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THE NUMBER OF PLANAR CENTRAL CONFIGURATIONS
FOR THE 4–BODY PROBLEM IS FINITE
WHEN 3 MASS POSITIONS ARE FIXED

MARTHA ALVAREZ, MONTSERRAT CORBERA, JOAQUIN DELGADO,
AND JAUME LLIBRE

(Communicated by Carmen C. Chicone)

Abstract. In the n–body problem a central configuration is formed when the
position vector of each particle with respect to the center of mass is a common
scalar multiple of its acceleration vector. Lindstrom showed for n = 3 and for
n > 4 that if n− 1 masses are located at fixed points in the plane, then there
are only a finite number of ways to position the remaining nth mass in such a
way that they define a central configuration. Lindstrom leaves open the case
n = 4. In this paper we prove the case n = 4 using as variables the mutual
distances between the particles.

1. Introduction

For the n–body problem a configuration of the system of n particles is central if
the acceleration of each mass is proportional to its position relative to the center
of mass of the system.

Central configurations play an important role in the n–body problem of celestial
mechanics. For instance, they allow one to obtain the homographic solutions (the
unique solutions of the n–body problem that we can describe explicitly) [13], central
configurations play a main role in the topological changes of the integral manifolds
[11], and they are the limiting configurations for colliding particles [7] or parabolic
escape [10].

Some interesting results for the planar central configurations of the n–body prob-
lem have been achieved, but the problem is far from solved. The sixth problem of
Smale’s list presenting his challenging mathematical problems for the twenty–first
century [12], cites Wintner’s question of whether, for a given set of n positive
masses, the number of nonequivalent (modulus rotations and rescalings) planar
central configurations is finite.

In [5] Lindstrom formulated a program of research as follows: Given n positive
masses m1, m2, . . . , mn and for any k = 1, 2, . . . , n−2, given their n−k positions in
the plane, to determine whether there are only a finite number of ways to position
the remaining k particles in a manner that defines a central configuration. For given
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n this is a sequence of questions for which k = n− 2 is equivalent to the finiteness
question of central configurations. Of course, following Lindstrom we assume that
the center of mass is unknown.

Lindstrom approaches the case k = 1 for any n, leaving open the question for
n = 4. The goal of this paper is to prove Lindstrom’s remaining case for n = 4;
that is, we prove the next result.

Theorem. For three given masses m1, m2 and m3 at fixed positions there are only
a finite number of different positions in the plane for a given mass m4 in order to
have a central configuration of the planar 4–body problem.

Using ideas of Dziobek (see [2] or [6]) we formulate the equations for the central
configurations of the 4–body problem in the plane as a system of 6 equations using
the mutual distances between particles as variables; see for more details Hagihara
[3]. After some computations, we write the equations of central configurations as a
polynomial system. Then, we use the Bézout Theorem and the theory of resultants
to show that, having fixed the four masses and the positions of the first three
particles, then there exist a finite number of positions (possibly zero) for the fourth
particle.

The paper is organized as follows. In Section 2 we present the system of equations
for the central configurations. Our main tools, the resultant of two polynomials and
the Bézout Theorem, are introduced in Section 3. Finally, in Section 4 we prove
the theorem.

2. Equations for the central configurations

We do not need to study the collinear central configurations of the 4–body prob-
lem, because they are well known (see Moulton [8]), and modulo homotheties and
rotations there are exactly 12.

The equations for the planar noncollinear central configurations of the 4–body
problem with positive masses mi, for i = 1, . . . , 4, can be written as

(1)

m3∆4(r−3
13 − r−3

23 ) = m4∆3(r−3
14 − r−3

24 ),
m2∆4(r−3

12 − r−3
23 ) = m4∆2(r−3

14 − r−3
34 ),

m2∆3(r−3
12 − r−3

24 ) = m3∆2(r−3
13 − r−3

34 ),
m1∆4(r−3

12 − r−3
13 ) = m4∆1(r−3

24 − r−3
34 ),

m1∆3(r−3
12 − r−3

14 ) = m3∆1(r−3
23 − r−3

34 ),
m1∆2(r−3

13 − r−3
14 ) = m2∆1(r−3

23 − r−3
24 );

see Hagihara [3]. Here, rij is the euclidean distance between the masses mi and
mj; ∆1, ∆2, ∆3 and ∆4 denote the oriented areas of the triangles of vertices
(m2,m3,m4), (m4,m3,m1), (m1,m2,m4) and (m3,m2,m1), respectively. More
precisely,

∆1 =
1
2

∣∣∣∣∣∣
x2 y2 1
x3 y3 1
x4 y4 1

∣∣∣∣∣∣ ,
where (xi, yi) is the position vector of the mass mi, and similarly for ∆2, ∆3 and
∆4.

Since we are looking for planar central configurations we can consider a re-
dundant additional equation in system (1) by imposing that the volume of the
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tetrahedron with vertices the four masses is zero; that is,

(2)

∣∣∣∣∣∣∣∣∣∣
0 r2

12 r2
13 r2

14 1
r2
12 0 r2

23 r2
24 1

r2
13 r2

23 0 r2
34 1

r2
14 r2

24 r2
34 0 1

1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
= 0 ;

see [3] for more details.
By Heron’s formula, the area of the triangle with edge lengths α, β and γ is

given by √
s(s− α)(s− β)(s− γ) ,

where s = (α + β + γ)/2 is the semiperimeter of the triangle. Therefore Heron’s
formula allows us to compute |∆1|, |∆2|, |∆3| and |∆4| as functions of the mutual
distances.

For given m1,m2,m3 and m4, in order to prove the theorem we suppose fixed the
positions of the three masses m1, m2 and m3. So, we know the following variables
in system (1): r12 = a, r13 = b, and r23 = c. The unknowns are the variables
r14 = x, r24 = y and r34 = z. In short, we can write system (1) in the new
notation, obtaining

m3∆4(b−3 − c−3) = m4∆3(x−3 − y−3),(3)
m2∆4(a−3 − c−3) = m4∆2(x−3 − z−3),(4)
m2∆3(a−3 − y−3) = m3∆2(b−3 − z−3),(5)
m1∆4(a−3 − b−3) = m4∆1(y−3 − z−3),(6)
m1∆3(a−3 − x−3) = m3∆1(c−3 − z−3),(7)
m1∆2(b−3 − x−3) = m2∆1(c−3 − y−3).(8)

Since we have more equations than unknowns, in order to study the finiteness of
the solutions of system (3)–(8) we do not need to work with all the equations.
In particular, in our study we will only use equations (3), (4), (6), (8) and the
redundant equation (2). We replace ∆1, ∆2, ∆3 and ∆4 in equations (3), (4), (6),
(8) by their corresponding expressions given by Heron’s formula with the convenient
sign. Next we eliminate the square roots that appear in the expression of the ∆’s in
equations (3), (4), (6), (8) by taking squares. Thus, we get the polynomial system

(9) f1 = 0, f2 = 0, f3 = 0, f4 = 0,

where

f1 = a4 b6 c6m2
4 x

6 − 2 a2 b6 c6m2
4 x

8 + b6 c6m2
4 x

10 − 2 a2 b6 c6m2
4 x

6 y2 −
2 b6 c6m2

4 x
8 y2 − 2 a4 b6 c6m2

4 x
3 y3 + 4 a2 b6 c6m2

4 x
5 y3 − 2 b6 c6m2

4 x
7 y3 +

b6 c6m2
4 x

6 y4 + 4 a2 b6 c6m2
4 x

3 y5 + 4 b6 c6m2
4 x

5 y5 + a4 b6 c6m2
4 y

6 −
2 a2 b6 c6m2

4 x
2 y6 + b6 c6m2

4 x
4 y6 − a4 b6m2

3 x
6 y6 + 2 a2 b8m2

3 x
6 y6 −

b10 m2
3 x

6 y6 + 2 a2 b6 c2m2
3 x

6 y6 + 2 b8 c2m2
3 x

6 y6 + 2 a4 b3 c3m2
3 x

6 y6 −
4 a2 b5 c3m2

3 x
6 y6 + 2 b7 c3m2

3 x
6 y6 − b6 c4m2

3 x
6 y6 − 4 a2 b3 c5m2

3 x
6 y6 −

4 b5 c5m2
3 x

6 y6 − a4 c6m2
3 x

6 y6 + 2 a2 b2 c6m2
3 x

6 y6 − b4 c6m2
3 x

6 y6 +

2 b3 c7m2
3 x

6 y6 + 2 a2 c8m2
3 x

6 y6 + 2 b2 c8m2
3 x

6 y6 − c10m2
3 x

6 y6 −
2 b6 c6m2

4 x
3 y7 − 2 a2 b6 c6m2

4 y
8 − 2 b6 c6m2

4 x
2 y8 + b6 c6m2

4 y
10,
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f2 = a6 b4 c6m2
4 x

6 − 2 a6 b2 c6m2
4 x

8 + a6 c6m2
4 x

10 − 2 a6 b2 c6m2
4 x

6 z2 −
2 a6 c6m2

4 x
8 z2 − 2 a6 b4 c6m2

4 x
3 z3 + 4 a6 b2 c6m2

4 x
5 z3 − 2 a6 c6m2

4 x
7 z3 +

a6 c6m2
4 x

6 z4 + 4 a6 b2 c6m2
4 x

3 z5 + 4 a6 c6m2
4 x

5 z5 + a6 b4 c6m2
4 z

6 −
2 a6 b2 c6m2

4 x
2 z6 + a6 c6m2

4 x
4 z6 − a10 m2

2 x
6 z6 + 2 a8 b2 m2

2 x
6 z6 −

a6 b4m2
2 x

6 z6 + 2 a8 c2m2
2 x

6 z6 + 2 a6 b2 c2m2
2 x

6 z6 + 2 a7 c3m2
2 x

6 z6 −
4 a5 b2 c3m2

2 x
6 z6 + 2 a3 b4 c3m2

2 x
6 z6 − a6 c4m2

2 x
6 z6 − 4 a5 c5m2

2 x
6 z6 −

4 a3 b2 c5m2
2 x

6 z6 − a4 c6m2
2 x

6 z6 + 2 a2 b2 c6m2
2 x

6 z6 − b4 c6m2
2 x

6 z6 +

2 a3 c7m2
2 x

6 z6 + 2 a2 c8m2
2 x

6 z6 + 2 b2 c8m2
2 x

6 z6 − c10m2
2 x

6 z6 −
2 a6 c6m2

4 x
3 z7 − 2 a6 b2 c6m2

4 z
8 − 2 a6 c6m2

4 x
2 z8 + a6 c6m2

4 z
10,

f3 = a6 b6 c4m2
4 y

6 − 2 a6 b6 c2m2
4 y

8 + a6 b6m2
4 y

10 − 2 a6 b6 c2m2
4 y

6 z2 −
2 a6 b6 m2

4 y
8 z2 − 2 a6 b6 c4m2

4 y
3 z3 + 4 a6 b6 c2m2

4 y
5 z3 − 2 a6 b6m2

4 y
7 z3 +

a6 b6 m2
4 y

6 z4 + 4 a6 b6 c2m2
4 y

3 z5 + 4 a6 b6m2
4 y

5 z5 + a6 b6 c4m2
4 z

6 −
2 a6 b6 c2m2

4 y
2 z6 + a6 b6 m2

4 y
4 z6 − a10 m2

1 y
6 z6 + 2 a8 b2m2

1 y
6 z6 +

2 a7 b3 m2
1 y

6 z6 − a6 b4 m2
1 y

6 z6 − 4 a5 b5m2
1 y

6 z6 − a4 b6 m2
1 y

6 z6 +

2 a3 b7 m2
1 y

6 z6 + 2 a2 b8 m2
1 y

6 z6 − b10 m2
1 y

6 z6 + 2 a8 c2m2
1 y

6 z6 +

2 a6 b2 c2m2
1 y

6 z6 − 4 a5 b3 c2m2
1 y

6 z6 − 4 a3 b5 c2m2
1 y

6 z6 + 2 a2 b6 c2m2
1 y

6 z6 +

2 b8 c2m2
1 y

6 z6 − a6 c4m2
1 y

6 z6 + 2 a3 b3 c4m2
1 y

6 z6 − b6 c4m2
1 y

6 z6 −
2 a6 b6 m2

4 y
3 z7 − 2 a6 b6 c2m2

4 z
8 − 2 a6 b6 m2

4 y
2 z8 + a6 b6 m2

4 z
10,

f4 = b6 c10 m2
2 x

6 − 2 b6 c8m2
2 x

6 y2 − 2 b6 c7m2
2 x

6 y3 + b6 c6m2
2 x

6 y4 +

4 b6 c5m2
2 x

6 y5 − b10 c6m2
1 y

6 + 2 b8 c6m2
1 x

2 y6 + 2 b7 c6m2
1 x

3 y6 −
b6 c6m2

1 x
4 y6 − 4 b5 c6m2

1 x
5 y6 − b4 c6m2

1 x
6 y6 + b6 c4m2

2 x
6 y6 +

2 b3 c6m2
1 x

7 y6 + 2 b2 c6m2
1 x

8 y6 − c6m2
1 x

10 y6 − 2 b6 c3m2
2 x

6 y7 −
2 b6 c2m2

2 x
6 y8 + b6 m2

2 x
6 y10 − 2 b6 c8m2

2 x
6 z2 − 2 b6 c6m2

2 x
6 y2 z2 +

4 b6 c5m2
2 x

6 y3 z2 + 4 b6 c3m2
2 x

6 y5 z2 + 2 b8 c6m2
1 y

6 z2 + 2 b6 c6m2
1 x

2 y6 z2 −
4 b5 c6m2

1 x
3 y6 z2 − 4 b3 c6m2

1 x
5 y6 z2 + 2 b2 c6m2

1 x
6 y6 z2 − 2 b6 c2m2

2 x
6 y6 z2 +

2 c6m2
1 x

8 y6 z2 − 2 b6m2
2 x

6 y8 z2 + b6 c6m2
2 x

6 z4 − 2 b6 c3m2
2 x

6 y3 z4 −
b6 c6m2

1 y
6 z4 + 2 b3 c6m2

1 x
3 y6 z4 − c6m2

1 x
6 y6 z4 + b6 m2

2 x
6 y6 z4.

Equation (2) becomes

f5 = a2 b2 c2 − a2 c2 x2 − b2 c2 x2 + c4 x2 + c2 x4 − a2 b2 y2 + b4 y2 − b2 c2 y2 +

a2 x2 y2 − b2 x2 y2 − c2 x2 y2 + b2 y4 + a4 z2 − a2 b2 z2 − a2 c2 z2 −
a2 x2 z2 + b2 x2 z2 − c2 x2 z2 − a2 y2 z2 − b2 y2 z2 + c2 y2 z2 + a2 z4,

after removing the nonzero factor −2.
In short, in order to prove that system (3)–(8) has finitely many solutions, it

is sufficient to prove that the polynomial system fi = 0, for i = 1, . . . , 5, also has
finitely many solutions.

We will show that system fi = 0, for i = 1, . . . , 5, has finitely many solutions for
x, y and z; and we claim that this will imply that the number of possible positions
for m4 is finite for given positions of m1, m2 and m3. Now, we shall prove the claim.
We note that knowing x, y and z the position of m4 must be at the intersection
of the three circles centered at m1, m2 and m3 with radii x, y and z, respectively
(eventually such intersections can be empty). Therefore, if there are finitely many
solutions for x, y and z, then there are finitely many solutions for the position of
m4. So, the claim is proved.
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3. Multipolynomial equations

In this section we present a brief summary on the resultant and on the Bézout
theorem. Both will be used later on for proving the main theorem.

3.1. The resultant of two polynomials. Let the roots of the polynomial P (x)
with leading coefficient one be denoted by ai, i = 1, 2, . . . , n and those of the
polynomial Q(x) with leading coefficient one be denoted by bj , j = 1, 2, . . . ,m.
The resultant of P and Q, Res[P,Q], is the expression formed by the product of
all the differences ai − bj, i = 1, 2, . . . , n, j = 1, 2, . . . ,m. In order to see how to
compute Res[P,Q], see for instance [4] and [9]. The main property of the resultant
is that if P and Q have a common solution, then necessarily Res[P,Q] = 0.

Consider now two multivariable polynomials, say P (X,Y ) and Q(X,Y ). These
polynomials can be considered as polynomials in X with polynomial coefficients
in Y . Then the resultant with respect to X , Res[P,Q,X ], is a polynomial in the
variables Y with the following property. If P (X,Y ) and Q(X,Y ) have a common
solution (X0, Y0), then Res[P,Q,X ](Y0) = 0, and similarly for the variable Y . In
particular, if the polynomials depending on one variable,

p(X) = Res[P,Q, Y ],

q(Y ) = Res[P,Q,X ],

have finitely many solutions (i.e. they are not the zero polynomial), then the
polynomial system

P (X,Y ) = 0, Q(X,Y ) = 0

has finitely many solutions.

3.2. Bézout Theorem. Let F1, . . . , Fn be n homogeneous polynomials of degrees
d1, . . . , dn in the variables x0, . . . , xn. We define

(10)
fi(x1, . . . , xn) = Fi(1, x1, . . . , xn),
F i(x1, . . . , xn) = Fi(0, x1, . . . , xn).

Since the F i are homogeneous polynomials in the variables x1, . . . , xn, it is clear
that the equations F i = 0, for i = 1, . . . , n, always have the solution x1 = · · · =
xn = 0. This solution is called the trivial solution.

Theorem 1 (Bézout Theorem). Assume that fi and F i are defined as in (10).
If the unique solution of the homogenized system F i = 0, for i = 1, . . . , n, is the
trivial one, then the system fi = 0, for i = 1, . . . , n, has d1 · · · dn solutions in Cn
(counted with their multiplicity).

For more details, see [1].

4. The proof

We shall use the following auxiliary result.

Proposition 2. If three masses are collinear, then there is no position for the
remainder mass outside the straight line defined by the collinear three masses in
order that they form a central configuration of the 4–body problem.
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Proof. Without loss of generality, we assume that the masses m1, m2, m3 are
collinear, and consequently the area of the triangle ∆4 = 0. Assuming that m4 is the
mass outside the straight line defined by m1, m2 and m3, it follows that ∆1∆2∆3 6=
0. Therefore, from system (3)–(8), we get that x = y = z, in contradiction with
the fact that m4 is outside the straight line defined by m1, m2 and m3. �

From the proposition it follows that if a central configuration of the 4–body
problem is not collinear, then it has no three masses on a straight line. In other
words, in the proof of the theorem we can assume that ∆1∆2∆3∆4 6= 0.

The proof of the theorem is divided into two cases:
Case 1: We assume that a, b and c are pairwise different.

We consider the following system of equations:

(11) g1 = f1 +w12 = 0, g2 = f2 +w12 = 0, g3 = f3 = 0, g4 = f5 = 0,

where x, y, z and w are the unknowns. We note that the solutions of system
f1 = f2 = f3 = f5 = 0 are solutions of (11) with w = 0. Thus, it is easy to see
that if system (11) has finitely many solutions (x, y, z, w), then system f1 = f2 =
f3 = f5 = 0 also has finitely many solutions (x, y, z). Consequently, the system
fi = 0, for i = 1, . . . , 5, will have finitely many solutions (x, y, z). Therefore the
main theorem will be proved in Case 1.

In order to see that system (11) has finitely many solutions (x, y, z, w), we will
apply the Bézout Theorem. First, we homogenize the system gi(x, y, z, w) = 0, for
i = 1, . . . , 4, to the system Gi(u, x, y, z, w) = 0, for i = 1, . . . , 4, adding the new
variable u in such a way that

gi(x, y, z, w) = Gi(1, x, y, z, w),
Gi(x, y, z, w) = Gi(0, x, y, z, w).

By the Bézout Theorem, if the unique solution of the homogenized system Gi = 0,
for i = 1, . . . , 4, is the trivial one, i.e. x = y = z = w = 0, then system gi = 0, for
i = 1, . . . , 4, has finitely many solutions.

We see that

G3 = −(a− b)2 (a2 + a b+ b2
)2

(a− b− c) (a+ b− c) (a− b+ c) (a+ b+ c) m2
1 y

6 z6.

Since we have assumed that a 6= b, a, b, c > 0 and m1, m2 and m3 are not collinear
(i.e. a − b − c 6= 0, a + b − c 6= 0 and a − b + c 6= 0), we have that G3 = 0 if and
only if either y = 0 or z = 0.

Assume y = 0. Then G1 = w12; so G1 = 0 implies that w = 0. If y = w = 0,
then

G2 = −(a− c)2 (a− b− c) (a+ b− c) (a− b+ c) (a+ b+ c)
(
a2 + a c+ c2

)2
m2

2 x
6 z6.

So, G2 = 0 if and only if either x = 0 or z = 0. Assume that x = 0. Then for
x = y = w = 0 we have that G4 = a2 z4. Consequently, G4 = 0 if and only if
z = 0. Hence, in this subcase the unique solution of Gi = 0, for i = 1, . . . , 4, is the
trivial one. On the other hand, for y = z = w = 0 we have that G4 = c2 x4 and
consequently G4 = 0 if and only if x = 0. Again, the unique solution is the trival
one.

Using similar arguments in the case z = 0 we can also see that system Gi = 0,
for i = 1, . . . , 4, has a unique solution, the trivial one.
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Case 2: We assume now that two of the distances a, b and c are equal. Without
loss of generality, we suppose that c = b. Since ∆i 6= 0 for i = 1, . . . , 4 (see
Proposition 2), from (3)–(8) it follows that y = x.

We consider system

(12) h1(x, z) = f2|c=b
y=x, h2(x,z)= f4|c=b

y=x
, h3(x,z)=f5|c=b

y=x

.

We want to see that system (12) has finitely many solutions, because this will imply
that system fi = 0, for i = 1, . . . , 5, will have finitely many solutions (x, y, z) when
c = b. After some computations we have that

h2 = −b6 (m1 −m2) (m1 +m2) (b− x)2
x6
(
b2 + b x+ x2

)2
(b− x− z)

· (b+ x− z) (b− x+ z) (b+ x+ z) .

Since b,m1,m2 > 0 and we are looking for solutions of (12) with x, z > 0, we have
that h2 = 0 if and only if either m1 = m2, or x = b, or x = b− z, or x = z − b, or
x = b+ z.

We start studying the case m1 = m2. If m1 = m2, then h1 = −a2 h1, h3 = a2 h3,
where

h1 = −a4 b10 m2
4 x

6 + 2 a4 b8 m2
4 x

8 − a4 b6 m2
4 x

10 + 2 a4 b8 m2
4 x

6 z2 +

2 a4 b6 m2
4 x

8 z2 + 2 a4 b10 m2
4 x

3 z3 − 4 a4 b8 m2
4 x

5 z3 + 2 a4 b6m2
4 x

7 z3 −
a4 b6 m2

4 x
6 z4 − 4 a4 b8 m2

4 x
3 z5 − 4 a4 b6m2

4 x
5 z5 − a4 b10 m2

4 z
6 +

2 a4 b8 m2
4 x

2 z6 − a4 b6 m2
4 x

4 z6 + a8 m2
2 x

6 z6 − 4 a6 b2m2
2 x

6 z6 −
2 a5 b3 m2

2 x
6 z6 + 8 a3 b5 m2

2 x
6 z6 + a2 b6m2

2 x
6 z6 − 4 b8m2

2 x
6 z6 +

2 a4 b6 m2
4 x

3 z7 + 2 a4 b8 m2
4 z

8 + 2 a4 b6m2
4 x

2 z8 − a4 b6 m2
4 z

10

and

h3 = b4 − 2 b2 x2 + x4 + a2 z2 − 2 b2 z2 − 2 x2 z2 + z4.

In order to prove that h1 = h3 = 0 has finitely many solutions we shall use the
resultant (see Section 3 for details). We have that

Res[h1, h3, z] = (b− x)4 (b+ x)4 (
a12 b24m4

4 + r1(x)
) (
a12 b24m4

4 + r2(x)
)
,

Res[h1, h3, x] = z8
(
a12 b24m4

4 + s1(z)
) (
a12 b24m4

4 + s2(z)
)
,

where r1(x), r2(x) and s1(z), s2(z) are polynomials of degree 20 in x and z, respec-
tively, without the constant term. Since a, b,m4 > 0, we have that Res[h1, h3, z] 6≡ 0
and Res[h1, h3, x] 6≡ 0. Therefore, from Section 3, system h1 = h3 = 0 has finitely
many solutions, and consequently system (12) has finitely many solutions.

We consider now the case x = b. If x = b, then h3 = −2 a2 z2
(
a2 − 4 b2 + z2

)
.

Since h3 = 0 has finitely many solutions in the variable z and x = y = b, we
have that in this case system (12) also has finitely many solutions. Proceeding in a
similar way we can see that (12) also has finitely many solutions in the remaining
cases x = b− z, x = z − b and x = b+ z. This completes the proof of the theorem.
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