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A pair-approximation model for the spatial dynamics of a height-structured tree population
10is defined on a regular lattice where each site can be in one of three states: empty (gap site),

occupied by an immature tree, and occupied by a mature tree. The nonlinearities are asso-

ciated with resource competition effects of mature trees on immature ones (asymmetric com-

petition) affecting the mortality of the latter but not their growth. The survival-extinction

transition of the forest is expressed; the early dynamics of colonization are described in terms
15of local densities. Predictions of the pair approximation model are compared with results

from numerical simulations of cellular automata.

Keywords: cellular automata; early dynamics; lattice models; pair approximation; resource competition;

spatial forest dynamics

1. INTRODUCTION

20As in the study of other problems in biology and chemistry, in the 1970s partial
differential equations (PDE) were introduced to model the reaction and diffusion
processes characterizing vegetation and forest dynamics. This classical framework
offers a large-scale description of systems where population densities vary in a
continuous space. However, reaction-diffusion PDE models neglect small-scale spa-

25tial correlations and, when differences among individuals are significant and local
interactions matter, other frameworks are more appropriate (Cronhjort, 2000; Chen
et al., 2002). Such are spatially explicit individual-based models, cellular automata,
and moment-based models (Gratzer et al., 2004). When individual differences matter
but the population spatial distribution, as in forest exploitations, does not, continu-

30ously size-structured population dynamics are described by hyperbolic PDEs (Metz
and Diekmann, 1986). Goetz et al. (2011) considered this situation in the study of
optimal control problems of forest management, an optimization issue which is
usually formulated in terms of discrete age-class models (Tahvonen, 2004).
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Stochastic lattice models (Silvertown et al., 1992; Harada and Iwasa, 1994;
35Childress, 1997) have been used since the 1990s for studying spatial vegetation

dynamics (Tilman and Kareiva, 1997; Bascompte and Solé, 1997; Hanski, 1999).
Aspects of these dynamics that have been considered so far are, for instance, the size
distribution of gaps (Solé and Manrubia, 1995; Kubo et al., 1996; Schlicht and
Iwasa, 2004; Pagnutti et al., 2007), species richness (Hubbell et al., 1999), different

40neighborhoods for reproduction and competition (Ellner, 2001), regeneration waves
(Schlicht and Iwasa, 2007), and spatially correlated disturbances (Hiebeler, 2005).

Garcia-Domingo and Salda~nna (2011) extended the pioneering works of Iwasa
and co-authors on gap-occupancy models for forest spatial dynamics in order to
include a simple vertical layering. This vertical structure of the forest consists of

45three layers: the canopy (the tallest layer, composed of mature trees), the understory
(the layer composed of saplings of canopy trees), and the shrub layer (the lowest
layer of woody vegetation). This vertical stratification was also considered in Adams
et al. (2007) in the context of interspecific height-structured competition for light.
Although simple, it allows for a new type of local interaction among individuals,

50namely the asymmetrical competition for nutrients and sunlight. Manrubia and Solé
(1997) and Pagnutti et al. (2005) dealt with lattice models of forest dynamics with a
richer vertical layering; Solé et al. (2005) addressed the interaction between dispersal
strategies and vertical forest stratification. These authors used simulations of cellular
automata. In contrast, Garcia-Domingo and Salda~nna (2011) theorize on a stochastic

55lattice forest with a vertical layering, using the so-called pair approximation (Harada
et al., 1994, 1995; Rand, 1999; Keeling, 1999; Sato and Iwasa, 2000), which consists
in deriving the differential equations describing the dynamics of the total number of
ordered pairs ij of adjacent sites which are in state i and j.

The novelty of the model we present is the assumption of the existence of asym-
60metrical competition between mature and immature trees affecting the mortality of

the latter. This sort of competition is based on the fact that mature trees have a larger
root system than immature ones, are higher, and have larger crowns. In ecology, it is
the so-called self-thinning process, whereby during a stand development, the density
of trees decreases as the stand biomass increases. This process is most easily observed

65in even-aged stands. Li et al. (2000) claimed that it emerges from the ecological inter-
actions among individuals (or local spatial field effects). In this sense, competition for
light is one of the most important interactions in plant and tree populations, and the
existence of an interspecific trade-off between high survivorship under low light avail-
ability (shade-tolerant species) against rapid growth under high light availability

70(shade-intolerant or light-demanding species) is established by Martin et al. (2010).
However, in some tree species, mortality remains constant across different values
of the (radial) growth rate in dense self-thinning stands, indicating that mortality
can be driven by factors different from light competition in these species (Dekker
et al., 2009). Martin et al. (2010) show the existence of exotic invading tree species

75combining very high growth rates with moderately high shade tolerance, diverging
from the growth-survival trade-off pattern of the native species. We shall consider
that competition primarily affects the survivorship of saplings but not their growth
rate, which is assumed to remain constant for different levels of light. This can be
the case of shade-tolerant species for which the effects of competition for light are

80small compared with those competing for resources (e.g., space, nutrients, water).
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In terms of the model, the asymmetrical competition is modeled by an additional
mortality of immature trees, which is assumed to be proportional to the total number
of neighboring mature trees.

2. MODEL

85The forest region is represented by a two-dimensional regular lattice of N
stands or sites. Each site can be empty (O, a gap site), occupied by a mature tree
(M) or an immature tree (I). Transitions among these states correspond to three vital
processes: birth, growth, and death (Figure 1). Mature trees produce seeds which
germinate in nearby empty sites giving rise to immature trees (saplings). The latter

90can die, leaving an empty site, or grow and become a mature tree. Similarly, mature
trees can die, creating new gaps.

Due to the local interactions among trees, the rates of these processes are not
constant but rather depend on the states of the neighboring sites. For instance, the
recruitment of immature trees depends on the total number of mature trees around

95empty sites because the more numerous mature trees surrounding a gap, the higher
the probability of seeds germinating in this gap. In turn, the mortality of immature
trees is increased by the presence of neighboring mature trees because of asymmetri-
cal competition effects. In addition to natural mortality, mature trees can die due to
wind disturbances which cause their fall. This additional mortality is proportional to

100the total number of gap sites surrounding a mature tree. Immature trees cannot pro-
duce seeds and are insensitive to wind stress thanks to a higher flexibility.

We denote by [O], [I], and [M] the total number of gaps, immature trees, and
mature trees, respectively, in a two-dimensional regular lattice of N sites. The total
number of nearest neighbors per site in the lattice is denoted by z. For a fixed site x,

105Qx(i) denotes the total number of the nearest neighbors of x which are in state i at time
t (0�Qx(i)� z). The transitions between states for every site x are symbolized by:

1:recruitment : O!Rx
I ;

2:growth : I !g M;

3:death :
I !

DI
x
O;

M !
DM

x
O;

8<
:

where Rx, Gx,D
I
x, andDM

x are the corresponding transition rates. The growth rate g of
immature trees is assumed to be constant whereas the rest of rates are defined as:

Rx ¼ b
z
QxðMÞ; DI

x ¼ dI þ
l
z
QxðMÞ; DM

x ¼ dM þ d
z
QxðOÞ; ð1Þ

where the recruitment is proportional to the total number of neighboring mature trees
of a gap site, b=z is the per neighbor-pair fertility rate of a mature tree, dI is the natural
mortality rate of immature trees, l=z is the competition effect caused by a neighboring
mature tree on an immature tree. The natural mortality rate of mature trees is dM, and
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115d=z is the induced mortality due to the presence of a gap in the neighborhood of a
mature tree. Therefore, when all neighboring sites are gaps, the induced mortality is
equal to d, the so-called wind disturbance in Kubo et al. (1996).

We use the pair approximation technique to analyze the dynamics of structured
populations, which are spatially distributed in regular lattices (Rand, 1999; Keeling,

1201999; Sato and Iwasa, 2000). The idea of this method is to extend the mean-field
equations for the total number of sites in different states (O, M, and I) by incorpor-
ating pairwise interactions between neighboring sites which define the pairs. To
approximate the total number of triples arising in the equation for pairs, we assume
that the presence of a site in a given state at one end of a triple does not affect

125the probability of the state of the site at the other end of the triple. The system of
equations for the total number of different types of pairs is closed under this triple
closure.

Let [ij] be the total number of ordered pairs of adjacent sites in states i and j.
Because only nearness in space defines pairs, [ij]¼ [ji] and pairs of adjacent sites in

130the same state i are counted twice in [ii]. Let [ijk] be the total number of ordered
triples whose sites are in states i, j, and k. Averaging over the lattice, the mean value
of the transition rates Rx, D

I
x, and DM

x are given by:

R ¼ b
z

½OM�
½O� ; DI ¼ dI þ

l
z

½IM�
½I � ; and DM ¼ dM þ d

z

½OM�
½M� : ð2Þ

Using these averages, the differential equation for the total number of immature
135trees is:

½I �0ðtÞ ¼ b
z

½OM�ðtÞ
½O�ðtÞ ½O�ðtÞ � gþ dI þ

l
z

½IM�ðtÞ
½I �ðtÞ

� �
½I �ðtÞ: ð3Þ

Similarly, one can compute the average total number of neighbors in a given
state for the sites belonging to a given type of pair. For example, the mean total

140number of neighboring mature trees of the gap in (I, O)-pairs is given by [IOM]=[IO].

Figure 1. Scheme of the transitions among states and the interactions between neighboring sites assumed

in the forest model. Doted arrows pointing to a plus sign (þ) represent an additional contribution to the

transition rate caused by the presence of neighboring sites in state M around immature trees, and in state

O around mature trees.
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. Proceeding along the same lines for the other site and pair variables, the system of
differential equations governing the dynamics of sites and pairs is:

I½ �0ðtÞ ¼ �ðgþ dIÞ ½I �ðtÞ þ
b
z
½OM�ðtÞ � l

z
½IM�ðtÞ ð4Þ

M½ �0ðtÞ ¼ g ½I �ðtÞ � dM ½M�ðtÞ � d
z
½OM�ðtÞ ð5Þ

II½ �0ðtÞ ¼ 2
b
z
½IOM�ðtÞ � 2ðgþ dI Þ ½II �ðtÞ � 2

l
z
½IIM�ðtÞ ð6Þ

IM½ �0ðtÞ ¼ b
z
½OM�ðtÞ þ g ½II �ðtÞ � ðdI þ dM þ gÞ ½IM�ðtÞ � l

z
½IM�ðtÞ

þ b
z
½MOM�ðtÞ � d

z
½IMO�ðtÞ � l

z
½MIM�ðtÞ

ð7Þ

MM½ �0ðtÞ ¼ 2 g ½IM�ðtÞ � 2 dM ½MM�ðtÞ � 2
d
z
½OMM�ðtÞ: ð8Þ

This system of equations is closed by introducing a pair approximation (PA)
150for the total number of triples. Here we use the usual PA (Kubo et al., 1996), which

is given by:

½ijl� ¼ k
½ij�½jl�
½j� ; ð9Þ

with k ¼ z�1
z , although other values of k are possible (Rand, 1999). Under this

approximation, the expected total number of (i, j, l)-triples in the lattice is equal
155to the total number of neighbors of those j-sites in (i, j)-pairs, (z� 1)[ij], times the

conditional probability that a j-site has a neighbor in state l, [jl]=(z[j]). This PA
and the fact that, for x¼O, I, M, z[x]¼ [xI] þ [xM] þ [xO] amount to the approx-
imations for the total number of triples of each type:

½IIM� ¼ k
½II �½IM�

½I � ; ð10Þ

½IOM� ¼ k
½IO�½OM�

½O� ¼ k
ðz½I � � ½IM� � ½II �Þðz½M� � ½IM� � ½MM�Þ

N � ½I � � ½M� ; ð11Þ

½MIM� ¼ k
½IM�2

½I � ; ð12Þ

½MOM� ¼ k
½OM�2

½O� ¼ k
ðz½M� � ½IM� � ½MM�Þ2

N � ½I � � ½M� ; ð13Þ

½IMO� ¼ k
½IM�½MO�

½M� ¼ k
½IM�ðz½M� � ½IM� � ½MM�Þ

½M� ; ð14Þ
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½OMM� ¼ k
½OM�½MM�

½M� ¼ k
ðz½M� � ½IM� � ½MM�Þ½MM�

½M� : ð15Þ
165

The nonlinearities introduced by the PA lead to the existence of singularities
when the system is linearized around the trivial equilibrium [I]� ¼ [M]� ¼ [II]� ¼
[IM]� ¼ [MM]� ¼ 0. To remove these singularities, we re-scale the state variables
using the fact that the total number of immature trees approaches 0 at the same rate

170as that of mature trees (see section 3.2).

3. EXTINCTION EQUILIBRIUM

One of the basic aspects of the dynamics of a population model is the stability
of the trivial equilibrium. From an ecological point of view, this equilibrium is
reached either when a population of trees experiences a change of (exogenous)

175environmental conditions and goes extinct, or when an initial colonization of an
empty area fails to progress. In the first case, we think of a change in the value of
one or more parameters and are interested in the extinction-survival transition curve.
In the second case, we are interested in the early dynamics with initial conditions
close to the trivial equilibrium. In either case, we refer to the trivial equilibrium as

180‘‘the extinction equilibrium.’’

3.1. Existence of an Extinction Threshold

The main tuning parameter in the extinction-survival transition curve (or
surface) is the wind disturbance d with dc denoting its critical value, corresponding
to the extinction threshold of the system. Adding Eq. (4) and (5) we obtain

d

dt
½I �ðtÞ þ ½M�ðtÞð Þ ¼ � dI ½I �ðtÞ þ dM ½M�ðtÞ þ l

z
½IM�ðtÞ

� �
þ b� d

z
½OM�ðtÞ ð16Þ

< �dmð½I �ðtÞ þ ½M�ðtÞÞ þ b� d
z

½OM�ðtÞ; ð17Þ

where dm: ¼min {dI, dM}> 0. Hence, the total number of trees [I] þ [M] tends
exponentially to 0 as t!1 for d � b, regardless of the values of the other mortality
rates dI, dM, and l. The tree population survival is then only possible for d < dc< b.

190Moreover, when d is large enough, the competition-induced mortality l is also used
as a tuning parameter. In this case, there exists a critical value lc such that for l> lc
the tree population goes to extinction.

Assuming the existence of a unique nonextinction equilibrium for each d < dc,
we follow the branch of these equilibria toward the bifurcation point by taking

195d ! d�c . The value of the extinction threshold dc depends on other parameters. This
dependence defines the survival-extinction transition surface in the parameter space:
dc¼ dc(b, g, dI, dM, l). To obtain this transition surface numerically, we proceed
using the following steps (Garcia-Domingo and Salda~nna, 2011):

1. At a nontrivial equilibrium, isolate [IM]� and [MM]� in terms of [I]� and [M]�

200from Eq. (4) and (5). For l> 0,
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½IM��
½MM��

� �
¼ z

ld
bg� dðgþ dI Þ �bdM

ddI � ðb� dþ lÞg bdM þ lðdþ dMÞ

� �
½I ��
½M��

� �
; ð18Þ

and substitute their expressions into the other model equations. The condition
bg> d(gþ dI) is necessary for [IM]� > 0 and implies b> d.

2. Impose that [IM]� > 0 and [MM]� > 0 at any nontrivial equilibrium to obtain,
205from System (18), the lower and upper bounds of [I]�=[M]�:

0 <
bdM

bg� dðdI þ gÞ <
½I ��

½M�� <
bdM þ lðdM þ dÞ

ðbþ lÞg� dðgþ dI Þ
: ð19Þ

3. Check that the inequality between the previous bounds amounts to

RMF
0 :¼ g

ðgþ dIÞ
b

ðdM þ dÞ > 1; ð20Þ

210which is a necessary (but not sufficient) condition on the values of the parameters
for the existence of a nontrivial equilibrium. Here RMF

0 corresponds to the basic
reproduction number obtained by decoupling Eq. (4) and (5) from Eq. (6), (7),
and (8) using the mean-field approximation for the total number of pairs, that
is, introducing the approximation [ij] � z[i][j]=N for the total number of pairs

215[ij]. RMF
0 is an upper bound of the true value of R0 and overestimates the popu-

lation growth rate (Garcia-Domingo and Salda~nna, 2011).
4. Isolate [II]� in terms of [I]� and [M]� fromEq. (6) and check that lim

d!d�c
½II ��=ðz½I ��Þ ¼ 0

using that [I]� þ [M]� ! 0þ as d ! d�c .
5. Divide Eq. (7) and (8) at equilibrium by z[M]� and take the limit as d ! d�c to

220obtain a system of equations valid at the bifurcation point:

f 1ðC; dc; l; b; dI ; dM ; gÞ ¼ 0 ð21Þ

f 2ðC; dc; l; b; dI ; dM ; gÞ ¼ 0; ð22Þ

where C¼ lim d!dc� ([I]
�=[M]�) is a positive constant thanks to Eq. (19).

6. Give values to the parameters satisfying the condition RMF
0 > 1 and find the criti-

225cal values dc and C numerically. This condition and Eq. (21) and (22) determine
the survival-extinction transition surface.

In the numerical solution of System {(21),(22)}, dc depends on other
parameters of the model. In particular, as we already proved at the beginning of this
section, the top right panel of Figure 2 shows that dc< b using b as a parameter.

230Alternatively, we solve System {(21),(22)} for l¼ lc with C¼ liml!lc
([I]�=[M]�)> 0

and obtain the survival-extinction transition surface lc¼ lc(b, g, dI, dM, d) as shown
in Figure 3 for a particular choice of the parameters values.

3.2. Stability of the Extinction Equilibrium

To study the linear stability of the extinction equilibrium we transform
235System {(4),(5),(6), (7),(8)} to get rid of the singularities around this equilibrium.

SPATIAL PATTERNS IN TREE POPULATIONS 7



As in Garcia-Domingo and Salda~nna (2011), this is done by re-scaling the original
variables:

x ¼ ½I �
½M� ; y ¼ ½M�; u ¼ ½II �

z½M� ; v ¼ ½IM�
z½M� ; w ¼ ½MM�

z½M� : ð23Þ

Writing u as [II]=(z[I])�x, any admissible solution must satisfy u< x. According to
240these re-scaled variables and as [OM]=(z[M])¼ 1� v�w, the system of differential

equations is:

x0ðtÞ ¼ bð1� vðtÞ � wðtÞÞ � lvðtÞ � ðgð1þ xðtÞÞ þ dI � dM

� dð1� vðtÞ � wðtÞÞÞxðtÞ
ð24Þ

y0ðtÞ ¼ ðgxðtÞ � dM � dð1� vðtÞ � wðtÞÞÞyðtÞ ð25Þ

Figure 2. Survival-extinction transition curves. Critical wind disturbance dc against changes in the growth

rate g (top left panel), in the fertility rate b (top right panel), in the immature mortality dI (bottom left

panel), and in mature mortality dM (bottom right panel). Parameters: l¼ 0.1, dI¼ dM¼ 0.01 (except when

one of them is the tuning parameter), b¼ 0.2 (except in the top right panel), g¼ 0.2 (except in the top left

panel).
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u0ðtÞ ¼ 2 kb
ð1� vðtÞ � wðtÞÞðxðtÞ � uðtÞ � vðtÞÞ

N � yðtÞðxðtÞ þ 1Þ yðtÞ � ðgð2þ xðtÞÞ þ 2dI

þ 2 kl
vðtÞ
xðtÞ � dM � dð1� vðtÞ � wðtÞÞÞ uðtÞ

ð26Þ

v0ðtÞ ¼ b
z
ð1� vðtÞ � wðtÞÞ þ g uðtÞ � ðgð1þ xðtÞÞ þ dI þ

l
z

� d
z
ð1� vðtÞ � wðtÞÞÞ vðtÞ þ kb

ð1� vðtÞ � wðtÞÞ2

N � yðtÞðxðtÞ þ 1Þ yðtÞ � kl
v2ðtÞ
xðtÞ

ð27Þ

w0ðtÞ ¼ 2 gvðtÞ � ðgxðtÞ þ dM þ ðz� 2Þ d
z
ð1� vðtÞ � wðtÞÞÞwðtÞ: ð28Þ

The first component x� of an equilibrium of System {(24),(25),(26),(27),(28)}
corresponding to an extinction equilibrium of the original system (y� ¼ [M]� ¼ 0) is

250always strictly positive. If x approaches 0, v0(t) becomes negative and unbounded;

Figure 3. Survival-extinction transition curves. Critical competition-induced mortality lc against changes
in the growth rate g (top left panel), in the fertility rate b (top right panel), in the immature mortality dI
(bottom left panel), and in mature mortality dM (bottom right panel). Parameters: b¼ 0.2, dI¼ dM¼ 0.01

(except when one of them is the tuning parameter), g¼ 0.2 (except in the top left panel), and d¼ 0.12

(except in the top right panel).

SPATIAL PATTERNS IN TREE POPULATIONS 9



the positivity of x0(t) follows because v(t) also tends to 0, and the first term in the
right hand side of Eq. (24) becomes the dominant one. This guarantees that
x(t)> 0 for all t> 0, which implies that x� > 0 at any extinction equilibrium, and that
Eq. (27) for v0(t) has no singularities close to this equilibrium.

255Whenever y� ¼ 0, any equilibrium of System {(24),(25),(26),(27),(28)} is of the
form (x�, 0, 0, v�, w�) with x�, v�, w� > 0. From Eq. (24) at equilibrium, g(1þ x�)þ
dI� dM� d(1� v� �w�)¼ b(1� v� �w�)=x� � lv�=x�. Upon substitution into the
right-hand side of Eq. (26), (gþ dIþ b(1� v� �w�)=x� þ (z� 2)=z�lv�=x�)u� ¼ 0
which implies u� ¼ 0 because z� 2 and v� þw� < 1 by the definition of the re-scaled

260variables. Substituting y� ¼ u� ¼ 0 into Eq. (27), v� > 0 because of the strict positivity
of the first term in the right-hand side of this equation, which implies v0(t)> 0 for
v � 0. At the survival-extinction transition, the equilibrium is given by
ðx�; y�; u�; v�;w�Þ ¼ ðC; 0; 0; ac2; a

c
3Þ with C given by the solution of Eq. (21) and

(22), ac2 :¼ lim
d!dc

½IM��=ðz½M��Þ and ac3 :¼ lim
d!dc

½MM��=ðz½M��Þ.

265Local stability of the extinction equilibrium is examined by linearizing System
{(24), (25),(26),(27),(28)} around the equilibrium (x�, 0, 0, v�, w�) and computing the
eigenvalue of the corresponding Jacobian matrix J� with the largest real part, here
denoted by k1. This eigenvalue turns out to be real and coincides with the stability
modulus of J�. In particular, both factors on the right-hand side of Eq. (25) must be

270equal to 0 at the bifurcation equilibrium so that J�ðC; 0; 0; ac2; a
c
3Þ has a row whose

elements are all 0 and, subsequently an eigenvalue equals 0. Figure 4 shows k1 para-
meterized by d and l. From Figure 4, as expected, k1! 0 as d! dc (left panel) or
l! lc (right panel). As k1 crosses 0, the computation of the equilibria of System
{(24),(25),(26),(27),(28)} shows that this system undergoes a transcritical bifurcation

275at the equilibrium ðx�; y�; u�; v�;w�Þ ¼ ðC; 0; 0; ac2; a
c
3Þ with an exchange of stability

between the only admissible (u� < x�) non-extinction (y� > 0) equilibrium existing
for d < dc and the extinction one. For d> dc, the second component of the
non-trivial equilibrium becomes negative and this equilibrium has no biological
meaning.

Figure 4. Stability modulus of the Jacobian matrix of System {(24),(25),(26),(27),(28)} linearized around

the equilibria (x�, 0, 0, v�, w�) parameterized by d (left panel) and l (right panel). Parameters: dI¼ dM¼
0.01, b¼ g¼ 0.2, l¼ 0.1 (left) and d¼ 0.12 (right). The dashed vertical line in each panel corresponds to

the critical value dc � 0.16186 (left) and lc � 0.60152 (right).
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2803.3. Early Dynamics of Colonization

To have an interpretation of why the re-scaled extinction equilibrium has
strictly positive components is useful to examine the early dynamics of some local
densities at the beginning of the colonization of an empty area, when almost all
the sites are gaps. As in Garcia-Domingo and Salda~nna (2011), we derive the limit

285equations for the dynamics of the local densities as [O]=N! 1 by assuming that x
tends to an arbitrary but fixed value n> 0 as [O]=N! 1 because x� > 0 at any extinc-
tion equilibrium. Using [OM]=(z[O])! 0 as [O]=N! 1, from Eq. (4) and (6),

d

dt

½II �ðtÞ
z½I �ðtÞ

� �
¼ ½II �0ðtÞ

z½I �ðtÞ �
½II �ðtÞ
z½I �ðtÞ

½I �0ðtÞ
½I �ðtÞ

! � gþ dI þ b
½OM�ðtÞ
z½M�ðtÞ

½M�ðtÞ
½I �ðtÞ þ l

z� 2

z

½IM�ðtÞ
z½I �ðtÞ

� �
½II �ðtÞ
z½I �ðtÞ :

ð29Þ

290The strict positivity of the term in parentheses implies that the local density
u(t)¼ [II](t)=(z[I](t)) tends to 0 exponentially fast as t!1. This fact is consistent
with [II]�=(z[I]�)¼ 0 at the bifurcation point given by the survival-extinction tran-
sition. As x(t)> 0 for all t> 0 and [II](t)=(z[I](t)) tends to 0 with time when [O]=N
� 1, u(t)¼ x(t) [II](t)=(z[I](t)) also tends to 0 with time, and the limit equation of

295Eq. (27) is:

v0ðtÞ ¼ b
z

1� wðtÞð Þ

� gð1þ nÞ þ dI þ
l
z
þ lk

vðtÞ
n

þ b
z
� d

z
ð1� vðtÞ � wðtÞÞ

� �
vðtÞ:

ð30Þ

From the phase portrait of the system given by Eq. (28) and (30) (with x¼ n),
this limit system has always a unique equilibrium ðv�O;w�

OÞ 2 fðv;wÞ 2
300ð0; 1Þ � ð0; 1Þ : vþ w < 1g, and v(t) and w(t) are always strictly positive. Even if

we are very close to the extinction equilibrium, the densities [IM]=(z[M]) and
[MM]=(z[M]) of immature and mature trees around a mature tree grow quickly.
These local densities settle the environmental conditions that will determine the
initial success or failure of the colonization of an empty area. Moreover, under a gen-

305eral condition on the parameters values (independent of n), the asymptotic stability
of ðv�O;w�

OÞ is guaranteed (see Appendix).
When the extinction equilibrium is unstable, the assumption [O]=N! 1 is

no longer true as the colonization progresses. This means that our previous analysis
based on the limit equations is no longer valid and the full system must be considered.

3104. SIMULATIONS

To check the validity of the model predictions, we performed simulations with
cellular automata (CA) using the transition rates described in section 2. The size of
the lattice is 100� 100; periodic conditions are assumed at the boundaries and the
size of the neighborhood of each site is z¼ 4. The tuning parameters in the simula-

315tions are, alternatively, the competition-induced mortality rate l of immature trees
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and the additional mortality d of the mature trees due to wind disturbance. The other
parameters are kept constant at: g¼ b¼ 0.2 and dI¼ dM¼ 0.01. All values of d and l
used in the CA satisfy the inequalities gþ dIþ l� 1 and dMþ d� 1. These
constraints and the additional one given by b �1 imply that, at each time step of

320the simulations, the probability that a given transition takes place in a given lattice
site x is equal to the corresponding transition rate defined in section 2. The initial
configuration consists of approximately one third of the sites in each of the three
possible states which are randomly distributed over the lattice.

The simulations show a good agreement among the local densities predicted by
325the pair approximation and those observed in the CA when parameters are far from

the survival-extinction transition (Figures 5 and 6). The disagreement between
predictions and simulations of CA for parameters close to the critical values is

Figure 6. Local densities around mature trees at equilibrium parameterized by l: [OM]=(z[M]) (increasing

curve), [IM]=(z[M]) (decreasing curve) and [MM]=(z[M]) (the lowest curve). Circles, squares, and

diamonds result from the simulations of the CA model. Parameters: b¼ 0.2, g¼ 0.2, dI¼ dM¼ 0.01,

d¼ 0.05 (left panel), and d¼ 0.12 (right panel). The dashed vertical line in the right panel corresponds

to the critical value lc � 0.60152.

Figure 5. Local densities around immature trees at equilibrium parameterized by l: [OI]=(z[I]) (increasing

curve), [IM]=(z[I]) (decreasing curve) and [II]=(z[I]) (the lowest curve). Circles, squares, and diamonds

result from the simulations of the CA model. Parameters: b¼ 0.2, g¼ 0.2, dI¼ dM¼ 0.01, d¼ 0.05 (left

panel), and d¼ 0.12 (right panel). The dashed vertical line in the right panel corresponds to the critical

value lc � 0.60152.
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known (Matsuda et al., 1992; Sato et al., 1994; Levin and Durrett, 1996; Tilman and
Kareiva, 1997). It occurs because of long-range spatial correlations between the site

330states. When l is used as a tuning parameter, predictions about local densities close
to extinction are slightly less accurate than those obtained when d is the tuning para-
meter (Figure 7).

The effect of the competition-induced mortality l on the spatial arrangement
of trees is only noticeable for d> 0. In this case, there is a lower bound for l over

335which an empty site is more likely in the neighborhood of an immature tree than
around a mature tree. Meanwhile, the probability of having another immature tree
in the neighborhood tends to 0 smoothly. This effect of l is greater for large values
of d (as the comparison between the left and right panels of Figure 5 shows).

5. CONCLUSION

340Our pair-approximation model of the spatial distribution of a forest close to
extinction shows that the competition-induced mortality l of immature trees caused
by mature trees is less determinant for an initial success of colonization in an empty
area than wind disturbance d.

Close to extinction, the agreement between model predictions and simulations
345from cellular automata is lower than in the case where mature trees affect the growth

of immature trees by reducing sun-light availability but not survival (Garcia-
Domingo and Salda~nna, 2011). The stronger interaction among mature and immature
trees assumed in the present model and the fact that d must be large enough for
having reasonable critical values of l might be the reason.

350The effect of competition-induced mortality l is to reinforce the effect of wind
disturbance d when the system approaches the survival-extinction transition. In
particular, because we assumed very low natural mortalities for mature and imma-
ture trees in the simulations (dI¼ dM¼ 0.01), this effect, to be noticeable for realistic
values of lc, requires that d	 0 (top right panel in Figure 3). When l! lc, as well as

Figure 7. Local densities around immature (left) and mature (right) trees at equilibrium parameterized by

d. Left panel: [OI]=(z[I]) (increasing curve), [IM]=(z[I]) (decreasing curve) and [II]=(z[I]) (the lowest curve).

Right panel: [OM]=(z[M]) (increasing curve), [IM]=(z[M]) (decreasing curve) and [MM]=z[M] (the lowest

curve). Circles, squares, and diamonds result from the simulations of the CA model. Parameters:

b¼ 0.2, g¼ 0.2, dI¼ dM¼ 0.01, l¼ 0.1. The dashed vertical line in the panels corresponds to the critical

value dc � 0.16186.
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355when d! dc, immature trees show a trend to be located between mature trees and
gaps (Figure 8). In the first case, immature trees minimize the competition effects
caused by mature trees while, in the second one, mature trees avoid the effect of wind
disturbance. When l! lc, the neighborhoods of mature and immature trees change
less abruptly (Figures 5 and 6) than when d! dc (Figure 7).
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445APPENDIXQ2

The phase portrait of the limit system is defined by Eq. (28) and (30) for a fixed
ratio x¼ n between immature and mature trees. We have seen that x� > 0 and
0< v� þw� < 1 at any equilibrium of Eq. (24), (25), (26), (27), and (28) of the form
(x�, 0, 0, v�, w�). Assume that x approaches an arbitrary but fixed value n> 0 when

450[O]=N! 1. The nullclines v0(t)¼ 0 and w0(t)¼ 0 of the system are given by the curves:

w1ðvÞ ¼
z

dvþ b
b
z
� v gð1þ nÞ þ dI þ

l
z
þ kl

v

n
þ b

z
� d

z
ð1� vÞ

� �� �
; ð31Þ

v2ðwÞ ¼
w gnþ dM þ z�2

z dð1� wÞ
� �

2gþ z�2
z dw

: ð32Þ

Then w1(v) is a strictly decreasing function for all v2 [0, 1] with w1(0)¼ 1 and
455w1(1) <0, which does not intersect the straight line vþw¼ 1 for v2 (0, 1) because

w00
1ðvÞ < 0 and w0

1ð0Þ < �1. Also, v2(w) is strictly positive for all w2 (0, w0) with
w0¼ 1þ (gn þdM)=(d(z� 2)=z)> 1. Moreover, v2(0)¼ v2(w0)¼ 0 and

v2
00ðwÞ ¼ �4g

z� 2

z
d
2gþ gnþ dM þ z�2

z d

2gþ z�2
z dw

� �3 < 0 8w > 0: ð33Þ

460For any n> 0, there always exists a unique strictly positive equilibrium
ðv�O;w�

OÞ 2 X :¼ fð0; 1Þ � ð0; 1Þ : vþ w < 1g of System {(28),(30)}.

The Jacobian matrix of this limit system is Jðv;wÞ ¼ a11 a12
a12 a22

� �
with

a11 ¼ � gð1þ nÞ þ dI þ
l
z
þ b

z
� d

z
ð1� v� wÞ

� �
� v 2k

l
n
þ d

z

� �
ð34Þ

a12 ¼ � b
z
� d

z
v; ð35Þ

a21 ¼ 2gþ z� 2

z
dw; ð36Þ
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a22 ¼ � gnþ dM þ z� 2

z
dð1� v� wÞ

� �
þ z� 2

z
dw: ð37Þ

From n> 0 and 0< vþw< 1, for z� 4,

traceðJÞ < z� 2

z
dw� gþ dI þ dM þ l

z
þ b

z
þ z� 3

z
dð1� v� wÞ þ d

z
v

� �

¼ ð2z� 5Þwþ ðz� 4Þv� ðz� 3Þð Þ d
z
� gþ dI þ dM þ l

z
þ b

z

� �

< ð2z� 5Þwþ ðz� 4Þð1� wÞ � ðz� 3Þð Þ d
z
� gþ dI þ dM þ l

z
þ b

z

� �

< z� 2ð Þ d
z
� gþ dI þ dM þ l

z
þ b

z

� �

ð38Þ

470for all (v, w) 2 X. Hence, a sufficient condition for having trace (J) <0 at any (v, w) 2
X is:

z� 2ð Þ d
z
< gþ dI þ dM þ l

z
þ b

z
; ð39Þ

which we interpret as an upper bound for the wind disturbance d in terms of the
other parameters and the spatial geometry of the lattice defined by z.

475This condition guarantees the nonexistence of periodic orbits lying entirely in X
by Bendixson’s criterion (Guckenheimer and Holmes, 1983). When it is combined
with the vector field of the system, the asymptotic stability of the equilibrium
ðv�O;w�

OÞ follows. For z¼ 4 (the neighborhood size used in our simulations) and
for z¼ 8 (the so-called Moore neighborhood), condition (39) is fulfilled even by

480values of d larger than the critical value dc computed from the parameter values used
in the simulations (see Figure 2 for z¼ 4).
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