirDequantH263IDCT

• _DRESC_DCTrows

• _DRESC_DCTcols

• _DRESC_Q_invQ

• _DRESC_IDCTcols

• _DRESC_IDCTrows

CHAPTER 5: TEXTURE CODING

 27

Figure 15 Texture Coding flowchart

To optimize the code 3 main steps are applied. In the first step, the code is modified in

order to map into CGA (remove functions calls inside the loops, merging loops…). Once

the different functions (DCT_Rows, DCT_Cols…) could be mapped, the code is adapted

to obtain better results (decrease the number of cycles). Finally the last transformation

step is to pass from block level to Macro Block level; the reason is to increase the

amount of iterations in each loop. At the end of this process the optimization of kernels

for blocks type 1 is performed.

5.2 Block Level

The original code was written in a way that the functions are inside the loop. Therefore,

first the code was changed to split the loop in different loops for the different functions,

as well to create de quantization-dequantization function (called Q_invQ).

Blocktype=0 Blocktype=1

Blocktype=2

DCT (only 1rst row

or 1rst column)

Quantization

DeQuantization

IDCT (only 1rst row

or 1rst column)

Quantized
Coefficients

Texture

Coefficients

DCT cols

Quantization

IDCT cols

DCT rows

DeQuantization

IDCT rows

Input

Blocks

Block Type Decision

CHAPTER 5: TEXTURE CODING

 28

Figure 16 Initial and final schematic block level code

The first 2 functions were basically transformed to enable the mapping in the CGA.

Therefore, the functions DCTrows and DCTcols, where a DCT is carried out first for the

rows in the block and then for the columns, remained essentially the same as in the

original code only changing the pertinent code to avoid function calls inside the loops.

These transformations results in the following scheduling characteristics

Kernel NrCycles SD II PS IPC Length

DCT_Rows 107 78,47% 9 4 12,55 34

DCT_Cols 98 76,56% 8 5 12,25 33

Table 1 Scheduling results for DCT

5.2.1 Quantization/DeQuantization function

This function has a higher complexity and many code transformations are applied. As

the quantization is different depending on mode of the Macro Block (INTER or INTRA),

there were 3 different loops in the original code: one for the INTRA blocks, one for the

INTER blocks and the other to reconstruct coefficients.

In INTRA mode, the first coefficient has a special treatment, because it is the DC

coefficient. It is quantized as follows:

scalerdc

scalerdc
in

QF _
2

_
]0][0[

]0][0[

+
=

 for (rows)
 DCTRows
 for (columns)
 {
 DCTCols
 for (rows)
 Quant/DeQuant
 IDCTCols
 }
 for (rows)
 IDCTRows

 for (rows)
 DCTRows
 for (columns)

DCTCols
 for (coefficients)
 Quant/DeQuant
 for (columns)
 IDCTCols
 for (rows)
 IDCTRows

CHAPTER 5: TEXTURE CODING

 29

Whereas the other coefficients have this other quantization:

Qp
jiin

jiQF ⋅= 2
]][[

]][[

In INTER mode all the coefficients inside the block are quantized in the same way:

Qp

jiin
jiQF

Qp

⋅
−

= 2

]][[
]][[

2

The formula to reconstruct the coefficients is as follows:










≠−⋅+⋅
≠⋅+⋅
=

=
evenisQpjiQFifQpjiQF

oddisQpjiQFifQpjiQF

jiQFif

jiF

0]][[1)1]][[2(

0]][[)1]][[2(

0]][[0

]][[

First, a function for the quantization-dequantization was created, (_DRESC_Q_invQ).

Once the function was created, there were 4 loops. The Figure 17 shows the loop

disposition.

Figure 17 DRESC_Q_invQ original schematic disposition

Therefore, to able the mapping in CGA, the technique of loop coalescing was applied.

Unfortunately the function still had 3 loops, because of the different quantization

between modes, and also the last loop to reconstruct the coefficients.

To merge the 2 modes a parameter (called QuantA) was created. It has 2 different

values depending on the mode: 0 for mode INTRA and –Qp/2 for mode INTER. In

addition, another parameter to select the sign of the quantized coefficients is created. At

this point, to merge the loops 2 possibilities were tested:

1. Calculate the 64 coefficients and in INTRA mode recalculate the DC coefficient

afterwards.

2. Calculate the first coefficient depending on the mode and choose the value of

QuantA, and then calculate the 63 remaining coefficients.

Finally it’s easy to put the code to reconstruct the coefficients at the end of the loop.

for (rows)

 for (columns)
 INTRA_Quantization
 for (columns)
 INTER_Quantization
 for (columns)

 Dequantization

CHAPTER 5: TEXTURE CODING

 30

Graphic 2 Q_invQ implementation results

Graphic 2 shows the different results. First results are so worst because of a high

dependency with the variable CBF. CBF indicates in which columns must be applied the

IDCT, by setting to one the correspondent bit per column. As the code was changed this

shift operation was removed and the number of cycles decreased dramatically.

The graph also shows that the first option (to calculate all the coefficients and then

recalculate DC if block is mode INTRA) was worse than the second. Apparently this is

logical because in this option the first coefficient is evaluated twice.

There is the possibility to unroll the loop in the first option, to try to decrease the CGA

Cycles, unfortunately this option was tried but the CGA couldn’t map, because of the

architecture resources.

The Table 2 shows the scheduling results for the 2 options tested.

Kernel

Option
NrCycles SD II PS IPC Length

1st Option 228 85,42% 3 11 13,67 36

2n Option 222 77,08% 3 11 12,33 29

Table 2 Scheduling results for different Q_invQ options

 538

222 228

0

100

200

300

400

500

600

Different implementations

N
u
m
b
e
r
 o
f
C
G
A
C
y
c
le
s

With Shift CBF

Block Level 1 - 64

Block Level 0 - 64

CHAPTER 5: TEXTURE CODING

 31

5.2.2 IDCT_cols function

This function already existed in the original code but there was a function call inside. So

the first step is to put the main loop inside the function and change the function call by

pasting the function code. Then some if statements that only adds overhead were

removed.

At this point 2 options were tested:

1. Maintaining if CBF conditions.

2. Removing if CBF conditions.

CBF was used to know if the IDCT has to be applied in the block or not, on one hand the

amount of iterations was reduced, but on the other hand this added more dependencies

that means more cycles.

With the CBF condition it was possible to skip a block and only the IDCT is applied if the

MB is mode INTRA.

The number of CGA cycles is the same for the 2 options because if statements are

outside the loop, but the total cycles are different in the options. Whereas for with if

conditions the number of cycles are 262.806 that means an average of 92,43

cycles/block without this conditions the total number of cycles is 292.562 an the average

is 104 cycles/block.

Kernel NrCycles SD II PS IPC Length

IDCT_cols 88 79,46% 7 5 12,71 31

Table 3 IDCT_cols scheduling results

5.2.3 IDCT_rows function

Like in the other functions there was a function call inside the loop that was removed and

replaced for code. Then 2 options were tested as there was also the clipping inside the

same loop, it was tested the possibility to split the loop in 2 loops (one for the IDCT and

the other for the clipping) but finally the results were worst if the loop was split.

shows the scheduling characteristics for these 2 options:

Kernel Option NrCycles SD II PS IPC Length

1IDCT+CLIP 122 82,39% 11 3 13,18 33

IDCT 99 72,92% 9 3 11,66 27

CLIP 68 69,79% 6 4 11,16 20

CHAPTER 5: TEXTURE CODING

 32

Total CLIP + IDCT 167

Table 4 IDCT_rows scheduling results

5.3 MacroBlock Level

The idea of going to MacroBlock level is to increase the amount of iterations to reduce

the “length effect” that means a decrease in the number of cycles.

In the original code, the TextureCoding function was running inside a loop for each

block. Therefore the function was called 6 times in a MB and each time the function went

over rows, columns... The transformation consisted in coalescing the main loop with the

smaller function loops (Figure 18).

However the different block types were an issue. The solution consisted in create 3

arrays (for each type of block) where the number of block in the MB was stored in order

to compute the correct number of coefficients for each block. Then the coalescing

technique was applied.

Figure 18 Schematic code in block and macroblock level

Another problem was that in MB level there were more reads at memory than in the

block level because it is necessary to store the data in buffers between the different

functions. Initially the data was written in the correct position in the MB and then it was

changed by writing in consecutive form, and only wrote correctly the TC outputs

(Quantized coefficients and reconstructed coefficients), but not the intermediate buffers

employed. In this way the total number of reads at memory decreases.

for (blocks)
 ModeDecision;

 for (blocksmode2 in MB)
 DCTrows;
 for (blocksmode2 in MB)

 DCTcols;
 for (blocksmode2 in MB)

 Quantization;
 for (blocksmode2 in MB)

 IDCTcols;
 for (blocksmode2 in MB)
 IDCTrows;

 for (rows)
 DCTRows
 for (columns)

DCTCols
 for (coefficients)

 Quant/DeQuant
 for (columns)

 IDCTCols
 for (rows)
 IDCTRows

CHAPTER 5: TEXTURE CODING

 33

Figure 19 Changes in memory accesses

Where mode2[k] is the array which indicates block position in MB and i and j are used to

access the different coefficients. What this means is that firstly the outputs were in the

correct way but then it was changed to write consecutively.

Another way was tried but with worst results. To carry out the DCT and IDCT (over rows

and columns), it is necessary to compute 8 coefficients in each iteration, that means 8

reads to the memory. To avoid this, instead of reading 8 times 16 bits (short type), the

memory was read 4 times as integer type (32 bits) and then make shifts to store the

correct value in the scalar variables. In this way the code had 10 cycles more per block.

Figure 20 Different options to read from the memory: short type (left) or integer type (right)

Where In is a pointer, X1...X7 are short scalars and In0...In3 are integer scalars.

There was another issue with CBF condition. A buffer was needed to store the value of

CBF for each block; as a result of this the number of reads at memory was high.

DCT_Rows tested
NrCycles

average1
SD II PS IPC Length

Changing buffer 82,79 76,56% 8 7 12,25 43

Normal read/write 101,36 82,5% 10 5 13,2 49

Table 5 Scheduling results for different options to read at memory

1 Cycles average depends on the number of blocks type 2 in a MB. All statistics are taken with a 300

frames qcif foreman sequence.

 In=errorMB[mode2[j]] + 8*i;
 X6 = In[0];
 X1 = In[1];
 X3 = In[2];
 X8 = In[3];
 X4 = In[4];
 X5 = In[5];
 X2 = In[6];
 X7 = In[7];

In=errorMB[mode2[j]] + 8*i;
In0 = *(int*) (in);
In1 = *(int*) (in+2);
In2 = *(int*) (in+4);
In3 = *(int*) (in+6);
X6 = (short) (in0);
X1 = (short) (in0 >> 16);
X3 = (short) (in1);
X8 = (short) (in1 >> 16);
X4 = (short) (in2);
X5 = (short) (in2 >> 16);
X2 = (short) (in3);
X7 = (short) (in3 >> 16);

Input=inputMB[mode2[k]];

Output=outputMB[mode2[k]];

Input=inputMB[mode2[k]] + 8*i;

Output=outputMB[j] +i;

CHAPTER 5: TEXTURE CODING

 34

There are 2 things which are necessary to indicate. Firstly the number of cycles is an

average because sometimes the number of iterations in the function is different. This is

due to the different number of blocks in mode 2 in the MB. The second thing is that the II

is reduced from 10 to 8, and in the block level it was 9. Therefore, this is an important

point to be considered in future. In DCT_cols function happens the same. The reduction

of load/store at memory allows to decrease the II and of course the number of cycles.

NrCycles

average
SD II PS IPC Length

DCT_cols 79,80 73,44% 8 5 11.75 36

Table 6 Scheduling results for DCT_Cols in MB level

In Quantization/DeQuantization function, the problematic with accessing to the memory

was more visible because of the number of iterations is higher, 64*Nrblocks instead of

8*Nrblocks, in the other functions.

The clipping in this function and in IDCT_Rows functions, are different from the available

intrinsic clipping functions. Therefore a new function was created. The reason is that the

previously created intrinsic functions make the clipping as follows:

MaxvalValue

MaxvalValueMaxVal

≤≤
≤≤−

0

Whereas in the code has to be:

MaxvalValue

MaxvalValueMaxVal

≤≤
≤≤−−

1

1

Once the function was mapped in MB level some transformations were made. Firstly the

order of calculations is reverted to 1rst option, that means to calculate the 64 coefficients

for all blocks and then, if it was necessary, the DC coefficients for INTRA mode blocks.

Therefore there are 2 loops in the function. It wasn’t necessary another loop to know the

value of parameter QuantA because all blocks in the same MB are in the same mode.

As it was necessary to write the quantized coefficients in the correct block, the pass of

mode2 array, which indicates the position, was a ballast to decrease the cycles. In

addition, the CBF parameter is transformed to an array, which means more accesses to

the memory and more cycles.

Finally with the use of intrinsics the number of cycles decreased but not enough to reach

the block level results.

CHAPTER 5: TEXTURE CODING

 35

Graphic 3 Q_invQ Implementations in MB Level

Quantization

using intrinsics

NrCycles

average
SD II PS IPC Length

64 loop 265,79 75% 4 8 12 30

DC coeff loop 1,26 65,62% 2 12 10,5 23

Total 267,06

Table 7 Q_invQ scheduling results in Mb level

In the IDCT_Cols function the effect of changing the way to access at memory was so

important and the number of iterations decreased dramatically. To carry out these

accesses, the if CBF conditions were removed. This couldn’t be possible in the

IDCT_Rows function.

IDCT_Cols
NrCycles

average
SD II PS IPC Length

With CBF

conditions
100 64,77% 11 4 10,36

Changing

reads/writes
65,08 86,46% 6 7 13,83 39

Table 8 Different scheduling results for IDCT_Cols in MB level

In IDCT_Rows function it wasn’t possible to avoid the CBF condition outside the function.

In order to know which blocks have to be computed it was created another loop before

the function. In this loop was stored the position of the block in a new array if the CBF of

 281

267

271
269

260

265

270

275

280

285

C
G

A
 C

yc
le

s
av

er
ag

e
pe

r
bl

oc
k

Calculate 1rst DC
coeff

Calculate DC
afterwards

Changes how
read/write

Use intrinsics

CHAPTER 5: TEXTURE CODING

 36

this block was 1. This is the reason because it wasn’t possible to decrease so much the

number of cycles, as the input needs to know the position of block and the output must

be correct.

NrCycles

average
SD II PS IPC Length

IDCT_Rows 86,86 84,38% 8 6 13,5 45

Table 9 IDCT_Rows scheduling results obtained in MB level

5.4 Block Type 1

Although in this mode there are only 2 functions to map in the CGA (BlockDirDCT-

QuantH263 and BlockDirDequantH263IDCT), inside of this functions there were several

loops. These 2 functions make all the computation for 8 coefficients. The first function

choose in which direction has to make the computation (compares adds of rows versus

columns and the highest is chosen), and then makes DCT for this 8 coefficients and the

quantization. The second function makes inverse process. Firstly makes the

dequantization, then the IDCT and finally stores the results.

To be able the mapping in CGA some transformations in the code were made. Firstly

splitting the main loop and pasting the function code inside. Then, the coalescing of

loops and some variable transformations (in order to maintain the code functionality and

to avoid some unnecessary accesses at memory) were made. Finally the clipping

intrinsic function was added.

BlockDirDCTQuantH263
NrCycles

average
SD II PS IPC Length

Adding Rows & Cols 95,64 83,04% 7 5 13,28 32

Tmp_DC 78,29 82,81% 4 6 13,25 23

Choosing direction 48,51 59,34% 4 8 9,5 30

DCT 53,32 71,63% 13 4 11,46 43

Quantization 45,26 57,81% 4 7 9,25 27

Table 10 BlockDirDCTQuantH263 scheduling results

CHAPTER 5: TEXTURE CODING

 37

BlockDirDequantH263IDCT
NrCycles

average
SD II PS IPC Length

Dequantization 62,93 75% 3 12 12 36

IDCT 21,26 78,13% 2 13 12,5 27

Write coefficients 73,45 83,33% 6 6 13,33 36

Table 11 BlockDirDequantH263IDCT scheduling results

5.5 Comparison between block and MB levels

As the graphic shows in all functions, except in Quantization, the results were better

because of the major number of iterations.

Graphic 4 CGA Cycles comparison between block and MB levels

Block

Level

Final

Implementation

Cycles / frame 401.019 326.590

Cycles / block average 675,11 549,81

Kernel Cycles / block average blocktype = 2 587,41 544,58

Kernel Cycles / block (worst case) blocktype = 2 637 648

Kernel Cycles / block average 587,41 425,33

Table 12 Block and MB level statistics (Q_invQ in block level)

98 88
122

267

222

107
79.81

65.1
86.6382.8

0

50

100

150

200

250

300

DCT_r
ow

s

DCT_c
ols

Q_in
vQ

ID
CT_c

ols

ID
CT_r

ow
s

C
G

A
 C

yc
le

s
pe

r
bl

oc
k

Block Level

MB Level

CHAPTER 5: TEXTURE CODING

 38

The graphic show us that results are better when the code is implemented in a MB level,

in spite of the Q_invQ function, where the CGA cycles in MB level couldn’t be reach the

block level because of the major number of accesses at memory that is translated in a

major II. For this reason in the final implementation in Q_invQ function is only mapped

the inner loop (64 iterations).

Table 12 shows a comparison between the block level implementation and the final

implementation. The final code decreases in 19% the total number of cycles, therefore it

is worth to increase the number of iterations in the loops in spite of some operations that

is necessary to add. Next graph (Graphic 5) shows a comparison between the initial

code in VLIW mode, the final code in VLIW mode, and the final code mapped in CGA for

3 different sequences2. As it was expected cycles decrease dramatically by mapping

into CGA (70%).

Graphic 5 CGA mode and VLIW mode results

Here follows a simple calculation of the max number of cycles required to be able to

have HDTV Texture Coding operating real time on a single ADRES:

• HDTV resolution = 1.280 * 720

• HDTV framerate = 30 fps

• MPEG-4 input = YUV 4:2:0

• MacroBlock size = 16*16

• Blocks per Macroblock (YUV) = 6

• ADRES clock = 300 MHz = 300 M cycles/s

2 Results obtained with 4cif crew sequence are wrong, see Conclusions chapter to see details.

24417

11220

4270 37543298

0

5000

10000

15000

20000

25000

30000

C
yc

le
s/

M
B

Initial VLIW mode Final VLIW mode

qcif foreman cif mobile

4cif crew

CHAPTER 5: TEXTURE CODING

 39

• Pixels per frame = 1.280*720 = 921.600

• MBs per frame = 921.600 / 256 = 3.600

• Blocks per frame = 3.600 * 6 = 21.600

• Blocks per second = 21.600 * 30 = 648.000

• Cycles per block = 300.000.000/648.000 = 463

The necessary clock-speed required for a single ADRES given the current number of

cycles:

• Current number of cycles per block = 549,81

• Current number Texture Coding cycles per second = 549,81 * 648.000 =

 = 356.276.880 = 356,27 MHz

Therefore to implement the texture coding block taking into account that is necessary to

implement the others blocks the clock-speed necessary will be 356,27 MHz.

CHAPTER 6: MOTION ESTIMATION

 40

Chapter 6

Motion Estimation

Due to the large amount of cycles that are involving this block of the MPEG-4 encoder

(55% of total encoder cycles), it is important to optimize properly this part. Furthermore

Motion Estimation (ME) is one of the most power-consuming components of any

predictive video codec.

The goal of ME is to find a 16 × 16-sample region (a MB) in a reference frame that

closely matches the current macroblock. The reference frame is a previously encoded

frame from the sequence and may be before or after the current frame in display order.

An area in the reference frame centered on the current macroblock position (the search

area) is searched and the 16 × 16 region within the search area that minimizes a

matching criterion is chosen as the ‘best match’. The information of the ‘best match’

called Motion Vector (MV) is then transmitted to the Motion Compensation (MC) block as

2 components: horizontal and vertical. A MV can be expressed in integer or half-pixel

accuracy.

The chapter is organized as follows: first a brief introduction of the ME applied algorithm

is given. Then the next sections contain the different transformations for each part of the

block and the statistics of each loop. At the end some general statistics for al the ME

block are presented.

6.1 Motion Estimation description process

A large number of ME algorithms have already exploited the statistical properties of MVs

distribution to achieve very good performances in terms of computational complexity

reduction. The number of searched locations has been sharply reduced in comparison

with the Full Search algorithms, while preserving the performance [12]. The algorithm

follows the basic rules of these others algorithms:

• The algorithm should exploit the spatial correlation of MVs within a frame. Often,

this is done through the prediction of the search starting point. It could also be

used to adapt the search parameters, e.g., the size of the search pattern.

• To exploit the MVs’ center-biased distribution, the checking points should be

chosen on a pattern that is compact around the initial and central position.

CHAPTER 6: MOTION ESTIMATION

 41

• For faster convergence toward an optimum, the checking points should be

chosen adaptively, in the direction of an improvement of the matching criterion

gradient descent algorithms).

• Finally, the search should stop as soon as possible, i.e., once the matching

criterion is good enough (typically, below some threshold). Making it unnecessary

to investigate all the positions of a pre-defined pattern.

The algorithm only operates on Y-inter MBs, as in intra MBs the MC is not needed.

Instead, if the MB is coded as mode intra (see Texture Coding chapter) only the

calculation of the Sum of Absolute Differences (SAD), which in this case is the sum of

the pixel values as there is not reference, is performed.

The algorithm starts to operate calculating the SAD from the current MB, which is

predicted from the neighboring MB MVs. Then check if this SAD, and make the same

with other SADs if it is the case, is below a certain threshold. If it is not the case, it

continues calculating and checking the neighboring SADs.

Figure 21 Different search zones. Darkest are search first

If there is not SAD that reaches the minimum threshold, the minimum SAD calculated

previously is chosen as the new center. When the minimum SAD is improved on a

square that position is used to predict the optimal position (center) in the next square.

Actually, the predicted position is the one pointed by the vector originated in the center

of the search and passing through the last optimal position. The predicted position leads

to the search strategy depicted on Figure 22 Checking points process. Only the neighbors

of the predicted position are investigated before going to the next square. The search is

stopped as soon as there is not further improvement or the threshold is reached.

 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

(0,0)

PREDICTION

CHAPTER 6: MOTION ESTIMATION

 42

Figure 22 Checking points process.

When this process is finished de mode decision is performed: if the SAD of the best MB

is below the mean absolute value difference of the current MB, it will be encoded as an

inter MB, otherwise it will be coded as an intra MB.

Finally if the SAD found is bigger than another threshold, it is necessary to perform the

Half Pixel ME, which basically consists on:

• Calculate the interpolate pixel values (8 values per current pixel).

• Calculate the 8 SADs of these half pixels MBs.

• Choose the best option between this 8 options and the current pixel (see

optimizations in half pixel).

6.2 Code transformations

In ME the use of intrinsics become to be more relevant. Intriniscs allow taking advantage

of working with integer types (4 bytes) instead of short types (1 byte) or unsigned char

types (1 byte), with the correspondence gain of cycles. These are the intrinsics

implemented in the ME:

• Innersum4: calculates the sum of the 4 bytes in a 32-bit integer.

• Subabs4: calculates the absolute difference of each corresponding byte from two

32-bit integers.

• Pack2: stores two 16-bit values in a 32-bit integer

• Spacku4: saturates the Low Significant Byte (LSB) and Most Significant Byte

(MSB) parts of two 32-bit integers into 8-bit unsigned integers, and packs the

results into a 32-bit integer.

• Avgu4: calculates the average of each corresponding byte from 32-bit integers.

 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

CHAPTER 6: MOTION ESTIMATION

 43

6.2.1 Calculate INTER – MB SAD

As the name of the function says, this function calculates the SAD of an INTER MB. The

process is easy. Consists on making the subtraction from the pixels of 2 MBs, one pixel

of the current frame and the other of the reference frame, and adding the absolute value

of this difference.

The transformations (Figure 23) consist on coalescing the loops to go over columns and

over rows, and changing the normal 8-bit operations for the 32-bit operations with the

intrinsics: Subabs4 to perform the absolute subtraction of 4 bit and Innersum4 to add

these absolute differences in one integer.

After this initial transformation, the loop is unrolled to decrease cycles, as the initial

Scheduling Density (SD) was not to much high (71,88%).

In order to read from the frames (memories), 8 integers pointers are created (because

the loop is unrolled). It is also possible to use integers instead of pointers but there is not

cycling difference between the 2 options. Another possibility could be to create just 2

pointers (one per frame) and increment the pointers. This option was already tested and

as a result the number of cycles was increased (4 cycles only). Nevertheless with this

option the result are better in the INTRA-MB SAD.

Figure 23 Code transformations in INTER-MB SAD

Kernel NrCycles SD II PS IPC Length

INTER-MB SAD 70 75,00% 3 7 12 21

Table 13 INTER-MB SAD schedule results

 for (rows in MB)
 for (columns in MB)
 SAD+= abs(RecYframe - NewYframe)

for (rows in MB)
 SAD+= Innersum4(Subabs4(RecYframe - NewYframe)

CHAPTER 6: MOTION ESTIMATION

 44

6.2.2 Calculate INTRA – MB SAD

The difference between an intra-MB SAD and an inter-MB SAD is that in intra-MB there

is not reference frame. This means that is not necessary to subtract the pixels as the

reference is 0. The Figure 24 and Table 14 show the transformations made and the

results obtained.

Figure 24 Code transformations in INTRA-MB SAD

Kernel NrCycles SD II PS IPC Length

INTRA-MB

SAD
54 75,00% 2 11 12 21

Table 14 INTRA-MB SAD schedule results

6.2.3 Choose Mode

This function is used to choose the mode (inter or intra) that the MB will be codified. The

selection of the mode is performed by comparing the SAD of the MB with the absolute

difference between the mean of the MB and each pixel. If the SAD is below this

difference the MB will be encoded as inter MB.

 for (rows in MB)
 for (columns in MB)
 SAD+= NewYframe

for (rows in MB)
 SAD+= Innersum4 (NewYframe)

CHAPTER 6: MOTION ESTIMATION

 45

Figure 25 Code transformations in ChooseMode function

Notice that as shows the calculations are only performed if the MB SAD reaches a

threshold (512). This if condition is changed by 2 if conditions (one per each loop). The if

condition produces an influence between the loops. This influence consists on if both

loops are unrolled it is not possible that the loops reach the lower number of cycles

obtained when only one is unrolled.

Kernel NrCycles SD II PS IPC Length

Calculate_Mean 51 68,75% 2 9 11 18

Difference 54 76,56% 2 13 13 22

Table 15 ChooseMode schedule results

 if min_SAD> 512
 {for (rows)
 for (columns)
 Calculate_MB_mean

 for (rows)
 for (columns)
 Activity = Element – MB_mean

 ChooseMode depending on the Activity
 }

if min_SAD> 512
{
 for (columns)

 Calculate_MB_mean (InnerSum4)
 }

if min_SAD> 512
 { for (columns)
 Activity = Innersum4(Subabs4(Element - MB_mea n)

 ChooseMode depending on the Activity
 }

CHAPTER 6: MOTION ESTIMATION

 46

6.2.4 Full – Pixel Motion Estimation

In the Full-Pixel Motion Estimation the original algorithm is changed in order to increase

the number of iteration in the first “spiral” loop. In the first “spiral” the calculation of the

different SADs is performed until the threshold is reached, which is not so common. This

condition is eliminated to unroll the loop and calculate all 9 SADs together. In addition to

make the loop more regular (without if conditions) the original loop is divided. Therefore

there are 2 loops: the first to calculate the 9 SADs and second, with several if statements

to set and store some parameters for next searches. The Figure 1 depicts schematically

the transformations in the first spiral. This second loop can not be mapped in the CGA

because it’s really irregular.

Figure 26 Code transformations in Full-Pel ME

Applying this changes the number of cycles spending in the first spiral pass from 1167 to

603 cycles (almost decrease a 50%).

Kernel NrCycles SD II PS IPC Length

First Spiral 421 67,71% 6 5 10,83 27

Table 16 Scheduling results for Full-Pel ME

6.2.5 Half – Pixel Motion Estimation

As already said in the ME description process section, after the Full-Pixel ME is

performed, if the mode MB is inter, the Half-Pixel ME is performed. The goal of Half-

Pixel ME is to find a better match for the current MB by calculating the interpolated

samples.

The process consists on calculate the 8 SADs from the 8 neighbors of the best match

found in the Full-Pixel ME, and check if one of these is better than the current pixel. In

order to calculate the SADs it is necessary to interpolate all the values from the MB.

Figure 27 depicts the different kinds of interpolated values.

for (MB+Neighbours)
 if (!goodEnough)
 Calculate_MB_SAD
 if (MB && SAD<Threshold)
 goodEnough = True
 ...

for ((rowsXcolumns)/4)
 Calculate_MB_SAD1
 ... (use of
 intrinsics)
 Calculate_MB_SAD9
for (MB+Neighbours)
 ...
Choose_best_SAD

CHAPTER 6: MOTION ESTIMATION

 47

Figure 27 Half-pixel types

In the initial code the calculation of both interpolation values and SAD of MB were made

in the same, which also was inside another loop (to go over the 8 half-pixel neighbors).

In the final implementation 2 different loops are used. In the first loop the interpolated

values are calculated (using intrinsics, details in appendix A) and stored. In the second

loop all 8 SADs are calculated (also with intrinsics). The reason is to take advantage of

the intrinsics (decrease the total number of iterations), avoid recalculating the

interpolation values and the possibility to calculate the 8 half-pixel SADs in the same

loop (unrolling the loop). In addition another small loop is created in order to choose the

minimum SAD.

 where start of the current MB
Full Pixel
Half-pixel corner interpolated values
Half-pixel right/left interpolated values

Half-pixel up/down interpolated values

is the average of the 4 surrounding full-pixels

is the average of the above and below
surrounding full-pixels

is the average of the left and right surrounding
full-pixels

CHAPTER 6: MOTION ESTIMATION

 48

Figure 28 Code transformations in Half-Pel ME

Another two options were tested with worst results (Graphic 6). These options consist on

calculate the vertical and horizontal interpolated values from the reference frame

(memory) and then the 4 surrounded half-pixels by making the interpolation from the

previous half-pixels. The reason to try these options was to avoid to accesses to the

memory. Unfortunately to perform these implementations, it is necessary to increase the

number of conditions inside the loop or to create several loops.

Figure 29 Scheme of interpolation value using previous calculated values

01 02
 x1 x2
03 x3 04

tmp1 = (O3 + O4);
x1 = tmp1 / 2;
tmp2 = (O2 + O4);
x2 = (tmp1 + tmp2)/2;
x3 = tmp2 / 2;

for (k=0; k<17x20 ;k+=4)
 interH (2 values)
 interV (2 values)
 interVH (4 values)
for (k=0; k<16x16; k+=4)
 (int) NewFrame
 (int) Interpolated0
 …
 (int) Interpolated7
 sad0 += Innersum4(Subabs4(interpolate0,Newfra me))
 …
 sad7 += Innersum4(Subabs4(interpolate7,Newfra me))

1 more loop to choose the lowest sad

for (0 to 8 neighbors)
 for (rows in MB)
 for(columns in MB)
 Calculate_interpolated (4 values)
 differ = interpolated – NewFrame
 sad+=differ

CHAPTER 6: MOTION ESTIMATION

 49

Graphic 6 Total cycles in Half-Pel ME for different option tested.

Table 17 shows the scheduling results for Half-Pel ME with the final implementation. The

final loop for choosing the minimum SAD has not a high

Kernel NrCycles SD II PS IPC Length

Interpol_values 626 73,21% 7 5 11,7143 30

Calc_SADs 346 67,50% 5 5 10,5 25

Choose_min_SAD 37 33,33% 3 4 5,33 12

Table 17 Half-Pel ME schedule results

6.3 General statistics

Graphic 2 shows a comparison between the initial code in VLIW mode, the final code in

VLIW mode, and the final code mapped in CGA for 3 different sequences. Final code in

VLIW mode has 77,89% less cycles than the initial code. Notice that there are big

differences depending on the sequences tested. E.g. the ME block of the mobile cif

sequence requires 24,9% more cycles than foreman qcif sequence. The reason is that

the mobile sequence has a lot of motion in background and the algorithm needs more

cycles to find the correct MB.

8724

3169
3098

970

0

2000

4000

6000

8000

10000

Code Implementations

C
yc

le
s

pe
r

M
B

Initial code If statements
Different loops Final code

CHAPTER 6: MOTION ESTIMATION

 50

Graphic 7 ME comparison between different sequences and CGA/VLIW modes

As in the previous chapter, to have some means of comparison, here follows a simple

calculation of the maximum number of cycles required to be able to have HDTV Motion

Estimation operating realtime on a single ADRES:

• Cycles per MB = 300.000.000 / 108.000 = 2.778

• Current number of ME cycles per MB = 3.510

The necessary clock-speed required for a single ADRES given the current number of

cycles:

• Number of ME cycles per second = 3510 * 108.000 = 379,08 MHz

Therefore to implement the motion estimation block in a single ADRES, the necessary

clock will be 689,09 MHz.

65723

14530

3603
4799 4251

0

10000

20000

30000

40000

50000

60000

70000

C
yc

le
s/

M
B

Initial VLIW mode Final VLIW mode

qcif foreman cif mobile

4cif crew

CHAPTER 7: TEXTURE UPDATE

 51

Chapter 7

Texture Update

Texture Update block represents de 8,12% of the total code in VLIW. In this block the

MBs from the Texture Coding block are added with the MB coming from the Motion

Compensation block, in order to create the MBs that will make the reference frames.

Unfortunately it is not so easy because there are different kinds of blocks, which mean

different codifications. This chapter starts with the description of the initial code and

follows in next sections with different options tested, giving only scheduling details for

the final implemented code.

7.1 Initial code

In the initial code the texture update block operates in a block level, because each one

of the 6 blocks in a MB (4Y and 2UV), can have a different kind of codification. In order

to know which kind of block is coded, a parameter called TextureUpdateMode is passed

to the block. This parameter comes from the Texture Coding block and its value

depends on how the block is coded there:

• TextureUpdateMode=0 � Motion vectors are 0 and the block is skipped (no

quantization perform, see chapter 5).

• TextureUpdateMode=1 � Motion vectors are not 0 and the block is skipped.

• TextureUpdateMode=2 � Only the first row it is codified.

• TextureUpdateMode=3 � Only the first column it is codified.

• TextureUpdateMode=4 � The block is mode INTER and all the coefficients are

computed.

• TextureUpdateMode=5 � The block is mode INTRA but is not coded, only the

DC coefficient.

• TextureUpdateMode=6 � The block is mode INTRA and all the coefficients are

codified.

The consequence of the different block types is that to perform the block (that will

construct the future reference frames), it has to be chosen the correct values from the

reconstructed MBs (from Texture Coding block) and, if it is necessary, with the MB

values that come from the Motion Compensation block.

The Figure 30 shows the schematic initial code of Texture Update section.

CHAPTER 7: TEXTURE UPDATE

 52

Figure 30 Schematic initial code in Texture Update block

7.2 Final code

With the experience acquired in previous sections I tried to:

• Make one big loop in order to take advantage of increasing the total number of

iterations to map in the CGA. As there are 6 blocks in the initial code (even

coalescing the loops over rows and columns), the initial code only maps the inner

loop (64 iterations). Indeed it is the same than in the Texture Coding block (pass

the function in a MB level).

• Remove if statements: in order to make more regular the loop and reduce the II,

to reduce the cycles.

It is difficult to apply this 2 points at the same time, because the dependencies are not in

a MB level (e.g. in the Quantization/invQuantization in Texture Coding block there are 2

different quantization depending on the MB mode). Therefore the selection of the

different adds must be done before the loop.

It is easy to see in the code that:

• If the blocks are type 0 or 1 no information from the Texture Coding block has to

be added.

• If the blocks are type 5 or 6 no information from the Motion Compensation block

has to be added.

To avoid if statements and to avoid to add extra information, 2 new pointer arrays (of

size 6 i.e. 6 blocks), one empty block (only 0s inside) and block to store the DC

coefficient are created. The purpose of the pointers is that before the loop, and

depending on the block type, they point to the block information (from MC or TC) or if it

is a mode which does not need that information block they point to the 0s block. Figure

31 shows schematically this process. There are more issues but this is basically the

process.

for (blocks in MB)
 if blockY
 for (rows)
 for (cols)
 code recYframe depending on te xtureUpdateMode
 if blockUV
 for (rows)
 for (cols)
 code recUVframe depending on t extureUpdateMode

4 if conditions inside the loops

CHAPTER 7: TEXTURE UPDATE

 53

Figure 31 Schematic blocktype selection process

Aside from the pointers, some new variables are created to read in the correct order the

values from the information blocks. For example, once we know that it’s necessary to

read the block from TC, it is necessary to know if we need to read the entire block or just

the first column or first row (modes 3 and 2). For this reason there are new if conditions

outside the loops. Although they have rather influence in total amount of Texture Update

cycles (about the 33% of cycles are spent outside the loops), the results are still better

than other options.

Once this code works properly next step is to reduce the amount of iterations by

applying intrinsics that means other issues. There are several intrinsic operation to carry

out the Texture Update with intrinsics, also depending on the mode it is possible to it

with less intrinsics operations, but this means to add if statements. At the end it was not

possible to use the same intrinsic code for all the block types and for the type 3 it is

necessary to add if statements, but even with this drawback the results obtained are

better (see for comparisons between different codes).

The shows the code (schematically) from the main loop. Aside from this loop 3 more

loops are created: one (already explained) to select the where the pointers has to point

depending on the block type, another loop is just to full of zeros the 0s_block. The third

loop is created to fill the DC coefficients in case the block is type 5. This is performed in

a separate loop because if it was made in the pointers loop the results would be wrong

in CGA mode (read-store values in same iteration).

*Point1[blocks in MB];
*Point2[blocks in MB];

for (i=0:blocks in MB)
 Point1[i] = &zero_block[0];
 Point2[i] = &zero_block[0];

 if (textureUpdateMode < 5)
 Point1[i] = &MCblock[i][0];

 if (textureUpdateMode > 1)

 Point2[i] = &TCblock[i][0];

CHAPTER 7: TEXTURE UPDATE

 54

Figure 32 Main loop in Texture Update

The Table 18 shows the final scheduling results. Notice that the II of the main loop is 20,

which is a high number; on the other hand there are only 16 iterations. This II could be

reduced if it was possible to remove if conditions inside the loop. This option was already

tested and the II was 16, which mean a reduction of 64 cycles per MB. For specific

intrinsics code see appendix A.

Kernel NrCycles SD II PS IPC Length

Array0s 47 43,75% 5 2 7 6

Mode

parameters
27 71,88% 2 7 11,5 14

Fill mode5 32 40,63% 2 10 6,5 19

Main loop 361 76,56% 20 2 12,25 40

Table 18 Scheduling results for Texture Update block

Graphic 8 shows the different options tested during the progress to the best option. The

first option is just the initial code coalescing the row-columns loops. The second option

corresponds to the initial code but also coalescing the outside loop that is going over the

different blocks. Indeed it means to pass from the block level to a MB level, increasing

the iterations from 64 to 384. Here it is possible to appreciate the same problem than in

the quantization function in TC (see the Texture Coding chapter), because the

for (k=0 to MBvalues; k+=4)
read *(int*)&point1[0][blocktype_params];
read *(int*)&point2[0][blocktype_params];
read *(int*)&point2[0][blocktype_params];

if UpdateMode[0]=3
 Calculate RefFramevalues IntrinsicsMode3
else
 Calculate RefFramevalues Intrinsics
 …

read *(int*)&point1[5][blocktype_params];
read *(int*)&point2[5][blocktype_params];
read *(int*)&point2[5][blocktype_params];

if UpdateMode[5]=3
 Calculate RefFramevalues IntrinsicsMode_3
else
 Calculate RefFramevalues Intrinsics

CHAPTER 7: TEXTURE UPDATE

 55

architecture doesn’t have enough resources to maintain the same II than in less

iterations (ResMII).

Graphic 8 Comparison between different options tested

The result of next option (unroll ifs in the graph) corresponds at the original code (all ifs

statements inside loop) but unrolling the loop 6 times. It means that all 6 blocks in the

MB are updated together.

The next option consists on avoiding the if statements, by creating pointers and the Zero

array. Finally, there is the final code with the application of intrinsic functions.

It has to be noticed the option of “splitting loops”. In this option the code is implemented

in different loops depending on the block type. In this way it is no possible to unroll the

loop to perform the 6 blocks together but on the other hand there are not if statements

inside loops mapped in the CGA and it takes profit to the intrinsic functions.

7.3 General statistics

The total amount of cycles per MB spent in the Texture Update block, adding the

different loops and the control code is 704 for a foreman qcif sequence, 703 for a mobile

cif sequence and 706 for crew 4cif sequence (Graphic 9).

628.4

724.53

299

168.3
126.1 115.9

0

100

200

300

400

500

600

700

800

Code options

A
ve

ra
ge

 c
yc

le
s

pe
r

bl
oc

k

Initial code 6x8x8

Unroll ifs Avoiding ifs

Spliting loops (intrinsics) Avoiding ifs (intrinsics)

CHAPTER 7: TEXTURE UPDATE

 56

Graphic 9 TU comparison between different sequences and CGA/VLIW modes

Like in the other previous chapters here follows a simple calculation of the maximum

number of cycles required to be able to have HDTV motion estimation operating realtime

on a single ADRES:

• Cycles per MB = 300.000.000 / 108.000 = 2.778

• Current number of TextureUpdate cycles per MB = 705

The necessary clock-speed required for a single ADRES given the current number of

cycles:

• Number of TextureUpdate cycles per second = 705* 108.000 = 76,14MHz

Therefore to implement the motion estimation block in a single ADRES, the necessary

clock will be 76,14 MHz.

9701

4763

704 703 706

0

2000

4000

6000

8000

10000

12000

C
yc

le
s/

M
B

Initial VLIW mode Final VLIW mode

qcif foreman cif mobile

4cif crew

CHAPTER 8: MOTION COMPENSATION

 57

Chapter 8

Motion Compensation

Motion Compensation block together with Motion Estimation block are the key blocks for

the MPEG-4 standard (also in others standards) because they allow to reduce the

redundancy between transmitted frames by forming a predicted frame and subtracting

this from the current frame.

The motion compensation process consists on, once the “best” matching region in the

reference frame is selected, typically a macroblock, the region is subtracted from the

current macroblock to produce a residual macroblock (luminance and chrominance).

After the Motion Compensation block, this macroblock is encoded and transmitted

together with a motion vector describing the position of the best matching region (relative

to the current macroblock position).Within the encoder, the residual is encoded and

decoded and added to the matching region to form a reconstructed macroblock which is

stored as a reference for further motion-compensated prediction. It is necessary to use a

decoded residual to reconstruct the macroblock in order to ensure that encoder and

decoder use an identical reference frame for motion compensation.

Therefore in the Motion Compensation block the goal is to subtract the current

macroblock from the reference macroblock or if it is an intra macroblock to copy the

values to the reference frame.

8.1 Initial code

In the initial code, the function where the motion compensation is performed is called 6

times. Actually there are two different functions: one called four times per macroblock for

luminance blocks and the other function, for the chrominance blocks. However the

motion vectors, which indicate the “best” matching region are transmitted per each

macroblock (the regions are 16x16 pixels), each per block in a macroblock. The two

functions are doing the same by their respective kind of blocks.

Firstly the code distinguishes between the different modes (inter or intra). If the

macroblock is coded as an intra macroblock, then the process only consists on copying

the values from the current frame to the reference frame.

Otherwise, if the macroblock is transmitted as inter mode, the process is more

complicated. It is necessary to know if the motion vector coordinates correspond with an

entire position or with half-pixel position. Each entire pixel position is considered to be

equivalent to 2 units whereas a half-pixel position is 1 unit. Therefore if the coordinates

CHAPTER 8: MOTION COMPENSATION

 58

received are not multiple of 2, half-pixel motion estimation, the pixel interpolation must

be carried out.

The original code has 2 main loops for the inter macroblocks. They distinguish if the

macroblocks need vertical interpolation (see Figure 27 in Motion Estimation chapter) or

not. In order to distinguish for those blocks where the horizontal interpolation is needed

to obtain the correct values, there is an if statements inside each loop.

Once the correct values are obtained 3 things are made:

• Subtract the current frame with the obtained values to obtain the “error macro

block”, which after being codified is sent to decoder.

• Calculate the Sum of Absolute Differences (SAD) between the current

macroblock and the estimated one. The SADs are used in texture coding block

(see texture coding for more details).

• Store the reference values in a macroblock array. The reason to store the values

is that they are necessary in order to “construct” the reference frames (see

texture update chapter).

Figure 33 depicts schematically how the code flows in the initial implementation. Actually

it is more complicated (more variables…) but it shows how the code operates. The code

is exactly the same for the luminance(Y) and for the chrominance (UV) blocks with the

only difference that the values are taken from the UV frames.

Figure 33 Motion Compensation schematic code

for (Y blocks in MB)
 if (mode==INTRA)
 for (rows in block)
 for (columns in block)
 errorMB = CurrentFramePixel
 else if (NO vertical interpolation)
 for (rows in block)
 for (columns in block)
 if (horizontal interpolation)
 refPixel = Calculate horizontal interpolation value
 else
 refPixel = Read value
 endif

 MB_TextureUpdate = refPixel;
 errorMB = CurrentframePixel – refPixel;
 SAD += absolute(CurrentframeP ixel – refPixel);
 else
 for (rows in block)
 for (columns in block)
 if (horizontal interpolation)
 refPixel = Calculate V&H interpolation value
 else
 refPixel = Calculate vert ical interpolation value
 endif

CHAPTER 8: MOTION COMPENSATION

 59

8.2 Final Code

The Motion Compensation block code has suffered so many transformations in order to

reduce the total amount of cycles to make the calculations. During the evolution process

to the final code, many different options have tested. compares some these options.

The final code maintains the structure but making transformations in loops to find the

best option. There are also two functions (one for Y blocks and one for UV blocks). For

the Y blocks, and for UV blocks as well, in intra mode the copy process is carried out in

all blocks together (loop unrolled and of course coalescing previously rows and

columns).

Then the code is different for the two kinds of blocks. The great difference between the

final and the initial code is the way to calculate the interpolated values. In the final code

the interpolated values are not calculated again (average of 2 or 4 pixels) because they

have been already calculated in the motion estimation block. Therefore a new array

where these values are stored is passed to the function. However this is only possible

for the Y blocks, as the motion estimation is only executed for this blocks.

The code for the inter-Y blocks only distinguishes whether the interpolation is needed or

not. To select the correct option another parameter is passed to the function. This

parameter is used to indicate which half-pixel neighbor from the entire position has been

choosen. If the parameter is 0 no interpolation is required. This means that the values

are read from the reference frame whereas the others are read from the interpolation

array. The interpolation array allows reducing the cycles because it avoid to read more

times from the memory and to make again the average. On the other hand more bytes

(2040 bytes) are stored to the memory.

CHAPTER 8: MOTION COMPENSATION

 60

Figure 34 Final schematic code for Y-blocks

For the inter-UV blocks, the process to know if the interpolation is required remains the

same as in the initial code (see initial code section). But then there are not if conditions

inside the loops. There are 4 loops depending on the kind of interpolation:

1. No interpolation loop

2. Only horizontal interpolation is required.

3. Only vertical interpolation is required.

4. Horizontal/vertical interpolation is required.

On one hand, with this way it is possible to reduce cycles by removing if statements

inside the loops. On the other hand the size code is much larger.

All the loops, either Y or UV blocks, are unrolled. That means that in case of Y blocks all

4 error blocks, 4 SADs… are calculated together and for the UV all 2 blocks are carried

out at the same time.

A final important point is the application of intrinsics and the consequent reduction of

cycles.

 if (mode==INTRA)
 for (elements in a block/4)
 errorMB0 = CurrentFramePixel1
 …
 errorMB3 = CurrentFramePixel3
 else if (NO half-pixel)
 for (elements in a block/4)
 refPixel0 = Read value from frame
 MB_TextureUpdate0 = refPixel0;
 errorMB0 = CurrentframePixel0 – refPixel0;
 SAD0 += absolute(CurrentframePi xel0 – refPixel0);
 …
 refPixel3 = Read value
 MB_TextureUpdate3 = refPixel3;
 errorMB3 = CurrentframePixel3 – refPixel3;
 SAD3 += absolute(CurrentframePi xel3 – refPixel3);
 else
 for (elements in a block/4)
 refPixel0 = Read value from in terpolation array
 MB_TextureUpdate0 = refPixel0;
 errorMB0 = CurrentframePixel0 – refPixel0;
 SAD0 += absolute(CurrentframePi xel0 – refPixel0);
 …
 refPixel3 = Read value
 MB_TextureUpdate3 = refPixel3;
 errorMB3 = CurrentframePixel3 – refPixel3;
 SAD3 += absolute(CurrentframePi xel3 – refPixel3);

 Reduction of iterations
because of intrinsics

CHAPTER 8: MOTION COMPENSATION

 61

Figure 35 Final schematic code for UV blocks

The Graphic 10 compares CGA cycles for different options tested in Y-blocks. From left

to right here are the options explained:

• Initial code: it is the starting code, only coalescing the rows-columns loops, but

maintaining the rest of code.

• Remove conditions inside: in the original code there were if statements inside

loops to select if the horizontal interpolation is necessary. Here the horizontal

interpolation is always carried out when the vertical interpolation is not needed.

When the interpolation vertical has to be done 2 loops were created to avoid

conditions inside, because there were rounding errors.

• Coalescing external loop: it means increasing the iterations from 64 to 4x64

(pass to a MB level).

• Read from interpolated values in ME: instead of calculating the interpolated

values, these are read from Motion Estimation.

• Unroll: in 64 iterations the 4-Y blocks are performed.

• Final code: change the code in order to introduce intrinsic functions, reducing

iterations from 64 to 16.

 if (mode==INTRA)
 for (elements in a block/4)
 errorMB5 = CurrentFramePixel5
 errorMB6 = CurrentFramePixel6

 else if (NO vertical interpolation)
 if (Horizontal interpolation)
 for (elements in a block/4)
 refPixel5 = Read value from frame
 MB_TextureUpdate5 = refPixel5;
 errorMB5 = CurrentframePixe l5 – refPixel5;
 SAD5 += absolute(Currentfra mePixel5 – refPixel5);
 …
 else
 for (elements in a block/4)
 refPixel5 = Calculate H_interpolation from frame
 MB_TextureUpdate5 = refPixe l5;
 errorMB5 = CurrentframePixe l5 – refPixel5;
 SAD5 += absolute(Currentfra mePixel5 – refPixel5);
 …
 if (Vertical interpolation)
 if (NO Horizontal interpolation)
 for (elements in a block/4)
 refPixel5 = Calculate V_interpolation from frame
 …
 else
 for (elements in a block/4)
 refPixel5 = Calculate H&V_interpolation from f rame
 …

Reduction of iterations
because of intrinsics

CHAPTER 8: MOTION COMPENSATION

 62

Graphic 10 Comparison between different options tested

Concerning to the UV-blocks the steps followed are the same than with the Y-blocks,

with the big difference that it is not possible to read already calculated interpolated

values from ME block. Therefore there are not big differences in CGA Cycles per block

comparing with the Y-blocks.

Table 19 shows the scheduling results for all loops in Motion Compensation block.

Kernel NrCycles SD II PS IPC Length

Y-blocks Intra 125 73,96% 6 5 11,83 28

Y-blocks No Interpolation 213 80,11% 11 4 12,82 36

Y-blocks Interpolation 213 80,11% 11 4 12,82 36

UV-blocks Intra 76 93,75% 3 9 15 27

UV-blocks No Interpolation 128 86,44% 6 6 13,83 31

UV-blocks H-Interpolation 149 91,96% 7 6 14,71 36

UV-blocks V-Interpolation 166 83,59% 8 5 13,38 37

UV-blocks V&H-Interpolation 251 82,22% 13 4 13,16 42

Table 19 Motion Compensation scheduling results

390.13

305.23

237.7 206.95

112.87

52.97
0

100

200

300

400

500

Options tested

C
G

A
 C

yc
le

s
/ b

lo
ck

Initial Code
Remove conditions inside
Coalescing extern loop
Read from interpolated values in ME
Unroll
Final Code

CHAPTER 8: MOTION COMPENSATION

 63

Notice that the number of cycles column is not cycles per block. Therefore, it is not

possible to compare between the results from Y-blocks and results from UV-blocks.

It is also important to mark that the 2 inter Y-blocks loops have the same number of

cycles (213). That means there is not difference between interpolate or not. In contrast,

inter UV-blocks the difference between interpolated and no-interpolated blocks is at least

21 cycles.

8.3 General statistics

The total amount of cycles per MB spent in the entire Motion Compensation block, which

means adding the different loops and the control code for difference sequence is:

• For a foreman qcif sequence: 620,32 cycles

• For a mobile cif sequence: 638,55 cycles

• For a crew 4cif sequence: 622,40 cycles

Graphic 11 MC comparison between different sequences and CGA/VLIW modes

compares these sequences with original and final code in VLIW mode.

Graphic 11 MC comparison between different sequences and CGA/VLIW modes

Like in the other previous chapters here follows a simple calculation of the maximum

number of cycles required to be able to have HDTV motion estimation operating realtime

on a single ADRES:

12679

5389

620 638 622
0

2000

4000

6000

8000

10000

12000

14000

C
yc

le
s/

M
B

Initial VLIW mode Final VLIW mode

qcif foreman cif mobile

4cif crew

CHAPTER 8: MOTION COMPENSATION

 64

• Cycles per MB = 300.000.000 / 108.000 = 2.778

• Current number of Motion Compensation cycles per MB = 620,32

The necessary clock-speed required for a single ADRES given the current number of

cycles:

• Number of Motion Compensation cycles per second = 620,32 * 108.000 =

 = 66.995.087,27 = 66,99MHz

CHAPTER 9: CONCLUSIONS AND FUTURE WORK

 65

Chapter 9

Conclusions and future work

The conclusions can be divided in 3 different parts: regarding to results achieved,

concerning methodology to optimize code, for mapping kernels, reading at memories,

etcetera and finally with reference to ADRES and used tools.

9.1 Results achieved

As it was expected, having a look to the general results (Graphic 12) and the results

showed during the different chapters, it is possible to appreciate that the implemented

code decreases the original implemented code. The magnitude of speed-up depends on

the part of code:

• Texture Coding is 2,17.

• Motion Estimation is 4,52.

• Motion Compensation is 2,03.

• Texture Update 2,35.

Whereas the total application speed-up is 3,48. When the code is mapped in the CGA

the VLC encoder block acquires more weight in the total code, it passes from a 4,57% in

the original code in VLIW mode to a 29,29% in the final code in CGA mode (the main

part). Therefore, it should be recommendable to map in the CGA the VLC encoder

loops.

Mapping all applications in one single ADRES for a foreman 300 frames qcif sequence

these numbers are obtained:

• Current total number of cycles per 300 QCIF frames = 487.946.546

• Total number of cycles per QCIF frame = 487.946.546 / 300 = 1.626.488,48

• Total number of cycles per MB = 1.626.488,48/ 99 = 16429,17

• Total number of cycles per second required for HDTV = 16.429,17 * 108.000

=1.774.351.076,36 = 1,77 GHz

This frequency is still far from the ADRES clock (300MHz),but if the different blocks are

mapped in different ADRES then the results are close to be achieved.

CHAPTER 9: CONCLUSIONS AND FUTURE WORK

 66

Graphic 12 Cycles/MB Full MPEG-4 encoder

9.2 Code analysis

With the experience acquired and the results obtained during the optimization code I see

that one of the main gain in terms of reducing cycles is with the use of intrinsic functions.

In IDCTrows and Q_invQ (Texture coding block) cycles did not decrease so much using

intrinsic function. This is because in these particular functions, intrinsics are used to

avoid if statements, but no for taking advantage of reading integers instead of shorts, 4-

bytes instead of 1-byte. In contrast in Motion Estimation, Texture Update and Motion

Compensation blocks it is possible to reduce rather the amount of cycles. E.g. in ME

interpolation loop, the cycles pass from 1.474 cycles to 346 cycles. The loss of cycles is

higher even if it is necessary to add more operations to obtain the correct code (i.e.

packing, unpacking…) or to add some if statements, like in the Texture Update block

where the cycles in the main loop decrease from 738 to 361. In this loop the II pass from

11 to 20, but the there are only 16 iterations instead of the 64. Therefore intrinsic

functions always are something to take into account when you are optimizing a code.

Another important thing to consider is try to carry out the calculations for all blocks

together in the same loop. What it means is to do all the calculations with the same

number of iterations. Unfortunately this is not good or not possible in all the occasions.

For example in texture coding block is not possible to calculate 6 times in one loop the

DCT over rows because there are too many operations and it would be necessary a lot

of new variables to store… On the other hand, to calculate 9 SADs, to perform the

139512

27333
19209

119414

41062

52346

34313
16429

0

20000

40000

60000

80000

100000

120000

140000

160000

qcif foreman cif mobile 4cif crew

C
yc

le
s/

M
B

Initial VLIW mode Final VLIW mode Final CGA mode

CHAPTER 9: CONCLUSIONS AND FUTURE WORK

 67

Texture Update (6 blocks) or Motion Compensation (4 blocks), all are carried out in the

same loop without increase the iterations. Therefore this is like unroll the loop.

Coalescing loops is a technique extensively applied in the code, especially for mapping

rows-columns loops. This is always a good technique to apply wit columns and rows to

increase the iterations mapped in the CGA without increasing the II. But when the loop

to coalesce is the macroblock loop (to go over the 6 blocks for example), then it is

necessary to consider some things. As it is always necessary to add some control

instructions (e.g. for reading correct values from the memory), sometimes it is not

possible to maintain the II because there are not enough available resources in the CGA

(e.g. more multipliers are needed or it is necessary to store more variables…

ResMII<RecMII) and then the advantage to reduce 6 times the length is not worth

(illustrated in Figure 36). Coalescing the loops there are only 1 prologue-epilogue

(length) instead of 6 (if we are talking about coalescing with the MB loop), but our II has

been increased. Therefore, before coalesce loops, it is necessary to evaluate, if it is

possible to maintain the II, the number of iterations that we are going to map…

Figure 36 Total cycles coalescing or not coalescing loops

Another important thing (already explained in Texture Coding chapter) is the way to read

at memory. Whenever it could be possible, it is better to read integers (4-bytes) instead

of shorts or another 1-byte type, if no much operations has to be added later (see

Texture Coding chapter).

II2

Iterations2

Iterationsi X II Prologue or Epilogue

II1

Iterations1

…

Cycles = Iterationsi x II + Prologue + Epilogue

CHAPTER 9: CONCLUSIONS AND FUTURE WORK

 68

To talk more concretely about specific code optimizations here is a list of top code

optimizations:

• General use of intrinsic functions. In general the main gain in cycles is produced

calculating integer operations instead of short operations by the use of existing

intrinsic functions, even if the code adds more complexity, because intrinsic allow

us to reduce iterations.

• Use of intrinsics to calculate interpolated values for the half-pel ME.

• Calculate the 9 SADs for the first spiral in full-pel ME.

• Coalesce the loops in TC block in order to go over MBs instead over rows or

columns.

• Avoid conditions in TU block and unroll the loop to Update all blocks together.

9.3 About ADRES and its compiler

The uses of new intrinsic functions are very useful to decrease cycles but sometimes it is

necessary to apply several intrinsics to make a single operation. For example to perform

interpolation, many different intrinsics are applied. It could be possible to create a new

intrinsic to calculate faster the interpolation. In Texture Update block and Motion

Compensation it is necessary to read some unsigned char as integers. There is not an

intrinsic function to do it; therefore it is necessary to make it in different steps.

Concerning to DRESC compiler, it is very useful to exploit loop-level parallelism,

because it makes some automatic optimizations, such as reduce the prologue-epilogue

length or the possibility to know which alap factor give us the best results. On the other

hand it should be useful to incorporate in DRESC automatic tools that allow the

programmer to roll unroll the loops automatically.

9.4 Future work

Once the different blocks (Texture Coding, Motion Estimation, Motion Compensation and

Texture Update) are mapped in the CGA, the total number of cycles decrease, and

consequently, the percentages of code spent in each block change too. New

percentages (Graphic 13) shows us that now VLCencoder block has more important

weight, therefore, this block should be useful to map this block in the CGA too.

CHAPTER 9: CONCLUSIONS AND FUTURE WORK

 69

Graphic 13 Cycles percentages spent in different parts of MPEG-4 encoder (CGA mode, final

code)

In Motion Estimation the use of intrinsic functions is generalized. It is necessary to read

integer values instead of short or unsigned char values. For this reason there are several

memory accesses that are unaligned. It is necessary to make some modifications in the

final code to avoid this. Modifications consist on read 2 values aligned and then pack the

correct values from the 2 integers in another one to operate correctly. This will add more

complexity and some more cycles to the code.

21.82%

1.48%

4.66%

23.84%

0.16%

36.07%

7.88%
4.10%

Texture Coding VLC Coding
Packetize Stream Texture Update
Motion Estimation Entropy Coding
Motion Compensation Rest

APPENDIX A

 70

Appendix A

Intrinsics

Here it follows more specific description about code with intrinsics implemented in

Motion Estimation, Motion Compensation and Texture Update blocks.

Motion Estimation

This is the process to calculate the 4 interpolated values in the Half-Pixel Motion

Estimation function:

Figure 37 intrinsic process to make interpolation in Half-Pixel ME

 The coefficients to read are type short (8-bit), therefore it is possible to use a set

of intrinsic functions to use 32-bit operations.

 1) 4 integers are read in each iteration with an offset of 1 position right or down.

 2) Using the PACK2 intrinsic function it is possible to obtain 4 integers with the

correct position to perform the average (see matrix).

A

B

1 2 3 4 5 6 7 8 9

A1 A2 A3 A4 A2 A3 A4 A5 B1 B2 B3 B4 B2 B3 B4 B5

A1 A2 B1 B2 A3 A4 B3 B4 A2 A3 B2 B3 A4 A5 B4 B5

(C1 + rounding control + 2) / 4
 …
(C4 + rounding control + 2) / 4

 C1 C2 C3 C4

 C1 C2 C3 C4

1)

2)

3)

4)

5)

+ + + +

APPENDIX A

 71

 3) INNERSUM4 intrinsic is applied, in order to sum the 4 shorts packed inside

the integer (C1, C2, C3, C4).

 4) The number is averaged.

 5) Finally the 4 numbers obtained are packed with the PACK4 intrinsic and

stored in the array.

 Here follows the code:

Figure 38 Intrinsic code in Half-Pixel Motion Estimation

To calculate horizontal and vertical interpolated values it is only necessary to read the

correct values and apply the AVGU4 intrinsic function. In this case if rounding control it is

not 0 is necessary to make an OR operation between the 2 integers read and one AND

with a 01010101 vector in order to make correctly the integer division.

4interpolated =

=PACK4((I_INNERSUM4(I_PACK2(pix00,pix10),0)+2- rounding_control)/4,

 (I_INNERSUM4(I_PACK2(pix01,pix11),0)+2-rounding_ control)/4,

 (I_INNERSUM4(I_PACK2(pix00>>16,pix10>>16),0)+2-r ounding_control)/4,

 (I_INNERSUM4(I_PACK2(pix01>>16,pix11>>16),0)+2-r ounding_control)/4);

Vinterpolated = (rounding_control==0)?I_AVGU4(pix01 ,pix11):((pix01 & pix11) +

(((pix01 ^ pix11) & ~BYTE_VEC32(0x01)) >> 1));

Hinterpolated = (rounding_control==0)?I_AVGU4(pix10 ,pix11):((pix10 & pix11) +

(((pix10 ^ pix11) & ~BYTE_VEC32(0x01)) >> 1));

APPENDIX A

 72

Motion Compensation

Here it follows the intrinsic process in Motion Compensation:

Figure 39 Intrinsic process in MC

 1) First it is necessary to read the values as integer, from the current frame and

from the reference frame.

 2) Then using the PACK2 function and SHLMB the LSB and the MSB part of the

integers are split in 2 new integers.

 3) Then using the SUB2 function the new integers from the current frame and

from the reference frame are subtracted.

 4) Finally the integers are stored in the correct place.

This figure shows the code:

Figure 40 Motion Compensation Intrinsic Code

 recPix0 = *(unsigned int*)&recYframe[prevRecFr ameIdx][yu+j][xl+i];
 newPix0 = *(unsigned int*)&newFrameY[Off_Row+j][Off_Col+i];

 recPixA0 = I_PACK2(I_SHLMB(recPix0<<16,0), rec Pix0&0xff);
 recPixB0 = I_PACK2(I_SHLMB(recPix0,0), I_SHLMB (recPix0<<8,0));
 newPixA0 = I_PACK2(I_SHLMB(newPix0<<16,0), new Pix0&0xff);
 newPixB0 = I_PACK2(I_SHLMB(newPix0,0), I_SHLMB (newPix0<<8,0));

 partA0 = I_SUB2(newPixA0, recPixA0);
 partB0 = I_SUB2(newPixB0, recPixB0);

 (int)&errorMacroBlock[0][j*8+i+0] = partA0;
 (int)&errorMacroBlock[0][j*8+i+2] = partB0;

recframe

1 2 3 4

 A1 A2 A3 A4 B1 B2 B3 B4

 C1 C2 C3 C4

1)

2)

4)

3)

newframe

1 2 3 4

A1 A2 A3 A4 B1 B2 B3 B4

− −

 C1 C2 C3 C4

APPENDIX A

 73

Texture Update

For the Texture Update there are 2 different code depending on the block type. If the

block is type 3 the code is different (see Texture Update chapter).

Figure 41 Intrinsic process for TU block

 1) First the correct integer values are read from the arrays.

 2) Then using the PACK2 function and SHLMB the LSB and the MSB part of the

integers are split in 2 new integers.

 3) Then using the ADD2 function the new integers from the 2 arrays are added.

 4) Finally using the function SPACK4 the values are packed in one integer and

stored in the correct place.

 If the block is type 3 the it is only used the positions A1 and A2. These positions

are copied and packed in a integer and then the process remains the same.

array1

1 2 3 4

 A1 A2 A3 A4 B1 B2 B3 B4

 C1 C2 C3 C4

1)

2)

4)

3)

array2

1 2 3 4

A1 A2 A3 A4 B1 B2 B3 B4

+ +

 C1 C2 C3 C4

APPENDIX A

 74

Figure 42 Texture Update Intrinsic Code

PixelA0 = *(unsigned int*)&(TmpUChar[0][d0*j+i*e0]) ;
PixelB0 = *(int*)&(TmpShort[0][f0*j+i*g0]);
PixelE0 = *(int*)&(TmpShort[0][f0*j+i*g0+2]);

PixelC0 = I_PACK2(I_SHLMB(PixelA0<<16,0), PixelA0&0 xff);
PixelD0 = I_PACK2(I_SHLMB(PixelA0,0), I_SHLMB(Pixel A0<<8,0));
if (textureUpdateMode[0]==3)
 {
 PixelF0 = I_PACK2(PixelB0,PixelB0);
 partA0 = I_ADD2(PixelC0, PixelF0);
 partB0 = I_ADD2(PixelD0, PixelF0);
 }
 else
 {
 partA0 = I_ADD2(PixelC0, PixelB0);
 partB0 = I_ADD2(PixelD0, PixelE0);
 }
rec_pix0 = I_SPACKU4(partB0, partA0);
 *(unsigned

int*)&recYframe[recFrameIdx][YPADDING+v*16+j][YPADD ING+h*16+i] =
rec_pix0;

APPENDIX C

 75

Appendix B

Example of scheduled kernel

APPENDIX C

 76

DRESC_Q_invQ - loop id:9 (II=3, Stages=9)
=========================== Context 0 ===========================
rphicon12_p st_i_pcon12_p subcon12_p lsl
lsl asr pred_lt asr
pred_lt add st_c2_pcon12_p lsl
mulcon12_p intr19_gp add addcon12_p
=========================== Context 1 ===========================
con12_p lsl pred_gtstart_ctrl_p movcon12_p
add_u and add_u lsl
pred_eq lslcon12_p lslcon12_p mov
divcon12_p rphicon12_p mul ...
=========================== Context 2 ===========================
pred_eq eq ld_c2_pcon12_p add
phicon12_p mov sub ...
st_c2_pcon12_p add and rphicon12_p
pred_ne add_ucon12_p ... mov
Operation Cont:0 Cont:1 Cont:2 Loop Total
===
 add: 3 0 2 5
 add_u: 0 2 1 3
 and: 0 1 1 2
 asr: 2 0 0 2
 con12_p: 0 1 0 1
 div: 0 1 0 1
 eq: 0 0 1 1
intr19_gp: 1 0 0 1
 ld_c2_p: 0 0 1 1
 lsl: 3 4 0 7
 mov: 0 2 2 4
 mul: 1 1 0 2
 phi: 0 0 1 1
 pred_eq: 0 1 1 2
pred_gtstart_ctrl_p: 0 1 0 1
 pred_lt: 2 0 0 2
 pred_ne: 0 0 1 1
 rphi: 1 1 1 3
 st_c2_p: 1 0 1 2
 st_i_p: 1 0 0 1
 sub: 1 0 1 2
===
Total OPs: 16 15 14 45
 % array: (100%) (94%) (88%) (94%)
(routing):* -0 -0 -0 -0
Real OPs: 16 15 14 45
 % array: (100%) (94%) (88%) (94%)

INFO: II:3 Pipeline Stages: 9
INFO: Instructions: Total:45 IPC:15.0 Sch Density 93.8%
INFO: (0% routing ops, 13% guarded ops)

BIBLIOGRAPHY

 77

Bibliography

[1] R. Hartenstein. A decade of reconfigurable computing: a visionary retrospective, in

Proc. of Design, Automation and Test in Europe (DATE), pages 642-649, 2001.

[2] Stephen Brown and Jonathan Rose. Architecture of FPGAs and CPLDs: A Tutorial.

IEEE Design and Test of Computers, Vol. 13, No. 2, pp. 42-57, 1996.

[3] H. Corporaal. Microprocessor Architecture: from VLIW to TTA. John Wiley &

Sons,1998.

[4] B. Mei. A coarse-grained reconfigurable architecture template and its compilation

techniques. PhD thesis, Katholieke Universiteit Leuven-Belgium, 2005.

[5] B. Mei, S.Vernalde, D.Verkest, Hugo De Man, Rudy Lauwereins. DRESC: A

Retargetable Compiler for Coarse-Grained Reconfigurable Architectures. IMEC, Leuven-

Belgium Field-Programmable Technology, 2002. (FPT). Proceedings. 2002 IEEE

International Conference pp166- 173, 2002.

[6] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu. IMPACT: An

architectural framework for multiple-instruction-issue processors, in Proceedings of the

18th International Symposium on Computer Architecture (ISCA), pp. 266–275, 1991.

[7] B. R. Rau, Iterative modulo scheduling, tech. rep., Hewlett- Packard Lab: HPL-94-115,

1995.

[8] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. C. Filho.

Morphosys: an integrated reconfigurable system for data-parallel and computation-

intensive applications. IEEE Trans. on Computers, 49(5):465-481, May 2000.

[9] I.E. Richardson. H.264 and MPEG-4 Video Compression Video Coding for next-

generation multimedia. John Wiley & Sons, 2003.

[10] F. Pereira, T. Ebrahimi. MPEG-4 The book. Pretince Hall PTR IMSC Multimedia

series, 2002.

[11] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. Effective

compiler support for predicated execution using the hyperblock. in Proc. of International

Symposium on Microarchitecture (MICRO), pages 45-54,1992.

[12] C. De Vleeschouwer, T. Nilsson, K. Denolf, and J. Bormans. Algorithmic and

Architectural Co-Design of a Motion-Estimation Engine for Low-Power Video Devices

IEEE Trans. on Circuits and Systems for Video Technology, vol. 12, Nº 12, December

2002 pp 1093-1105

