
 1

Maximum likelihood Linear Programming Data Fusion for Speaker 
Recognition 

Enric Monte-Moreno (1), Mohamed Chetouani (2), Marcos Faundez-Zanuy (3), Jordi Solé-
Casals (4) 

 
(1) TALP Research center, UPC Barcelona, Spain (2) Université Pierre et Marie Curie-Paris 

6, France, (3) Escola Univesitària Politècnica de Mataró, UPC Barcelona, Spain,  
(4) Universitat de Vic, Barcelona, Spain. 

 
ABSTRACT 
Biometric system performance can be improved by means of data fusion. Several kinds of 
information can be fused in order to obtain a more accurate classification (identification or 
verification) of an input sample. In this paper we present a method for computing the 
weights in a weighted sum fusion for score combinations, by means of a likelihood model. 
The maximum likelihood estimation is set as a linear programming problem. The scores are 
derived from a GMM classifier working on a different feature extractor. Our experimental 
results assesed the robustness of the system in front a changes on time (different sessions) 
and robustness in front a change of microphone. The improvements obtained were 
significantly better (error bars of two standard deviations) than a uniform weighted sum or a 
uniform weighted product or the best single classifier. The proposed method scales 
computationaly with the number of scores to be fussioned as the simplex method for linear 
programming. 
 
1. INTRODUCTION 

Biometric recognition (Faundez-Zanuy, 2006) offers a promising approach for security 
applications, with some advantages over the classical methods, which depend on 
something you have (key, card, etc.), or something you know (password, PIN, etc.). A 
nice property of biometric traits is that they are based on something you are or 
something you do, so you do not need to remember anything neither to hold any token. 
On the other hand, they have an important drawback, because if a person’s biometric 
data is stolen, it is not possible to replace it (Faundez-Zanuy, 2004). Probably, these 
drawbacks have slowed down the spread of use of biometric recognition (Faundez-
Zanuy, 2005b). For those applications with a human supervisor (such as border entrance 
control), this can be a minor problem, because the operator can check if the presented 
biometric trait is original or fake. However, for remote applications such as internet, 
some kind of liveliness detection and anti-replay attack mechanisms should be 
provided. Fortunately, speech offers a richer and wider range of possibilities when 
compared with other biometric traits, such as fingerprint, iris, hand geometry, face, etc. 
For instance, you can use a text-dependent system (Faundez-Zanuy and Monte-Moreno, 
2005) and to ask the user for a specific speech sentence. Speaker recognition does not 
offer the same robustness and precision than other biometric traits such as fingerprint 
and iris. However, strong efforts are done to enhance the performance, due to its 
particular set of characteristics that can permit to manage some vulnerability attacks. 
This paper is organized as follows: section two describes the different data levels for 
fusion with special emphasis on the score level. Some new strategies are presented for 
data fusion. Section three is devoted to the experimental results, and section four 
summarizes the main conclusions. 

 
2. DATA FUSION 
2.1 Introduction 
Given a biometric system, such as that depicted in figure 1, four main data fusion levels 
can be defined: sensor, feature, score (also known as opinion) and decision. The 
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description of these levels is beyond the scope of this paper and can be found in 
(Faundez-Zanuy, 2005a).  
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Figure 1: General scheme of a biometric system 

 
 
In this paper we will focus on the score level. This kind of fusion is also known as 
confidence level. Given a set of classifiers (matchers), it consists of the combination of 
the scores provided by each matcher. The matcher just provides a distance measure or a 
similarity measure between the input features and the models stored on the database. 
It is possible to combine several classifiers working with the same biometric 
characteristic (unimodal systems) or to combine different ones. In our case, it will be a 
unimodal combination, where both classifiers share the same input signal, as depicted in 
figure 2. This scheme can be easily generalized for more than two matchers. 
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Figure 2: General scheme for data fusion at score level. 
 

 
2.2 Combination strategies 
 
The score combination schemes for a given speaker can be done in several ways (see 
kuncheva 2004). The most natural strategies for combining different scores, might be: 



 3

1) Weighted sum: 
1

N

s j js
j

O h o
=

=∑  

2) Weighted product: ( )
1

j
N h

s js
j

O o
=

= ∏  

In this paper we propose a fusion method, where the scores will be interpreted as 
probabilities of an observation, given a model. In this paper for each observation we 
will have a vector of N-scores, which will be the probability of the identitiy of a speaker 
for a set of N classifiers. The global likelihood function will be the product of the all the 
probabilities of the observations of all speakers where each score will be weighted by a 
factor jh  that will be specific for a given score. The likelihood function, of these 

probabilities can be understood as either a weighted product of probabilities, or a 
weighted sum of logarithms of probabilities.  
The strategy for computing the jh  parameters that weight the different scores can be 

done by several methods, the first and most simple might be the brute force method, 
which would consist on exploring the space of possible recognition rates for all possible 
combinations of a set of discrete values of the weighting parameters. The problem with 
this method is that it scales exponentially with the number of scores, and therefore is it 
only has sense for a small values of the number of scores to be merged (i.e. N=2,3). 
Another possibility might be the use of a least squares method for the estimation of the 
weighting parameters, without considering a likelihood model, i.e. considering the 
observations as a probability of an observation given a model. The use of a least squares 
method will assign to positive examples the target value target 1sO = + , and negative 

examples target target 1sO = − . The advantage of a least squares estimation is that it might 

take into account the possible correlations (positive or negative) between scores. This 
method was taken into consideration at the begining of the project, but had several 
problems: a- the introduction of restrictions on the set of parameters jh , was artificial, 

so the set of equations had to be solved as a nonlinear convex optimization problem 
(Boyd and Vandenberghe, 2004), b- the natural way of setting the least squares problem 
was as a discriminative estimation (i.e positive and negative examples), which gave rise 
a a inconsistent system of equations1. The use of a discriminative model was was 
discarded because the set of equations to be solved by the least squares method Ah b=  
(where A is a matrix data, and b, is the target vector, which’s values are 1± ) was 
inconsistent, probably due to the fact that the use of negative examples made that a 
fraction of similar items of the training data were assigned to different labels. The 
problem of identifying the subset of the training data that yielded a consistent set of 
equations was not tried, because of the combinatorial nature of the problem. Note that 
even the use of suboptimal methods for estimating subsets such as the forward selection 
(see Bishop 1995) yields a quadratical cost with the number of examples which makes 
the problem computationally unfeasible. 
An alternative to the use of negative examples is the use a likelihood model, which 
solves a different kind of problem. I.e. the computing the set of parameters that 
maximizes the likelihood of the combined set of scores for all the speakers 
simultaneously. Note that only positive samples are used. 
On the other hand, the use of a likelihood model, with the introduction of restrictions on 
the weights jh , gave naturaly a set of equations that were equivalent to a linear 

programming problem. 
                                                 
1 The inconsistency test is given by the simplex algorithm (see Bertsimas 1997) 
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The fusion process will be done by means of the following model,  
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the parameterization j  The weighting parameter jh  weights the contribution of the 

parameterization j to the global likelihood. This parameter is specific of the 
parameterization and independent of the speaker. The number parameterized samples of 
speaker s is M. The total number of speakers is denoted by S.  
The goal is to find the values jh  that maximize the likelihood (1) in a geometrical 
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selected, in order to restrict the possible values of jh , because of the fact that the 

estimates are found by maximizing the likelihood function (1), which can be unbounded 
for negative values of jh , or can give rounding errors for 1jh >> . Another reason for 

selecting a solution in a simplex, is that the optimization algorithm will allocate a 
limited ‘budget’ of probability between the different scores, and therefore the scores 
that contribute marginally to the correct fusion will be given low values of jh  (notice 

that 0jh =  makes irrelevant a parameterization), while the rest of the probability budget 

will be allocated to the parameterizations that contribute most to the correct fusion. 
The function to be maximized (1) can be set for a given speaker s as a log-likelihood 
function, 
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Our  objective is to find a the vector h that maximizes simulatenously the likelihood for 
each speaker. We decided to express the optimization problem with a restriction on each 
speaker in order to control a common margin, so that each speaker will have a 
likelihood at least as high as the value of a positive threshold. Notice that if the 
objective function in (2) had a sum for all speakers, we would not be able to control the 
likelihood of the worst speaker. Therefore we introduced a new variable which is the 
common positive threshold for the likelihoods of all speakers, which we will denote as 
δ , and the result of the optimization process will be the value of δ  plus the values of h 
that are compatible with the restriccions. 
This problem can be expressed in a convex optimization framework (Boyd and 
Vandenberghe, 2004) as: 
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Where A is a matriz of (M×S)×N  with the following structure: 

1 Ts SA A A A =  L L  

and each sA  is a submatrix of (M×N) composed by ( )( ), ,lns
i j s j ia P x= .  The optimization 

variable is δ  and e is a column vector of dimension (M×S). The restrictions on the 
function to be maximized (2) is that simultaneously for all speakers, the weighted scores 

of every utterance of speaker s, ( )( ),
1
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variable to be maximizedδ . This variable is weighted in the objective function by a 
parameter that we will denote as Delta weight, which can be seen as a scale factor over 

the log probabilities, which will work as a trade-off in the simplex 
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jh . Low values of the delta weight will give solutions near the baricenter (center of 

mass) of the simplex 
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=∑ , while high values will give solutions near a vertex of the 

simplex. This value might be seen as a prior over the jh  set of values, in the sense that 

low values of the Delta weight, will yield a solution more or less uniform, while high 
values of the Delta weight will give a sparse solution allocating most of the probability 
mass to a reduced number of scores. As will be seen in section 3.6, there is a trade-off in 
the performance of the classifier, which can be controlled by means of this parameter. 
This optimization problem is solved by means of the simplex algorithm2 (Bertsimas  
and Tsitsiklis, 1997). 
 
The problem (3) can be expressed as a standard linear programming  problem; 
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where A  is the matrix of log probabilities, which was defined in (3) and 
, , , , ,eq eqf x b b lb ub and A  are vectors defined as:  

                                                 
2 The simplex algorithm for solving the linear programming problem, should not be confused with the 
geometrical simplex, which is a constraint on the parameters to be estimated.  
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The method we propose has several computational advantages, perhaps the most 
interesting is that the average case running time for the simplex algorithm for linear 
programming. Although some examples can be contructed where the simplex  algorithm 
can take an exponential time with the number of constraints, the mean time, is a 
polinomial of the number of contraints, which makes the solution quite inexpensive 
from the computational point of view (Bertsimas 1997). 

 
3. EXPERIMENTAL RESULTS 
3.1 Database 
The Gaudi database (Ortega et al., 2000; Satue and Faundez-Zanuy 1999) was originally 
designed in order to measure the performances under different controlled conditions: 
language, interval session, microphone. The corpus is composed by: 
 

• 49 speakers. 
• 4 sessions with different tasks: isolated numbers, connected numbers, read text, 

conversational speech, etc. ...). 
• For each session, the utterances have been acquired in two languages (Catalan 

and Spanish) and simultaneously with different microphones as described in 
table 1. 

Table 1 The microphones used for the Gaudi database. 

MIC1 SONY ECM 66B lavalier unidirectional electret (≈10 cm from the speaker) 
MIC2 AKG D40S dynamic cardioid (≈30 cm from the speaker) 
MIC3 AKG C420 head-mounted (low-cost microphone) 
 
In this contribution, the training protocol consists of using one reading text of an 
average duration of one minute (using session 1 and MIC1). Concerning the tests, we 
use 5 phonologically balanced utterances (Spanish) identical for all the speakers through 
the scenarios M3 to M6. We focus on the third first sessions with different microphones 
(cf. table 2) The number of tests for genuine users is 49×5=245 for each session and the 
average score is estimated under 49×5×6=1470 tests.  
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Table 2. Different sessions and microphones notation. 
 
Scenario Session Microphone 
M1 1 MIC1 
M2 1 MIC2 
M3 2 MIC1 
M4 2 MIC2 
M5 3 MIC1 
M6 3 MIC3 
 
The speech signal has been down-sampled to 8 kHz, pre-emphasized by a first order 
filter whose transfer function is H(z)=1-0.95z-1 and normalized between -1,+1 (for 
cumulant estimation). A 30ms Hamming window is used, and the overlapping between 
adjacent frames is 2/3. A parameterized vector of order 16 was computed for each 
feature extraction method. 
 

3.2 Feature extraction 
Sate-of-the-art feature extraction methods are based on the MFCC (Mel Frequency 
Cepstral Coding) or the LPCC (Linear Predictive Cesptral Coding). These short-term 
features are currently used in GMM based speaker recognition systems. Alternative 

features have been investigated resulting on different approaches. The first ones consist 
of the development of short-term features (as LPCC or MFCC) such as the use of signal 
decomposition methods (Wavelet, Independent Component Analysis). Other techniques 

aim to exploit other levels of representation such as phonetic, prosodic, idiolectal, 
dialogic or semantic (Faundez-Zanuy and Monte-Moreno, 2005). These features are 
extracted from long-term physical traits and are usually fused with the traditional 

spectral features (short-terms). 
In this contribution, we propose to evaluate additional short-term features that can also 
be combined with the MFCC/LPCC ones. These features are extracted from the LP-
residue. 

 
3.2.1 Feature Extraction from the Residue 
Speech signals are assumed to result from the excitation of the vocal tract according to 

the source-filter model. Following the LPC analysis framework, the vocal tract is 
associated to the filter (LPC coefficients) and the excitation to the residual signal. The 
LP analysis consists of the estimation of LPC coefficients by minimizing the prediction 

error. The predicted sample results from a linear combination of the p past samples (
 

Atal and Hanauer, 1971):
 

ˆ s (n) = − aks n− k( )
k=1

p

∑
         (6) 

The LPC coefficients ak are related to the vocal tract and should also partly capture 
speaker-dependent information. Indeed, derived features from these coefficients, 

namely the Linear Predictive Cepstral Coding (LPCC), are intensely used in speaker 
recognition tasks. The parameter p (filter's order) plays a major role for instance in 
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speech recognition tasks best scores are obtained with 12th order whereas in speaker 

recognition the most used order is 16. 
 
Within the traditional LP analysis, the residual is obtained by the error between the 

current and the predicted samples: 
ˆ( ) ( ) ( )r n s n s n= −

         (7) 

Theoretically, the residual is uncorrelated to the speech signal and it is related to the 

excitation which is speaker-dependent.  These features are known as source features. 
However, recent works on non-linear speech processing have shown that the source-
filter model is not suitable for the speech production modelling (Faundez et al. 2002;  
Kubin, 1995). Different phenomena occur during the production, that are non-linear and 

chaotic. From these investigations on non-linear processing, one can assume that there 
is a dependency between the speech signal and the residual. 
 

Several investigations have been carried out for the use of this residual for the 
improvement of speaker recognition systems (Thevenaz and Hügli., 1995, Faundez and 
Rodriguez, 1998; Mary et al.20 04; Yegnanaraya, 2001; Mahadeva et al,. 2006; Zheng 
et al. 2006). Thevenaz  and Hügli (Thevenaz P. and Hügli, 1995) exploit the theoretical 

orthogonality between two models respectively the filter (i.e. the LPC coefficients) and 
the residue. Their results confirm the complimentary of these representations for 
speaker verification. Neural networks have been also tested for the characterisation of 

the LP residual (Mary et al,. 2004). In (Mahadeva et al,. 2006), Auto-associative neural 
networks are used for the characterisation of the linear residue. They show that speaker 
recognition systems can reach efficient rates by using only residual features. 

 
In this contribution, we propose to exploit the fact that the residue conveys all 
information that are not modelled by the LPC filter (cf. equation 7). These informations 
are modelled by two techniques: temporal and frequential. The first  approach attempts 

to model the residual signal by an Auto-Regressive (AR) model while the second one is 
based on a filter bank based model.  
 

Temporal approach: 

The temporal approach is based on an Auto-Regressive (AR) model of the LP-residue: 

ˆ r (n) = − αkr n − k( )
k=1

ρ

∑
         (8) 

Where r and ρ respectively represent the LP-residue and the filter's order.  

Auto-regressive coefficients (i.e. LPC features) are not directly used in speech 
applications. LPCC features obtained from the LPC by a cepstral transformation are 
prefered due to their decorellation properties suitable for diagonal matrices based 
models (GMMs). The αk coefficients are transformed on cepstral ones γk similarly to the 

LPC-LPCC transformation. The obtained cepstral features are termed the R-SOS-LPCC 



 9

since they are obtained from a cepstral transformation of an AR modelling of the LPC 

residue. 
 
Frequential approach: 

Contrary to the previous approach, in this section, we describe a frequential processing 
of the residual signal r(n). This approach was originally proposed by Hayakawa and al. 
(Hayakawa et al, 1997} and called by them the Power Difference of Spectra in Subband 

(PDSS). They tested it on a speaker identification problem, the R-PDSS features gave a 
rate of 66.9% and the combination with LPCC features gave 99% (99.8% for the LPCC 
alone).  
 

The R-PDSS features are obtained by the following steps : 

• Calculate the LP-residual r. 

• Fast Fourier Transform of the residual using zero padding in order to increase 

the frequency resolution: S=|fft(residue)|2. 

• Group the power spectrum into M sub-bands. 

• Calculate the ratio of the geometric to the arithmetic mean of the power 

spectrum of the ith sub-band and subtract it to 1: 

R− PDSS(i) =1−

S(k)
k= Li

H i

∏
 

 
  

 

 
  

1

Ni

1

Ni

S(k)
k= L i

H i

∑        (9) 

Where Ni = Hi - Li +1 is the number of sample number of frequency points in the ith  
sub-band. Li and Hi are respectively the lower and upper frequency limits of the i th  sub-
band. The same bandwidth is used for all the sub-bands. 
 

Cepstrum analysis of the residual has been also investigated in speech recognition (He 
et al., 1996): filter bank analysis of the one-sided auto-correlation of the residual r plus 
a cepstral transformation. The obtained features named as RCEP (Residual Cepstrum) 

present some linguistic information and in combination to the LPCC improves the 
recognition rates. 
 

3.3 Feature Linearization 
 
Communications channel can be modeled as a linear filter, in a simplest case, or as a 
Wiener system (linear filter followed by a nonlinear invertible function). Many research 
have been done in the identification and/or the inversion of linear and nonlinear 
systems. These works assume that both the input and the output of the distortion are 
available (Prakriya and Hatzinakos, 1985); they are based on higher-order input/output 



 10

cross-correlation (Bellings and Fakhouri, 1978) bispectrum estimation (Nikias and 
Petropulu, 1993; Nikias and Raghuveer, 1987) or on the application of the Bussgang 
and Prices theorems (Boer, 1976; Jacoviti et al., 1987) for nonlinear systems with 
Gaussian inputs.  
 

 
h  s(t)  e(t) 

  f (.) 

w  y(t)  x(t)  e(t) 
g(.) 

 
Figure 3: The unknown nonlinear convolution system (top) and the proposed inversion structure (bottom) 

 
However, in real world situations one often does not have access to the input. In this 
case, blind identification becomes the only way to solve the problem.  
One of the main sources of degradation in speaker recognition is the mismatch between 
training and testing conditions. This is due because in most of the situations we can not 
control the channel effects over the speech signal. It means that the parameters extracted 
in the recognition stage can be modified for the channel effects and can cause that 
system fails to recognize an authorized speaker.  
In order to minimize the channel effects, we try to homogenize the channel effects by 
means of a linearization effect. Other strategies can be found in (Sole-Casals and 
Faundez-Zanuy, 2006). 
We use a homogenization method inspired on recent advances in source separation of 
nonlinear mixtures (see (Sole-Casals et al, 2002; Taleb and Jutten, 1999; Taleb et al., 
2001; for details) . Based on the inversion of Wiener systems or Post-Nonlinear 
mixtures in BSS/ICA context, we propose to Gaussianize the speech signal before to 
extract the parameters as is done in (Sole-Casals et al, 2005). 
 
3.3.1 Cumulative density function 
The simplest approach for computing gi is based on the property of the cumulative 
density function (cdf). Consider the random variable E, and denote its cdf 

( )uEFE <= Pr , where ( )Pr   denotes the probability. The random variable ( )EFU E=   

is then uniformly distributed in [0, 1]. Denoting by ( )uΦ  the Gaussian cdf, which 
transforms a unit variance Gaussian variable into a uniform random variable in [0, 1], it 
is clear that  ( )u1−Φ  is a unit variance Gaussian random variable. Then, a simple 
Gaussianization procedure (see figure 2) is to apply this direct method, provided we 
have the function ( )1−Φ , by using the following nonlinear mapping:  

EFg °Φ= −1   (10)  
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Figure 4: The system Gaussianization for a speech signal e(t). The first block consists in estimating the 
cumulative density function (cdf) of the observed signal and the second block is the inverse of the 
Gaussian cdf. 
 
3.3.2 Maximization of Shannon entropy 
Let ( )upz  denote the probability density function of Z, the Shannon entropy of the unit 
variance random variable Z, defined by: 

( ) ( )( ) ( )∫−= duupupZH zzlog         (11) 

 is maximum if Z is Gaussian (Cover and Thomas, 1991). Then, another 
Gaussianization method can be obtained so that ( )ZH  is maximum (under the 
constraint of unit variance).  
 
3.3.3 Algorithms 
Using the previous results, one can propose two algorithms for the linearization 
(Gaussianization) of the speech signal. The first algorithm is based on formula (10). The 
Matlab code is very simple and very fast. A second algorithm, based on (11), consists of 
adjusting a nonlinear mapping g so that the Shannon’s entropy of ( )EgZ =  is 

maximum under the constraint 12 =Ez . Although the second idea is still quite simple, it 
leads to an algorithm which is much more complicated and requires much iterations 
before converging to an acceptable solution. On the contrary, the algorithm based on 
(10) provides an analytical solution without any iterations. In the following, we only 
consider this fast algorithm. 

 
3.4 Classification 
The classification system is based on standard Gaussian Mixture Models (GMMs) 
(Reynols and Rose, 1995). A Gaussian mixture density is a weighted sum of K 
component densities given by:  

P(x /λ) = ωk

k=1

K

∑ g(µk ,Σk )(x)            (12)
 

Where x is a d-dimensional vector, g(µ,Σ)(x) are the component denisities and ωk the 
mixture weights. Each component density is a d-variate Gaussian function: 

g(µ,Σ)(x) = 1

2π( )d / 2
det(Σ)

e−1/ 2 x−µ( )T Σ−1 x−µ( )          (13)
 

With mean vector µk and covariance matrix Σk. The mixture weights ωk satisfy the 
following constraint: 

ωk

k=1

K

∑ =1          (14)
 

The Gaussian Mixture Model is defined by the mean vectors, covariance matrices and 
mixture weights. The set of parameters is grouped and represented by: 

e(t)  
Fe (·) 

      
( )·1−Φ  
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λ = wk,µk,Σk( )     k=1…K. 

Each speaker is modelled by a GMM with 32 mixtures and diagonal covariance 
matrices. 
 

3.5 Normalization of the scores. 
 
In the case of fusion it is usual to introduce a normalization of the scores, so that the 
fusion is done on adimensional units, which behave in a statisticaly similar fashion. In 
our case, there was no need of normalizing the distance measures. The set of classifiers 
to be merged were homogeneous, and the only difference was due to the 
parameterization. The margin of variation of the measures was similar, as can be seen in 
figure 5. 
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Figure 5: Box plot of the distances of all the utterances, ordered by parametrization.  The parametrization 
titles are shown in table 3. 
 
Table 3. Coding of the parametrization 
 

1 LPCC 
2 LPCC_linearization 
3 MFCC 
4 MFCC_linearization 
5 PDSS 
6 PDSS_linearization 
7 SosResidualLPCC 
8 SosResidualLPCC_linearization 

 
3.6. Results of the linear programming fusion 
 
We have compared the fusion method based on linear programing with the computation 
of the mean value of the classification results of each parameterization. The fusion 
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method consisted on the linear combination of the outputs of the classifiers on two 
cases: a- The hj were set to 1/N (i.e. uniform weighting of each score) b-  The The hj 
computed by means of the linear programming method. 
 
Another possibility was to compare the results of the fusion with the parameterization 
(or a subset of parametrizations) that gave the best results. The results did not show a 
consistent behaviour. Some parametrizations were better in the sense of robustness in 
front of a change of session, but had a bad performance when the microphone was 
changed, and others degraded with a change of a microphone. In any case the fusion 
method based on the linear programming method consistently improved over the best 
method alone. For comparisons purposes we will present the results of the two different 
fusion methods with the recogntion results of the parametrization that globally gave the 
best results, i.e. MFCC. 
The experiments were designed in order to see the robustness of the fusion method with 
respect to either a change of session or a change of microphone. As reference we took 
scenario M1 (see section 3.1), which consisted of training with session 1 and 
microphone 1 and with four of the five phrases and recognizing with the left out phrase. 
This was repeated for all the phrases, and the results are shown in figure 6. 
In all figures, the error bars represent two standard deviations, i.e. a confidence interval 
of 95%. 
Notice that using the linear programming model improves significantly the recognition 
rate for the different test sentences in the reference set up. 
 

 

Figure 6: Reference results M1, for Delta weight : 1 (left),10 (right).. 

 
The Delta weight, as explained in section 2.2 controls the flatness of the weighting 
vector. The experiments showed that low values of the delta weight gave a near uniform 
distribution of the weights, while high values, selected the weights that can be 
understood as the most relevant. Notice that as the training was not discriminative, the 
parmetrization with the highest values hj should not be taken as the most discriminative, 
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but as the ones that contribute more to the likelihood of the data given the model.  
Figure 7 shows the values of the hj for values of the Delta weight ={1,10}. 
 
 

  
Figure 7: Values of the hj for different values of the Delta weight: 1 (left),10 (right). 

 
The first experiment of interest is the rubustness of the method with respect to a change 
in the date of the recording (i.e. the session), but without changing the microphones, 
which correspond to scenario M3 and M5. We computed the weighting parameters hj on 
scenario M1, and tested with M3 and M5. In case of M3, which corresponds to session 
2, the sentences 4 and 5 were not distinguished, and in session M5, the use of a high 
value of Delta weight, yields a significative improvement. See figures 8 and 9. 
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Figure 8: Robustness of the method with respect to a change in the date of the recording. Setting M3 for 

Delta weights: 1 (left),10 (right). 
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Figure 9: Robustness of the method with respect to a change in the date of the recording. M5 for Delta 

weights: 1 (left),10 (right). 

 
The second experiment would be the robustness in front to a change of microphone; 
which is scenario M2, and a simultaneous change of microphone and session scenarios 
M4, and M6. We computed the weighting parameters hj on scenario M1, and tested on 
scenarios M2, M4 and M6. It can be seen in figure 10, that in the case of M2 where the 
recognition rates are already high, a near uniform weighting is better in the sense that 
the the use of a delta weight equal to one, gave a consistent improvement over all the 
phrases, while a high value of the delta weight, which is associated to a highly non 
uniform weighting lowered the recognition rate. On the other hand as can be seen in 
figure 11 and 12, where there is a the simultaneous change of session and microphone, 
the method proposed in the paper, yields a consistent improvement over a uniform 
weighting of each score and the globally best parametrization. 
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Figure 10: Robustness of the method with respect to a change in the microphone. Scenario M2 for Delta 

weights: 1 (left),10 (right). 
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Figure 11: Robustness of the method with respect to a simultaneous change of microphone and session. 

Scenario M4 for Delta weights: 1 (left),10 (right). 
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Figure 12: Robustness of the method with respect to a simultaneous change of microphone and session. 

Scenario M6 for Delta weights: 1 (left),10 (right). 

 
 
4. CONCLUSIONS 
We have presented a fusion method for likelihood model of the different channels to be 
fused. The method is based on a linear weighting of the log likelihood of the data given 
a model, and the weighting paramaters are estimated on a geometrical simplex. The 
algorithm for the maximum likelihood estimation of the weighting parameters was set 
as a linear programming problem, with a free parameters. The free parameter 
determines the uniformity of the weighting vector. The experiments showed that the 
presented fusion method gives robustness in front of a change of microphone and a 
change of session, i.e. the improvements were statistically significative with respet to a 
uniform weighting or to the best single parametrization. 
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