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Abstract. In this paper we propose the inversion of nonlinear distortions in 

order to improve the recognition rates of a speaker recognizer system. We 

study the effect of saturations on the test signals, trying to take into account real 

situations where the training material has been recorded in a controlled 

situation but the testing signals present some mismatch with the input signal 

level (saturations). The experimental results for speaker recognition shows that 

a combination of several strategies can improve the recognition rates with 

saturated test sentences from 80% to 89.39%, while the results with clean 

speech (without saturation) is 87.76% for one microphone, and for speaker 

identification can reduce the minimum detection cost function with saturated 

test sentences from 6.42% to 4.15%, while the results with clean speech 

(without saturation) is 5.74% for one microphone and 7.02% for the other one. 

1. Introduction 

This paper proposes a non-linear channel distortion estimation and compensation in order to 

improve the recognition rates of a speaker recognizer. Mainly it is studied the effect of a 

saturation on the test signals and the compensation of this non-linear perturbation. Although 

common sense says that nothing can be inferred from “redundant” information data, this asserts 

does not state the whole possible situations or at least those cases where this kind of 

information can help to overcome other problems. 

A well-known problem in the context of pattern recognition [1] is that a pattern recognizer 

trained with an insufficient number of training samples generalizes poorly when trying to 

classify input data. Additionally, the higher the number of model’s parameters, the higher the 

number of training data should be. It is generally accepted [2] that using at least ten times as 

many training samples per class as the number of features (n/d >10) is a good practice to follow 

in classifier design. 

In some situations the use of almost redundant information can help to improve the results. 

An analogous naïve example easy-to-understand is the polynomial fitting to a given set of 

points. Figure 1 shows the interpolation of several polynomials to a set of three points. 

Obviously for a first, second and third degree polynomial fitting the achieved result by means 

of mean square error minimization can be considered satisfactory. However, for a 17th 

polynomial degree, the problem is ill-conditioned because the number of parameters to fit is 

much higher than the number of available training points. Thus, although the fitted polynomial 

passes though the three training points, strange phenomena take place between points. This 



result can be considered unsatisfactory taking into account that the range of the “y” axis 

spreads in a wider range. An important fact to be taken into account is that we cannot try to set 

up a big model that comprises a lot of parameters if the available number of training data is not 

enough, because recognition rates will drop instead of improve. 
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Fig. 1. Example of polynomial fitting to a set of three points. 

Let us check what happens if the number of training data is artificially extended using 

randomly generated points, but related to the real data points. For this purpose we work out the 

standard deviation of the training data set: 
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Where the experimental data set consists of N points in 
2

� : 

( ) ( )( ), 1, ,x i y i i N= L  (3) 

And ,x y are the mean values of the x and y respectively. 

The artificially generated data set ( ) ( )( ) 2, 1, ,rand randx i y i i N N= ×L is obtained by 

means of random number generation rand(1), which randomly generates a number on the 

range [ ]0,1  with a uniform distribution, using the following algorithm: 

for i=1:N, 

for j=1:N
2
, 

x
rand

((i-1)*N
2
+j)=x(i)+k*σ

x
*(rand(1)-0.5); 

y
rand

((i-1)*N
2
+j)=y(i)+k*σ

y
*(rand(1)-0.5); 

end 

end 



Thus, we generate N2 artificial points for each original one, adding a random perturbation 

proportional to the standard deviation of the training set. 

Figure 2 shows two situations, both of them with N2=7 (N× N2=3×7=21). The figure on the 

top has been obtained with a proportionality constant k=0.2, and the bottom one with k=1. It is 

easy to observe that in the first one the generated points are close to the original ones, while in 

the second case they are better distributed along the original range of signal values. 
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Fig. 2. Example of polynomial fitting to a set of three points plus some random generated data. 

First case shown on figure 2 on the top reveals the same problem that appeared when we 

tried to fit the polynomial with a small experimental data set. Thus, this first example is in 

agreement with the initial statement “we cannot take advantage of redundant information”. On 

the other hand, the almost-invented points on the second example produce a tight response to 

the original range of values. 

Unfortunately, pattern recognition problems lie on higher dimensional spaces, where is not 

possible to plot the experimental data neither the models, so it is more complicate to 

understand what is really happening. However, there are experimental evidences of 

improvements when using redundant or almost-redundant information. 

Some situations where the use of pseudo-random generated data can help to improve 

recognition rates are the following: 

a) Pseudo-random training samples generation in order to modify the obtained statistics 

of the experimental data. For instance, for discriminative training, the number of 

inhibitory inputs is higher than the number of excitatory ones. Thus, in order to 

balance both amounts, one set of samples is artificially extended [3]. 

b) Direct modification of obtained statistics from the real experimental data. For 

instance, in Gaussian Mixture Models (GMM) a variance limiting constraint is used 

[4]. 

c) Replication of the known information (redundant information addition). One example 

is the bandwidth extension used in Digital Radio Mondiale [5]. 

d) Systematic generation of new training samples, theoretically “cleaner” than the 

original ones, and the combination of both sets of data. 

In this paper we propose the inversion of nonlinear distortions in order to improve the 

recognition rates of a speaker recognizer system. Our proposed scheme belongs to the last 

category. This strategy can manage those applications where the training material has been 

recorded in a controlled situation but the testing signals present some mismatch with the input 

signal level (saturations). 



By means of non-linear channel distortion estimation and compensation, we obtain a new 

set of feature vectors that theoretically are cleaner than the original ones. The combination of 

two different recognizers, one working over the original signal and another one with the 

compensated signal, produces an improvement on recognition rates. Figure 5 shows the 

proposed scheme. This approach can be interpreted as an increase on the training dataset size, 

or a data fusion scheme at the score’s level [6]. In pattern recognition applications it is well 

known that a number of differently trained classifiers (that can be considered as “experts”), 

which share a common input, can produce a better result if their outputs are combined to 

produce an overall output. This technique is known as committee machine [7], ensemble 

averaging [8], data fusion, etc. The motivation for its use is twofold [7]: 

� If the combination of experts were replaced by a single classifier, the number of 

equivalent adjustable parameters would be large, and this implies more training time 

and local minima problems [9]. 

� The risks of overfitting the data increases when the number of adjustable parameters is 

large compared to the size of the training data set. 

In addition, this strategy improves the vulnerability of biometric systems [10], which is one 

of the main drawbacks of these systems [11]. 

This paper is organized as follows. Section 2 describes the Wiener model, its parameterization, 

and obtains the cost function based on statistical independence. Section 3 summarizes the 

speaker recognition/verification application. Finally, section 4 deals the experiments using the 

blind inversion in conjunction with the speaker recognition/verification application. 

2. Non-parametric approach to blind deconvolution of nonlinear 
channels 

When linear models fail, nonlinear models appear to be powerful tools for modeling practical 

situations. Many researches have been done in the identification and/or the inversion of 

nonlinear systems. These works assume that both the input and the output of the distortion are 

available [12]; they are based on higher-order input/output cross-correlation [13], bispectrum 

estimation [14, 15] or on the application of the Bussgang and Prices theorems [16, 17] for 

nonlinear systems with Gaussian inputs.  
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Fig. 3. The unknown nonlinear convolution system (top) and the proposed inversion structure 

(bottom) 

 

However, in a real world situations, one often does not have access to the distortion input. In 

this case, blind identification of the nonlinearity becomes the only way to solve the problem.  

 

This paper is concerned by a particular class of nonlinear systems, composed by a linear 

filter followed by a memoryless nonlinear distortion (figure 3, top). This class of nonlinear 

systems, also known as a Wiener system, is a nice and mathematically attracting model, but 

also a realistic model used in various areas [18]. We use a fully blind inversion method inspired 



on recent advances in source separation of nonlinear mixtures. Although deconvolution can be 

viewed as a single input/single output (SISO) source separation problem in convolutive 

mixtures (which are consequently not cited in this paper), the current approach is actually very 

different. It is mainly based on equivalence between instantaneous postnonlinear mixtures and 

Wiener systems, provided a well-suited parameterization. 

2.1   Model and assumptions 

We suppose that the input of the system S={s(t)} is an unknown non-Gaussian independent and 

identically distributed (i.i.d.) process, and that subsystems h, f are a linear filter and a 

memoryless nonlinear function, respectively, both unknown and invertible. We would like to 

estimate s(t) by only observing the system output. This implies the blind estimation of the 

inverse structure (figure 3, bottom), composed of similar subsystems: a memoryless nonlinear 

function g followed by a linear filter w. Such a system is known as a Hammerstein system. Let 

s and e be the vectors of infinite dimension, whose t-th entries are s(t) or e(t), respectively. The 

unknown input-output transfer can be written as: 

( )f= He s  (4) 

where:  
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is an infinite dimension Toeplitz matrix which represents the action of the filter h to the signal 

s(t). The matrix H is non-singular provided that the filter h is invertible, i.e. satisfies 

( ) ( ) ( ) ( ) ( )tthththth δ== −− 11 ** , where δ(t) is the Dirac impulse. The infinite dimension of 

vectors and matrix is due to the lack of assumption on the filter order. If the filter h is a finite 

impulse response (FIR) filter of order Nh, the matrix dimension can be reduced to the size Nh. 

In practice, because infinite-dimension equations are not tractable, we have to choose a 

pertinent (finite) value for Nh. Equation (1) corresponds to a post-nonlinear (pnl) model [19]. 

This model has been recently studied in nonlinear source separation, but only for a finite 

dimensional case. In fact, with the above parameterization, the i.i.d. nature of s(t) implies the 

spatial independence of the components of the infinite vector s. Similarly, the output of the 

inversion structure can be written xy W=  with ( ) ( )( )tegtx = . Following [19, 20] the inverse 

system (g, w) can be estimated by minimizing the output mutual information, i.e. spatial 

independence of y which is equivalent to the i.i.d. nature of y(t), as can be seen in figure 4. 



 
Fig. 4. Relationship between blind (linear) decnvolution and blind source separation. The 

spatial independence criteria used in source separation context is transformed in temporal 

independence in the deconvolution context. 

2.2   Cost function 

The mutual information of a random vector of dimension n, defined by 
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can be extended to a vector of infinite dimension, using the notion of entropy rates of 

stationary stochastic processes [21]: 
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where τ is arbitrary due to the stationarity assumption. We can notice that I(Z) is always 

positive and vanishes iff z(t) is i.i.d. Since S is stationary, and h and w are time-invariant filters, 

then Y is stationary too, and I(Y) is defined by:    

( ) ( )( ) ( )YHyHYI −= τ  (8) 

Using the Lemma 1 of [20], the last right term of equation (5) becomes: 
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Moreover, using ( ) ( )( )tegtx =  and the stationarity of ( ){ }teE = :  
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Combining (6) and (7) in (5) leads finally to: 
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3. Speaker recognition/verification 

One of the main sources of degradation in speaker recognition is the mismatch between 

training and testing conditions. For instance, in [22] we evaluated the relevance of different 

training and testing languages, and in [23] we also studied other mismatch, such as the use of 

different microphones. In this paper, we study a different source of degradation: different input 

level signals in training and testing. Mainly we consider the effect of saturation. We try to 

emulate a real scenario where a person speaks too close to the microphone or to loud, 

producing a saturated signal. Taking into account that the perturbations are more damaging 

when they are present just during training or testing but not in both situations, we have used a 

clean database and artificially produced saturation in the test signals. Although it would be 

desirable to use a “real” saturated database, we don’t have this kind of database, and the 

simulation give us more control about “how the algorithm is performing”. Anyway, we have 

used a real saturated speech sentence in order to estimate the nonlinear distortion using the 

algorithm described in section 2 and the results have been successful. Figure 5 shows a real 

saturated speech frame and the corresponding estimate of the NL perturbation. 

3.1   Database 

For our experiments we have used a subcorpora of the Gaudi database, that follows the design 

of [24]. It consists on 49 speakers acquired with a simultaneous stereo recording with two 

different microphones (AKG C-420 and SONY ECM66B). The speech is in wav format at 

fs=16 kHz, 16 bit/sample and the bandwidth is 8 kHz. We have applied the potsband routine 

that can be downloaded from: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html in order to 

obtain narrow-band signals. This function meets the specifications of G.151 for any sampling 

frequency. The speech signals are pre-emphasized by a first order filter whose transfer function 

is H(z)=1-0.95z-1. A 30 ms Hamming window is used, and the overlapping between adjacent 

frames is 2/3. One minute of read text is used for training, and 5 sentences for testing (each 

sentence is about two seconds long). 
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Fig. 5. Saturated frame and the estimated channel function 

3.2   Speaker recognition / verification algorithm 

We have chosen a second-order based measure for the recognition of a speaker. In the training 

phase, we compute for each speaker empirical covariance matrices (CM) based on feature 

vectors extracted from overlapped short time segments of the speech signals, i.e., 

[ ]T

nnj xxEC ˆ= , where Ê  denotes estimate of the mean and xn represents the features vector for 

frame n.  As features representing short time spectra we use mel-frequency cepstral 

coefficients. In the speaker-recognition system, the trained covariance matrices (CM) for each 

speaker are compared to an estimate of the covariance matrix obtained from a test sequence 

from a speaker. An arithmetic-harmonic sphericity measure is used in order to compare the 

matrices [25]: ( ) ( )lCCCCd testjjtest log2)tr()tr(log 11 −= −− , where )tr(⋅ denotes the trace operator, 

l is the dimension of the feature vector, Ctest and Cj is the covariance estimate from the test 

speaker and speaker model j, respectively. In the speaker-verification system, the algorithm is 

basically the previous one, were have applied the following equation in order to convert the 

distance measure d into a probability measure p: 
0.5dp e−= , and the system has been 

evaluated using the DET curves [26], with the following detection cost function (DCF): 

  miss miss true fa fa falseDCF C P P C P P= × × + × ×  where Cmiss is the cost of a miss, Cfa is the cost 

of a false alarm, Ptrue is the a priori probability of the target, and Pfalse = 1 − Ptrue. We have used 

Cmiss= Cfa =1. Figure 6 shows an example of DET plot. 
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Fig. 6. Example of a DET plot for a speaker verification system (dotted line). The Equal Error 

Rate (EER) line shows the situation where False Alarm equals Miss Probability (balanced 

performance). Of course one of both errors rates can be more important (high security 

application versus those where we do not want to annoy the user with a high rejection/ miss 

rate). If the system curve is moved towards the origin, smaller error rates are achieved (better 

performance). If the decision threshold is reduced, we get higher False Acceptance/Alarm 

rates. 

4. Experiments and conclusions 

Using the database described in section 3, we have artificially generated a test signal database, 

using the following procedure: 

• All the test signals are normalized to achieve unitary maximum amplitude. 

• A saturated database has been artificially created using the following equation: 

• ( )kxtanhx =′ , where k is a positive constant. 

The training set remains the same, so no saturation is added. In order to show the improvement 

due to the compensation method, figure 6 shows one frame that has been artificially saturated 

with a dramatic value (k=10), the original, and the recovered frame applying the blind 

inversion of the distortion. 
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Fig. 7. Example of original, saturated, and recovered frame using the proposed procedure. 



 
Using the original (clean) and artificially generated database (saturated) we have 

evaluated the identification rates and the minimum DCF. For the saturated test sentences 

scenario, we have estimated one different channel model for each test sentence, applying the 

method described in section 2. This is a way to manage real situations where the possible 

amount of saturation is not known in advance and must be estimated for each particular test 

sentence. In order to improve the results an opinion fusion is done, using the scheme shown in 

figure 7. Thus, we present the results in three different combination scenarios for speaker 

recognition: 

 

• Just one opinion (1 or 2 or 3 or 4) 

• To use the fusion of two opinions (1&2 or 2&3). 

• The combination of the four available opinions.  

 

Table 1, for speaker recognition experiments, and Table 2, for speaker verification 

experiments, show the results for k=2 in all this possible scenarios using two different 

combinations [6] rules (arithmetic and geometric mean, [27]), with a previous distance 

normalization [28]. 

Table 1. Results for several classifiers, shown in figure 7. 

Combination Recognition rate 

1 (AKG+NL compensation) 83.67 % 

2 (AKG) 82.04 % 

3 (SONY+NL compensation) 80.82 % 

4 (SONY) 80 % 

Arithmetic 84.9 % 1&2 

Geometric 84.9 % 

Arithmetic 89.39% 1&3 

Geometric 87.35% 

Arithmetic 88.16% 2&4 

Geometric 86.53 % 

Arithmetic 88.16 % 1&2&3&4 

Geometric 87.76 % 

Table 2. Minimum Detect Cost Function for several classifiers, shown in figure 7. 

Combination Minimum DCF 

1 (AKG+NL compensation) 6.42 % 

2 (AKG) 5.74 % 

3 (SONY+NL compensation) 6.59 % 

4 (SONY) 7.02 % 

Arithmetic 5.95 % 1&2 

Geometric 5.95 % 

Arithmetic 4.15 % 1&3 

Geometric 4.89 % 

Arithmetic 6.99 % 3&4 

Geometric 6.21 % 

Arithmetic 4.61 % 2&4 

Geometric 5.53 % 

Arithmetic 4.43 % 1&2&3&4 

Geometric 5 % 
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Fig. 8. General Scheme of the recognition system 

Main conclusions are: 

• The use of the NL compensation improves the obtained results with the same 

conditions than without this compensation block. 

• The combination between different classifiers improves the results. These results can 

be even more improved using a weighted sum instead a mean. Anyway, we have 

preferred a fixed combination rule than a trained rule. 

• We think that using a more suitable parameterization, the improvements would be 

higher. 
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