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Abstract. In this paper we prove the existence of central configurations of
the n + 2–body problem where n equal masses are located at the vertices of

a regular n–gon and the remaining 2 masses, which are not necessarily equal,

are located on the straight line orthogonal to the plane containing the n–gon
passing through its center. Here this kind of central configurations is called

bi–pyramidal central configurations. In particular, we prove that if the masses

mn+1 and mn+2 and their positions satisfy convenient relations, then the
configuration is central. We give explicitly those relations.

1. Introduction. We consider the spatial N–body problem

mk q̈k = −
N∑

j = 1
j 6= k

Gmkmj
qk − qj
|qk − qj |3

,

k = 1, . . . , N , where qk ∈ R3 is the position vector of the punctual mass mk in an
inertial coordinate system, and G is the gravitational constant which can be taken
equal to one by choosing conveniently the unit of time. The configuration space of
the spatial N–body problem is

E = {(q1, . . . ,qN ) ∈ R3N : qk 6= qj , for k 6= j}.
Given m1, . . . ,mN a configuration (q1, . . . ,qN ) ∈ E is central if there exists a

positive constant λ such that

q̈k = −λ (qk − c) ,
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k = 1, . . . , N , where c is the center of mass of the system, which is given by

c =

∑N
k=1mkqk∑N
k=1mk

.

Thus a central configuration (q1, . . . ,qN ) ∈ E of the N–body problem with positive
masses m1, . . . ,mN is a solution of the system of equations

N∑
j = 1
j 6= k

mj
qk − qj
|qk − qj |3

= λ (qk − c) , (1)

k = 1, . . . , N , for some λ.
The first known planar central configuration of the N–body problem for N ≥ 2

consists of N equal masses located at the vertices of a regular N–gon. If we take
N equal masses at the vertices of a regular polyhedron with N vertices, then we
obtain a spatial central configuration of theN–body problem (see [1]). In addition to
regular polyhedron central configurations, the simplest spatial central configurations
of the N–body problem are the ones known as pyramidal central configurations.
Such configurations consist of N = n + 1 masses, n of which are coplanar and the
(n+ 1)–th being off the plane (see for instance [2] and [14]). The n positions of the
coplanar masses are called the base of the pyramidal central configuration.

The next simplest spatial central configurations are the ones known as double
pyramidal central configurations. Such configurations consist of N = n+ 2 masses,
n of which are coplanar and the other two being off the plane and positioned sym-
metrically above and below that plane. In the literature we can find some papers
related with double pyramidal central configurations with different shapes of basis.
For instance [16] studied for all n ≥ 4 the double pyramidal central configurations
such that the n coplanar masses are at the vertices of a regular n–gon and the
(n+ 1)–th and (n+ 2)–th masses are equal, under these assumptions the (n+ 1)–th
and the (n+ 2)–th mass are located symmetrically with respect to the n–gon. Liu
and his coauthors have some papers related with double pyramidal central config-
urations of the N body problem for N = 5, 6, 7, 9 for different shapes of their basis
(see [4, 5, 6, 7, 8, 9, 10]). Yang and Zhang in [15] also studied double pyramidal
central configurations of the 6–body problem. In [12] the authors study central
configurations of the N = n+3 body problem consisting of n masses at the vertices
of a regular n-gon, 2 masses on the straight line orthogonal to the plane containing
the n–gon passing through its center and positioned symmetrically above and below
the n-gon, and a third mass positioned at the center of the n–gon.

In this paper we consider spatial central configurations of the N–body problem,
with N = n + 2, n ∈ N and n ≥ 2, consisting of n equal masses m1 = · · · = mn

at the vertices of a (regular) n–gon and 2 masses mn+1 and mn+2 on the straight
line orthogonal to the plane containing the n–gon passing through its center. In
contrast to what happens in the known double pyramidal central configurations, we
do not impose conditions, neither on the positions, nor on the values of the masses
mn+1 and mn+2. In this paper, these configurations are called bi–pyramidal central
configurations. Notice that the double pyramidal central configurations studied in
[16] are a particular case of our bi–pyramidal central configurations when mn+1 =
mn+2 and mn+1 and mn+2 are positioned symmetrically above and below the plane
containing the n–gon. The bi–pyramidal central configurations for n = 3 are studied
in [3] and [11] from different points of view. In [3] the author proves that, for
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any pair of positive masses mn+1 and mn+2, the number of bi-pyramidal central
configurations is finite and also provides all the possible numbers of such central
configurations. In [11] the authors consider the inverse problem; that is, given a
bi–pyramidal configuration, they find the masses which make it central. We do not
know any paper considering bi-pyramidal central configurations for n > 3.

Here we analyze the bi–pyramidal central configurations from the inverse problem
point of view.

This paper is structured as follows. In Section 2 we give the equations of the
bi–pyramidal central configurations. In Section 3 we summarize some results con-
cerning to pyramidal central configurations. Finally, in Section 4, we analyze the
2–pyramidal central configurations. We prove that for all n ≥ 2 we can find posi-
tions on the straight line such that convenient masses mn+1 and mn+2 placed at
these positions provide central configurations. We also give the explicit relations
between the masses and the positions of such central configurations. Moreover we
see that for all n < 9 there exists a privileged position and a privileged value of the
top mass, which depend on n, so that any arbitrary mass located at the same dis-
tance from all other masses provides a central configuration. The precise statement
of these results is given in Theorem 4.3.

2. Equations of the central configurations. We consider N = n+2 with n ∈ N,
n ≥ 2, n equal masses m1 = · · · = mn at the vertices of a (regular) n–gon and 2
masses mn+1 and mn+2 on the straight line orthogonal to the plane containing the
n–gon passing through its center. Without loss of generality we can choose the unit
of mass so that m1 = · · · = mn = 1, and we take the unit of length in order that
the radius of the circle containing the n-gon be one. By using complex coordinates
in the plane that contains the regular n–gon, the positions of the vertices of the
n-gon can be written as qk = (eiαk , 0) ∈ C × R with αk = 2πk/n for k = 1, . . . , n.
Let mn+1 = µ1, mn+2 = µ2, qn+1 = (0, z1), and qn+2 = (0, z2), with z1 > z2. We
note that this last condition is not restrictive.

Using these notations the center of mass of the system is given by

c =
1

n+ µ1 + µ2

µ1(0, z1) + µ2(0, z2) +

n∑
j=1

(eiαj , 0)

 .

Since
∑n
j=1 e

iαj = 0,

c = (cxy, cz) =
1

n+ µ1 + µ2
(0, µ1z1 + µ2z2) .

The first n equations of (1) become

µ1
qk − qn+1

|qk − qn+1|3
+ µ2

qk − qn+2

|qk − qn+2|3
+

n∑
j = 1
j 6= k

qk − qj
|qk − qj |3

= λ(qk − c), (2)

for k = 1, . . . , n, and the last 2 equations of (1) are

µ2
qn+1 − qn+2

|qn+1 − qn+2|3
+

n∑
j=1

qn+1 − qj
|qn+1 − qj |3

= λ(qn+1 − c),

µ1
qn+2 − qn+1

|qn+2 − qn+1|3
+

n∑
j=1

qn+2 − qj
|qn+2 − qj |3

= λ(qn+2 − c).

(3)
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It is easy to check that

|qk − qj| = |eiαk − eiαj | for j 6= k, and j, k = 1, . . . , n,

|qk − qn+`| =
√

1 + z2` for k = 1, . . . , n, and ` = 1, 2,

|qn+1 − qn+2| = |z1 − z2|.

So the first components of the n vectorial equations (2) are

µ1
eiαk

(1 + z21)3/2
+ µ2

eiαk

(1 + z22)3/2
+

n∑
j = 1
j 6= k

eiαk − eiαj

|eiαk − eiαj |3
= λ eiαk , (4)

for k = 1, . . . , n. By dividing the k–th equation by eiαk we get

µ1

(1 + z21)3/2
+

µ2

(1 + z22)3/2
+

n∑
j = 1
j 6= k

1− ei(αj−αk)

|eiαk − eiαj |3
= λ,

for k = 1, . . . , n. Defining

βn =

n∑
j = 1
j 6= k

1− ei(αj−αk)

|eiαk − eiαj |3
,

after some simplifications we get

βn =
1

4

n−1∑
j=1

csc

(
πj

n

)
.

So the first components of the n vectorial equations (4) can be reduced to the single
equation

βn +
µ1

(1 + z21)3/2
+

µ2

(1 + z22)3/2
= λ. (5)

Using the fact that
∑n
j=1 e

iαj = 0, we can see easily that the first components of

the 2 vectorial equations (3) are always satisfied.
The second components of the n equations (2) become

µ1
z1

(1 + z21)3/2
+ µ2

z2
(1 + z22)3/2

= λ cz, (6)

for all k = 1, . . . , n. Finally, the second components of the 2 vectorial equations (3)
become

n
z1

(1 + z1)3/2
+ µ2

z1 − z2
|z1 − z2|3

= λ(z1 − cz),

n
z2

(1 + z22)3/2
+ µ1

z2 − z1
|z2 − z1|3

= λ(z2 − cz).
(7)

In short, system (1) can be reduced to the 4 equations (5), (6) and (7) with the 3
unknowns λ, z1, z2. We note that one of these equations is redundant. Indeed, if we
multiply the first equation of (7) by µ1 and the second one by µ2 and we add the
resulting equations, then we get

n

(
µ1

z1
(1 + z21)3/2

+ µ2
z2

(1 + z22)3/2

)
= λ(µ1z1 + µ2z2)− λ(µ1 + µ2)cz. (8)
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From (6), the left hand of (8) becomes nλ cz. On the other hand, from the definition
of cz, we have that µ1 z1 + µ2 z2 = (n+ µ1 + µ2)cz. Therefore (8) becomes

nλ cz = λ cz (n+ µ1 + µ2)− λ cz(µ1 + µ2),

which is always satisfied.
We add equation (6) to each equation of (7) and we substitute the value of λ

by the value given by (5) into the resulting equations. Then the system formed by
equations (5), (6) and (7) reduces to a system of 2 equations that is linear in the
variables µ1 and µ2, and its matrix form is(

0 c1,2
c2,1 0

)(
µ1

µ2

)
=

(
t1
t2

)
, (9)

where

c`,j =
z` − zj
|z` − zj |3

+
zj − z`

(1 + z2j )3/2
,

t` = βn z` − n
z`

(1 + z2` )3/2
.

for all `, j = 1, 2 and ` 6= j.
We note that if in (9) we replace z` by −z` for all ` = 1, 2, we obtain the same

system of equations. So if z1 = z∗1 , z2 = z∗2 are such that µ1 = µ∗1, µ2 = µ∗2 is a
solution of (9), then µ1 = µ∗1, µ2 = µ∗2 is also a solution of (9) for z1 = −z∗1 , z2 = −z∗2 .
In order to simplify our computations, in what follows we assume that z1 > 0.

Since we have assumed that z1 > z2, we have that

c1,2 =
1

(z1 − z2)2
+

z2 − z1
(1 + z22)3/2

, and c2,1 = − 1

(z1 − z2)2
+

z1 − z2
(1 + z21)3/2

.

3. Pyramidal central configurations. We note that the formulation (9) allows
us to find the pyramidal central configurations obtained in [14] in an easy way.
Indeed, the pyramidal central configurations consists of placing only one mass on
the straight line orthogonal to the plane containing the n–gon passing through its
center. For these configurations equation (9) becomes the single equation

0 · µ1 = t1.

The solutions of equation t1 = 0 are

z1 = 0, z1 = ±

√(
n

βn

)2/3

− 1 := ±zβ .

We note that the values zβ are defined only for n such that n/βn ≥ 1. In [13] it
is proved that this condition is satisfied for n < 473. In short we have proved the
following known result.

Theorem 3.1. The following statements hold.

(a) For all µ1 > 0 and 2 ≤ n < 473 the problem has three central configurations,
one with µ1 at the center of the n-gon (i.e. z1 = 0), and two with µ1 at the
positions z1 = zβ and z1 = −zβ respectively.

(b) For all µ1 > 0 and n ≥ 473 the problem has a unique central configuration,
the one with µ1 at the center or the n-gon.

A different proof of Theorem 3.1 can be found in [14].
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4. Bi-pyramidal central configurations. From elementary algebra we get the
following result.

Lemma 4.1. System (9) has the following solutions:

(A) a unique solution µ1 = t2/c2,1, µ2 = t1/c1,2 when c1,2 6= 0 and c2,1 6= 0,
(B) a continuum of solutions µ1 = t2/c2,1, µ2 ∈ R when c1,2 = 0, t1 = 0, and

c2,1 6= 0,
(C) a continuum of solutions µ1 ∈ R, µ2 = t1/c1,2 when c2,1 = 0, t2 = 0, and

c1,2 6= 0,
(D) a continuum of solutions µ1 ∈ R, µ2 ∈ R when c1,2 = 0, c2,1 = 0, t1 = 0, and

t2 = 0,
(E) no solutions when either c1,2 = 0 and t1 6= 0 or c2,1 = 0 and t2 6= 0.

The solutions of (9) given by Lemma 4.1 correspond to bi–pyramidal cental
configurations only when µ1, µ2 > 0.

4.1. The curves c2,1 = 0, c1,2 = 0, t1 = 0 and t2 = 0. It is easy to see that
equation c1,2 = 0 has a unique solution which is given by

z2 = f(z1) =
z21 − 1

2z1
,

and c2,1 = 0 has the unique solution

z2 = g(z1) = z1 −
√

1 + z21 .

Analyzing the properties of the functions f and g we see that both functions are
continuous for z1 > 0. Since

f ′(z1) =
z21 + 1

2z21
> 0, g′(z1) =

√
z21 + 1− z1√
z21 + 1

> 0,

they are increasing. Moreover

lim
z1→0+

f(z1) = −∞, lim
z1→+∞

f(z1) = +∞,

lim
z1→0+

g(z1) = −1, lim
z1→+∞

g(z1) = 0.

We note that

lim
z1→+∞

f(z1)

z1
=

1

2
,

this means that f tends to infinity assymptotically to the straight line z2 = z1/2
when z1 → +∞. Finally f crosses the positive semiaxis z1 at the point z1 = 1. The
plot of the curves z2 = f(z1) and z2 = g(z1) is given in Figure 1.

We observe that when z1 > 0 the curves z2 = f(z1) and z2 = g(z1) intersect at

the unique point p∗ = (z1, z2) = (1/
√

3,−1/
√

3).
On the other hand in Section 3 we have seen that equation t` = 0 for ` = 1, 2

has a unique solution z` = 0 when n ≥ 473 and it has three solutions z` = 0 and
z` = ±zβ when 2 ≤ n < 473.

Finally, we analyze the sign of the functions c1,2, c2,1, and t` for ` = 1, 2. The
results that we have obtained are summarized in the next result.

Lemma 4.2. The following conditions are satisfied:

(a) c1,2 > 0 when z2 > f(z1), c1,2 = 0 when z2 = f(z1), and c1,2 < 0 when
z2 < f(z1),
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z2

z1

z2 = f(z1)

z2 = g(z1)−
1
√

3

1
√

3

s
p∗

Figure 1. The plot of the curves z2 = f(z1) and z2 = g(z1).

(b) c2,1 > 0 when z2 < g(z1), c2,1 = 0 when z2 = g(z1), and c2,1 < 0 when
z2 > g(z1),

(c) for 2 ≤ n < 473 and ` = 1, 2, t` > 0 when z` ∈ (−zβ , 0) ∪ (zβ ,+∞), t` = 0
when z` = 0,±zβ, and t` < 0 when z` ∈ (−∞,−zβ) ∪ (0, zβ),

(d) for n ≥ 473 and ` = 1, 2, t` > 0 when z` > 0, t` = 0 when z` = 0, and t` < 0
when z` < 0.

4.2. The signs of the solutions µ1 and µ2 of (9). The signs of the solutions
µ1 and µ2 of system (9) could change at the curves c2,1 = 0, t2 = 0 and c1,2 = 0,
t1 = 0, respectively (see Lemma 4.1). Thus, when 2 ≤ n < 473 the sign of µ1 could
change at the curves z2 = g(z1), z2 = 0, z2 = ±zβ , and the sign of µ2 could change
at the curves z2 = f(z1) and z1 = zβ . When n ≥ 473 the sign of µ1 could change
at the curves z2 = g(z1) and z2 = 0, and the sign of µ2 could change at the curve
z2 = f(z1).

We note that the shape of the regions delimited by the curves z2 = g(z1), z2 = 0,
z2 = ±zβ , z2 = f(z1), and z1 = zβ depends on the value of zβ . More precisely, if

the value of z1 = zβ belongs to either the interval (0, 1/
√

3), the interval (1/
√

3, 1),
or the interval (1,+∞); and if the value of z2 = −zβ belongs to either the interval

(−∞,−1), the interval (−1,−1/
√

3) or the interval (−1/
√

3, 0) (see Figure 1).
In [13] it is proved that the sequence {βn/n}n∈N is increasing, so {n/βn}n∈N is

decreasing, and consequently the value of zβ decreases as n increases. We compute
the sequence of values of zβ and we see that the first n such that zβ < 1 is n = 9,

and that the first n such that zβ < 1/
√

3 is n = 53. In particular, there is no n such

that either zβ = 1 or zβ = 1/
√

3. Therefore zβ > 1 for 2 ≤ n < 9, zβ ∈ (1/
√

3, 1) for

9 ≤ n < 53 and zβ ∈ (0, 1/
√

3) for 53 ≤ n < 473. Remember that zβ is not defined
for n ≥ 473. In short, we have four possible shapes for the regions delimited by the
curves z2 = g(z1), z2 = 0, z2 = ±zβ , z2 = f(z1) and z1 = zβ , one for 2 ≤ n < 9, one
for 9 ≤ n < 53, one for 53 ≤ n < 473, and finally one for n ≥ 473. These regions
are plotted in Figures 2 and 3.
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Case 2 ≤ n < 9

z1

z2

D1

D2�

D3

µ2 > 0

µ2 > 0

µ1 > 0

µ1 > 0

z1 = zβ

z2 = zβ

z2 = −zβ

z2 = f(z1)

?

z2 = g(z1)
6

rp2

Case 9 ≤ n < 53

z1

z2

D4

D5
@@I

µ2 > 0

µ2 > 0

µ1 > 0

µ1 > 0
µ1 > 0

?

z1 = zβ

z2 = zβ

z2 = −zβ

z2 = f(z1)

?

z2 = g(z1)
6r

p1

rp2

Figure 2. The regions delimited by the curves z2 = g(z1), z2 = 0,
z2 = ±zβ , z2 = f(z1), and z1 = zβ restricted to {(z1, z2) ∈ R2 :
z1 > 0, z1 > z2}, and the sign of µ1 and µ2 on each region for
n < 53.
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Case 53 ≤ n < 473

z1

z2

D7

D6

µ2 > 0

µ2 > 0�

µ1 > 0

µ1 > 0
6

µ1 > 0-

z1 = zβ

z2 = zβ

z2 = −zβ

z2 = f(z1)

?

z2 = g(z1)
6

r
p1

rp2

Case n ≥ 473

z1

z2

D8

µ2 > 0

µ1 > 0
6

z2 = f(z1)

?

z2 = g(z1)
6

Figure 3. The regions delimited by the curves z2 = g(z1), z2 = 0,
z2 = ±zβ , z2 = f(z1), and z1 = zβ restricted to {(z1, z2) ∈ R2 :
z1 > 0, z1 > z2}, and the sign of µ1 and µ2 on each region for
n ≥ 53.
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We note that the curves z2 = f(z1) and z2 = g(z1) intersect at the unique point

p∗. Since there is no n such that zβ = 1/
√

3, t1 6= 0 and t2 6= 0 when (z1, z2) = p∗,
this means that there are no solutions of system (9) of type (D) (see Lemma 4.1).

The curves z2 = g(z1) and z2 = −zβ do not intersect when 2 ≤ n < 9 and they

intersect at a unique point p1 =
(

(1− z2β)/(2 zβ),−zβ
)

when 9 ≤ n < 473 (see

Figures 2 and 3). Since z2 = g(z1) does not intersect with z2 = 0 and z2 = zβ we
have that the curves c2,1 = 0 and t2 = 0 only intersect when 9 ≤ n < 473 and the
intersection point is p1.

The curves z2 = f(z1) and z1 = zβ intersect at a unique point p2 = (zβ , f(zβ))
for all 2 ≤ n < 473 (see again Figures 2 and 3). So the curves c1,2 = 0 and t1 = 0
intersect at the point p2 for all 2 ≤ n < 473.

By means of Lemma 4.2, we compute the signs of µ1 and µ2 on all the regions
delimited by the curves z2 = g(z1), z2 = 0, z2 = ±zβ , z2 = f(z1) and z1 = zβ for
each one of the four shapes depending on n. The regions on which µ1 > 0, µ2 > 0
and µ1, µ2 > 0 are shaded in Figures 2 and 3.

Notice that the intersection point p1 of the curves c2,1 = 0 and t2 = 0 does not
belong to the region where µ2 > 0. Therefore there are no solutions of system (9)
of type (C) (see Lemma 4.1) providing central configurations.

The intersection point p2 of the curves c1,2 = 0 and t1 = 0 belongs to the region
with µ1 > 0 only when 2 ≤ n < 9. Therefore system (9) has solutions of type (B)
(see Lemma 4.1) that provide central configurations only when 2 ≤ n < 9. It is
easy to check that the value of µ1 at the point (z1, z2) = p2 is

µ1 = n− 2(nβ2
n)1/3.

In short, we have proved the following theorem.

Theorem 4.3. Let

F (n, z1, z2) =

(
βn z2 − n

z2
(1 + z22)3/2

)
/

(
− 1

(z1 − z2)2
+

z1 − z2
(1 + z21)3/2

)
,

G(n, z1, z2) =

(
βn z1 − n

z1
(1 + z21)3/2

)
/

(
1

(z1 − z2)2
+

z2 − z1
(1 + z22)3/2

)
.

Let f(z1) = (z21 − 1)/(2 z1), g(z1) = z1 −
√

1 + z21 and zβ =
√

(n/βn)2/3 − 1,

D1 = {(z1, z2) ∈ R2 : z1 ∈
(
zβ , f

−1(zβ)
)
, z2 ∈ (f(z1), zβ)},

D2 = {(z1, z2) ∈ R2 : z1 ∈ (1, zβ) , z2 ∈ (0, f(z1))},

D3 = {(z1, z2) ∈ R2 : z1 ∈
(
f−1(−zβ), 1/

√
3
)
, z2 ∈ (−zβ , f(z1))} ∪

{(z1, z2) ∈ R2 : z1 ∈
(

1/
√

3, zβ

)
, z2 ∈ (−zβ , g(z1))},

D4 = {(z1, z2) ∈ R2 : z1 ∈
(
zβ , f

−1(zβ)
)
, z2 ∈ (0, zβ)},

D5 = {(z1, z2) ∈ R2 : z1 ∈
(
f−1(−zβ), 1/

√
3
)
, z2 ∈ (−zβ , f(z1))} ∪

{(z1, z2) ∈ R2 : z1 ∈
(

1/
√

3, zβ

)
, z2 ∈ (−zβ , g(z1))} ,
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D6 = {(z1, z2) ∈ R2 : z1 ∈
(
zβ , f

−1(zβ)
)
, z2 ∈ (0, zβ)},

D7 = {(z1, z2) ∈ R2 : z1 ∈
(
zβ , 1/

√
3
)
, z2 ∈ (g(z1),−zβ)} ∪

{(z1, z2) ∈ R2 : z1 ∈
(

1/
√

3, f−1(−zβ)
)
, z2 ∈ (f(z1),−zβ)},

D8 = {(z1, z2) ∈ R2 : z1 ∈
(

0, 1/
√

3
)
, z2 ∈ (g(z1), 0)} ∪

{(z1, z2) ∈ R2 : z1 ∈
(

1/
√

3, 1
)
, z2 ∈ (f(z1), 0)},

(see Figures 2 and 3).
The configuration (q1, . . . , qn+2) =

(
(ei α1 , 0), . . . , (ei αn , 0), (0, z1), (0, z2)

)
is cen-

tral for the n+ 2–body problem in the following cases:

(a) If 2 ≤ n < 9,
(i) (z1, z2) ∈ D1 ∪ D2 ∪ D3 (see Figure 2), µ1 = F (n, z1, z2) and µ2 =

G(n, z1, z2).
(ii) z1 = zβ, z2 = f(zβ), µ1 = n− 2(nβ2

n)1/3 and µ2 ∈ (0,+∞).
(b) If 9 ≤ n < 53, (z1, z2) ∈ D4 ∪ D5 (see Figure 2), µ1 = F (n, z1, z2) and

µ2 = G(n, z1, z2).
(c) If 53 ≤ n < 473, (z1, z2) ∈ D6 ∪ D7 (see Figure 3), µ1 = F (n, z1, z2) and

µ2 = G(n, z1, z2).
(d) If n ≥ 473, (z1, z2) ∈ D8 (see Figure 3), µ1 = F (n, z1, z2) and µ2 =

G(n, z1, z2).

Of course there are the symmetric central configurations obtained changing z1 and
z2 to −z1 and −z2 respectively.

We note that the positions of the masses mi = 1 for i = 1, . . . , n, mn+1 = µ1

and mn+2 = µ2 at the configurations given by Theorem 4.3 (a)(ii) are

qk = (cos(2π k/n), sin(2π k/n), 0) for k = 1, . . . , n,

qn+1 = (0, 0, zβ), qn+2 = (0, 0, f(zβ)).

It is not difficult to check that

|qn+2 − qk| =
z2β + 1

2 zβ
for k = 1, . . . , n+ 1.

We note that in this configuration the arbitrary mass mn+2 = µ2 is located at the
same distance from all other masses.

We have done some numerical computations in order to see how many classes of
bi-pyramidal central configurations there are for given values of the two masses µ1

and µ2. As usual we denote by zi the z–coordinate of the mass µi for i = 1, 2, and
we assume that z1 > z2 with z1 > 0. Our numerical results provide evidence for
the following claims:

• If 3 < n ≤ 473 then it can be 1, 2 or 3 classes of bi-pyramidal central configu-
rations, one always having negative z–coordinate and the others if exist have
positive z–coordinate.

• If n > 473 then there is only 1 class of bi-pyramidal central configurations.
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