Alzheimer Disease Diagnosis based on Automatic Spontaneous Speech Analysis

K. Lopez-de-Ipiña1, J. B. Alonso2, J. Solé-Casals3, N. Barroso1, M. Faundez4, M. Ecay5, C. Travieso2, A. Ezeiza1 and A. Estanga5

1System Engineering and Automation Department, University of the Basque Country, Donostia 20008, Spain
2Universidad de Las Palmas de Gran Canaria, IDeTIC, Las Palmas de Gran Canaria, Spain
3Digital Technologies Group, Universitat de Vic, Vic, Spain
4Universitat Politècnica de Mataró (UPC), Tecnocampus, Mataró, Spain
5Neurology Department CITA-Alzheimer Foundation, San Sebastian, Spain
karmele.ipina@ehu.es

Keywords: Alzheimer Disease Diagnosis, Spontaneous Speech, Emotion Recognition.

Abstract: Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia and it has a high socio-economic impact in Western countries, therefore it is one of the most active research areas today. Its diagnosis is sometimes made by excluding other dementias, and definitive confirmation must be done trough a post-mortem study of the brain tissue of the patient. The purpose of this paper is to contribute to improvement of early diagnosis of AD and its degree of severity, from an automatic analysis performed by non-invasive intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET), that have the great advantage of being non-invasive, low cost and without any side effects.

1 INTRODUCTION

Alzheimer’s Disease (AD) is the most common type of dementia among the elderly people and it is characterized by progressive and irreversible deterioration of higher brain functions or cognition, with loss of memory, judgment and language. The disease prevents the execution of daily life tasks, giving rise to severe disability towards a full dependence. An early and accurate diagnosis of AD helps patients and their families to plan for the future and offers the best opportunity to treat the symptoms of the disease. Currently the only possible way to diagnosis the disease with absolute certainty is by exclusion of other dementias and making a post-mortem brain tissue analysis. Thus for the diagnosis of AD three distinctions are being used: possible, probable and definite (Sociedad Española de Neurología; Van de Pole, 2005). This paper presents a new approach for early AD diagnosis based on two non-invasive and low cost automatic methods: the Automatic Spontaneous Speech Analysis and the Emotional Temperature.

This paper is organized as follows: In the next section some aspects of Alzheimer disease diagnosis and speech features of the language are presented. Resources and methods used are presented in Section 3. In Section 4 we present experimental results. Finally conclusions and future work are depicted in section 5.

2 ALZHEIMER DISEASE DIAGNOSIS

Eight cognitive domains are most often damaged in AD (Morris, 1993; American Psychiatric Association): memory, language, perception, attention, constructional skills, counselling skills, problem solving, and functional capabilities. The clinical diagnosis is usually based on: Tests of memory and other cognitive functions, behavioural changes analysis; Neuroimaging (CT, SPECT, PET), and the absence of other causes by other medical tests. The greater the number of tests used in the detection, the higher the reliability of the diagnosis.
Non-invasive Intelligent Techniques of diagnosis may become valuable tools for early detection of dementia and can be used by non-technologists in the habitual environments of the patient without altering or blocking their abilities. ASSA and ET are some of them.

After the loss of memory, one of the major problems of AD is the language (Figures 1, 2, 3, 4). The loss of ability to express with language will affect two types or two aspects: difficulty to speak and difficulty to understand others, which difficult the natural communication process with the environment. We can find different communication deficits in the area of language, such as (Buiza, 2010; Martinez et al, 2012):

- **Aphasia**: difficulty in speaking and understanding
- **Anomia**: difficulty for recognizing and naming things.

The problems that the patients have for communicating according to the stage of the disease and how it can help would be:

- **First Stage**: Difficulty for finding the right word in the spontaneous speech. Often it is not detected.
- **Second Phase**: impoverishment of language and vocabulary for everyday use.
- **Third stage**: Answers sometimes are very limited and with very few words.

Moreover, the emotional response in Alzheimer's patients becomes impaired and seems to go through different states. In the early stages appears social and even sexual disinhibition, behavioural changes (be angry and not being able to perform common tasks, not to express or not remembering) (Shimokawa et al, 2001; Goodkind et al, 2010; Cadieux and Greeve, 2000). However, the emotional memory remains...

And they cry more easily to be aware that caregivers of stroke. They gratefully acknowledge the caresses, smiles and hugs. The Alzheimer's patient reacts aggressive on things that, for healthy people, are harmless. Perceives a threat or danger where does not exist. In more advanced stages of Alzheimer's patients often may seem shy and apathetic, symptoms that often are attributed to memory.
problems or difficulty for finding the right words. Some responses are likely to be magnified due to an alteration in perception. Other research suggests, moreover, that the patients in this progressive brain disorder, in advanced stages, may also have a reduced ability to feel emotions due to loss of memory and memories. Then it appears apathy and sometimes depression.

3 METHODS

There are different elements that are part of social life, intellectual and personnel that constitute the individual, and one of the most important is spoken language. This allows us to speak, to communicate with others, share knowledge, express well with cultural and personal identity. Spoken language is the most spontaneous, natural, intuitive and efficient communication way among people. Therefore, the analysis by automatic methods of Spontaneous Speech, the freer and more natural expression of communication could be a useful noninvasive way for early diagnosis by combining it with other methodologies. In this study we analyze Spontaneous Speech fluency through measures of voice segment length, pause length, speech development, libraries, short time energy, centroid (Napp, 1980).

Emotions arise from the need to face a changing and partially unpredictable world which makes necessary to any intelligent system (natural or artificial) the development of emotions to survive (Plutchih, 1980; Cowie, 2001). Emotions are closely linked to learning and understanding process. Emotions are cognitive processes related to the architecture of the human mind (decision making, memory, attention, etc.).

Human interaction includes emotional information about partners that is transmitted through language explicitly and implicitly through nonverbal communication. The nonverbal information, which is often spread by corporate-cultural gestures, attitudes, modulations of voice, facial expressions, etc., it essential in human communication as it has a high effect on the communication provision of the partners and on the intelligibility of speech. Human emotions are affected by the environment, the direct interaction with the outside world but also by the emotional memory emerged from the experience of individual and cultural environment, the so called socialized emotion.

Emotions use the same components subjective, cultural, physiological and behavioral that the
individual's perception express with regard to the mental state, the body and how it interacts with the environment. The emotions, far from being an obstacle in understanding the universe, they describe it clearly.

Therefore, we will use the measure called Emotional Temperature (Alonso et.al, 2001) in our study. This method proposes a new strategy based on a few prosodic and paralinguistic features set obtained from a temporal segmentation of the speech signal. Next it is described the steps to estimate the value of the measure "emotional temperature". The speech signal is windowed by a hamming window of 0.5 seconds overlapped 50%

4 EXPERIMENTAL RESULTS

The database for the experimentation is composed by about 10 hours of Spontaneous Speech from videos where people tell enjoyable personal stories divided in about 30 minutes of people with AD diagnosis and about 9 hours of control people. The recording atmosphere is relaxed and non-invasive. The speech is divided into segments of 60 seconds. Finally it is obtained a database of about 600 segments of Spontaneous Speech. The database is multicultural and multilingual and with a wide range of ages. In this experimentation 4 control people of middle age (ME-NAD) (2 males and 2 females), 3 people with AD (ELD-AD) diagnosis and one elder person without pathology (ELD-NAD) will be used. The first set of tests consists of ASSA experiments. Results (Fig. 5, 6, 7) show significant fluency loss in people with AD with regard to the voiced/unvoiced percentage in the speech (Fig. 5) and to the length of voiced/unvoiced segments (Fig. 6)

Fig 7 (a) along the time (consecutive segments (S2:S6) shows that people with AD disease tend to decrease the length of voice segments and the fluency by increasing the unvoiced segment number and decreasing the length of voice segments. Results show a decreasing slope in the evolution of
Figure 7: (a) The Spontaneous Speech Evolution with regard to the Speech Percentage along the time, for the consecutive segments (S2:S6). (b) Voiced segment analysis with the regard to segment length (c) Unvoiced segment analysis with the regard to segment length.
Figure 8: Plots of Speech Signal, Short Time Energy and Spectral Centroid.

Spontaneous Speech for people with AD. The analysis of voiced and unvoiced segments with regard to length segments (Figure 7. b, c) shows a tendency of people with AD disease to use more and shorter voiced segments. They can’t stand Speech Fluency for a long time. In their Spontaneous Speech usually don’t appear segment longer than 10 second. With regard to unvoiced segments along the speech they use more and longer segments than control people. Figure 8 shows also lower Short Time Energy also for this people and lower Spectral Centroid for AD. The Spontaneous Speech Evolution with regard to the Speech Percent-age.

The second set of tests, consist of experiments of Emotional Temperature. Support vector machines (SVM) (Chang) have been used to quantify the discriminative ability of the proposed measures. We have used a freely available implementation named LIBSVM (Chang) in our implementation, where a radial basis kernel function was used. Classification targets are: speakers without neurological pathologies and speakers diagnosed with Alzheimer. To estimate the measure “emotional temperature”, first of all each temporal frame is classified using a SVM (also using a threshold that is obtained from EER in the training step) and next, the percentage of temporal frame that are classify as no pathological is calculated, where this value is the "emotional temperature" measure. Besides, normalization is made to the measure "emotional temperature", for that the measure "emotional temperature" has a value 50 in the threshold of EER estimated in the training step (Figure 9).

5 CONCLUSIONS

In this paper new approaches for Alzheimer Disease diagnosis based on Automatic Spontaneous Speech Analysis and Emotional Temperature have been presented. The purpose of the work is to contribute to improve early diagnosis of dementia and severity from automatic analysis, performed by non-invasive automated intelligent methods. The selected methods in this case are Automatic Spontaneous Speech Analysis (ASR) and Emotional Temperature (ET). These methodologies have the great advantage of being non invasive, low cost methodologies and have no side effects. The research on multicultural and multilingual population shows some encouraging results both in terms of the ASSA and the Emotional Temperature, showing tendencies to explore with a broader population. In future work we will integrate the described methodologies with automatic analysis methods of drawing and handwriting as well as with automatic analysis of facial features. We will extend also the analysis population as well as the type of pathology.

ACKNOWLEDGEMENTS

This work has been partially supported by SAIOTEK from the Basque Government. Dr. Solé-Casals also acknowledges the partial support of the University of Vic under the research grant R0904.
Figure 9: Emotional Temperature for, ELD4-NAD, ELD3-AD, ME3-NAD, ELD1-AD and a control person ME1-NAD and a person with AD, ELD1-AD in a segment of 3 seconds.
REFERENCES

Sociedad Española de Neurología, http://www.sen.es/