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Abstract When dealing with nonlinear blind processing algorithms (deconvolu-
tion or post-nonlinear source separation) complex mathematical estimations must
be done giving as a result very slow algorithms. This is the case, for example,
in speech processing, spike signals deconvolution or microarray data analysis. In
this paper, we propose a simple method to reduce computational time for the in-
version of Wiener systems or the separation of post-nonlinear mixtures, by using
a linear approximation in a minimum-mutual information algorithm. Simulation
results demonstrate that linear spline interpolation is fast and accurate, obtain-
ing very good results (similar to those obtained without approximation) while
computational time is dramatically decreased. On the other hand, cubic spline in-
terpolation also obtains similar good results, but due to its intrinsically complexity
the global algorithm is much more slow and hence not useful for our purpose.
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1 Introduction

Blind Signal Processing (BSP) comprises a family of unsupervised adaptive filter-
ing algorithms designed to be applied to observed signals without much informa-
tion about the hidden source signals and the system coefficients. This is the case
in Blind Deconvolution (BD) [5], where one searches for an estimation of an input
signal based only on its filtered version (output signal) or one just want to identify
the linear system (System Identification (SI)); or in Blind Source Separation (BSS)
[6,1] where the objective is to estimate source signals from a set of their linear
mixtures. Although the blind assumption represents a challenge for the algorithm
design, these problems have been intensively considered in the last thirty years
and, today, we have available a wide family of algorithms that solve the problem
in its simplest version which is called Linear Blind Signal Processing (L-BSP),
where the involved systems are linear, i.e. observed signals are obtained by a ma-
trix operation and/or linear filtering applied to the source signals (instantaneous
as well as convolutive cases).

More recently, an even more difficult problem has been considered by few re-
searchers by including unknown nonlinear distortions at some stage in the linear
system. These new models have motivated researchers to develop Nonlinear Blind
Signal Processing (NL-BSP) algorithms as it is the case of Nonlinear Blind De-
convolution (NL-BD) [13,14,12,9] and Post-Nonlinear Blind Source Separation
(PNL-BSS) [10,11] which are the subject of study in this paper, as a continuation
of our previous work [8].

Under the assumption of independent and identically distributed (iid) samples
in NL-BD or source independence in NL-BSS, it is known that algorithms based
on information theoretic criteria are able to recover the desired signals. These
algorithms pose the separation as an optimization problem where the Mutual
Information (MI) between samples in the estimated source signal (BD) [12,9],
or between estimated sources (NL-BSS)[10,11], is minimized as a function of the
inverse system coefficients.

When dealing with MI minimization algorithms in an NL-BSP context, the
score function (see its definition in the next section) appears as an important
parameter to be estimated. In these cases, due to the nonlinear part that must be
compensated, the gradient equations that come out in the optimization procedure
are much more complex than in the pure linear case (L-BSP). More specifically,
when a nonlinear distortion is considered, the gradient of MI has an expectation
form where the score function appears jointly with other functions that depend on
the inverse system parameters [12,9–11]. Those kinds of calculations are very time
consuming, as many different terms are involved into the same equation. In this
work we present a simple method to overcome this problem. The score function
and the expectation term are calculated only at N equally spaced points covering
the samples range. After that, we interpolate the result over the whole range of
the domain.

The paper is organized as follows: in section 2, mathematical models, assump-
tions and notations are defined; in section 3, the minimum mutual information
algorithms are presented for the case of the blind deconvolution problem (PNL
problem is equivalent); in section 4, the interpolation method to reduce the com-
plexity of the algorithms is introduced; in section 5, several simulation results are
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Nonlinear convolution system Inversion system

Nonlinear Blind Deconvolution (NL-BD) model

Fig. 1 The NL-BD model. The unknown nonlinear convolution system and the inversion
system are shown in the left and in the right, respectively.

presented for the case of nonlinear deconvolution (PNL problem is equivalent),
and finally, in section 6, discussion and main conclusions are outlined.

2 Models, Assumptions and Notation

The NL-BD model is shown in Fig. 1. Following the same notation used in [12,8],
we assume that the input of the system S = {s(t)} is an unknown non-Gaussian
i.i.d. process. The linear filter

h = [h(−L), ..., h(−1), h(0), h(1), ..., h(L)],

is assumed to be unknown and invertible, i.e., h−1 exists such that h−1 ∗ h =
h ∗ h−1 = δ0 (the Dirac impulse at t = 0), and h may have causal as well as
anticausal parts that can be, eventually, of infinite length (L = ∞). Here we use
“∗” to denote the discrete convolution. On the other hand, the nonlinear distortion
(memoryless) is defined by a nonlinear function f : R → R which is also assumed
unknown and invertible. In this work, it is assumed that all involved stochastic
processes x(t), y(t), etc., are wide sense stationary and ergodic, i.e. expectations
can be computed by averaging over time, for example, for the case of the mean we
have that µ = E [x(t)] ≈ 1

N

∑N
n=1 x(tn).

In order to estimate s(t) by only observing the system output e(t), we will
use an inverse structure composed of the same kind of subsystems: a memoryless
function g and a linear filter w (Fig. 1, right). The nonlinear part g is devoted to
the compensation of the distortion f without access to its input, while the linear
part w is a linear deconvolution filter. Such a system (Wiener system but in reverse
order) is known as a Hammerstein system [3].

Additionally, we define the cross-correlation function between x(t) and y(t) as
γx,y(t) = E[x(τ−t)y(τ)] and the score function of signal y(t) as ψy = (log py)

′(u) =
p′y(u)/py(u) where py(u) is the probability density function of y(t). It is noted that,
in our case, the score function is independent of t since y(t) is stationary.

The case of having multiple nonlinear observations of mixed input signals
(PNL-BSS) can be treated equivalently to the case of the NL-BD problem. In
Appendix A, we introduce the mathematical model and derive the algorithm for
that case.
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3 Minimum Mutual Information Algorithms

3.1 The Min-MI Nonlinear Blind Deconvolution Algorithm (Min-MI NL-BD)

It is known that the inverse system, composed of function g and the linear filter w,
can be estimated by minimizing the mutual information (MI) of the output Y =
{y(t)}. In [12], the Min-MI NLBD (Minimum-Mutual Information Nonlinear Blind
Deconvolution) algorithm was derived. The Min-MI NLBD algorithm requires to
compute a special perturbation signal ε(x(t)) which is needed to compensate the
nonlinear distortion. The perturbation signal is defined as follows:

ε(x(t)) = E
[
ψy(y)(w ∗ r(x− x(t))) + r′(x− x(t))

]
, (1)

where, the functions r(x) and r′(x) are chosen as the ramp function and its deriva-
tive respectively, i.e. r(x) = xH(x) and r′(x) = H(x) with H(x) being the Heavi-
side unit step function (H(x) = 1 if x ≥ 0 and H(x) = 0 if x < 0).

Additionally, the deconvolution algorithm requires to compute the cross-correlation
between the current output and its score function, i.e.

γy,ψy
(t) = E[y(τ − t)ψy(y(τ))], (2)

which can be interpreted as a high-order correlation function of y(t). In Algorithm
1, the steps of the Min-MI NL-BD Algorithm are shown.

Algorithm 1 Min-MI NL-BD [12]

INPUT: Maximum Number of Iterations Niter and output signal e(t)
OUTPUT: Estimated input signal ŝ(t)
1: i = 1; w = δ0; Inicialization
2: y(t) = (w ∗ e)(t);
3: while i ≤ Niter and NOT convergence is reached do

4: Estimate the score function ψy(y(t)) (eq. (4))
5: Compute the perturbation signal ε(x(t)) (eq. (1))
6: x(t)← x(t) + µ1ε(x(t)); Nonlinear compensation2

7: x(t)← (x(t) −mx)/σx; Normalization3

8: Estimate the cross-correlation γy,ψy
(t) (eq. (2))

9: w ← w + µ2γy,ψy
; Deconvolution Filter update2

10: y(t) = (w ∗ x)(t); Current Estimation of source signal
11: i = i+ 1;
12: end while

13: ŝ(t) = y(t);

To compute equations (1) and (2) the score function ψy(y) should be estimated
in some manner since it is not known a priori. Here, we use a nonparametric
approach based on Parzen windows [4,2,7]. This kernel density estimator is easy
to implement and has a very flexible form. Formally, we estimate the probability

density function py(y) by:

p̂y(y) =
1

BT

T∑

τ=1

K

(
y − y(τ)

B

)
, (3)
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and ψy by:

ψ̂y(y) =

∑T
τ=1K

′

(
y−y(τ)
B

)

∑T
τ=1K

(
y−y(τ)
B

) , (4)

where T is the number of available samples (the signal length in our case), K(u) is
a kernel (window) function that must obey certain properties and B is related to
the width of the window. In our experiments we used Gaussian kernels, however
many other kernel shapes can be good candidates. A “quick and dirty” method for
the choice of the bandwidth consists in using the rule of thumb B = 1.06σyT

−1/5,
which is based on the minimum asymptotic mean integrated error criterion [7].

From equation (4) it is easy to see that the computation of the score function

at a specific point y0, i.e. ψ̂y(y0) , requires to evaluate the Kernel T times and
sum over T terms then giving a complexity of order O(T ). Since the equations
(1)-(2) require the score function to be computed at every available signal point
y(t) (t = 1, 2, ..., T ), the total complexity in the score function estimation is O(T 2)
and is the same complexity that we will find computing the perturbation signal
ε(x(t)) (1) and estimating the cross-correlation γy,ψy

(t) (2).

4 Complexity reduction by interpolation of measures

By assuming signals to be ergodic processes, we are able to compute expectations
by averaging over time samples. Therefore, equations (1) and (2) can be estimated,
respectively, by:

ε(x(t)) ≈
1

T

T∑

τ=1

[
ψ̂y(y(τ))(w ∗ r(x− x(t)))(τ) + r′(x− x(t))(τ)

]
, (5)

γy,ψy
(t) ≈

1

T

T∑

τ=1

y(τ − t)ψ̂y(y(τ)). (6)

The score function (4) and the perturbation (5) must be evaluated at T points
(one per signal sample). In order to reduce the quadratic complexity to linear com-
plexity we propose to create a grid of N amplitude values covering the ranges of
the variables by using evenly-spaced points (quantization) which give us complex-
ity O(NT ). Finally, in order to have an approximation of these measures at every
time sample t = 1, 2, ..., T , we use the simplest form of a spline interpolation: the
linear interpolation, i.e., data points are graphically connected by straight lines re-
sulting in a polygon. This interpolation technique has linear complexity (O(NT ))
which means that the total complexity for computing these measures can be re-
duced from quadratic order to linear order in terms of the number of samples T .
We should also note that the estimation of equation (6) is a convolution, which
also has formally quadratic complexity O(T 2) but can be implemented in a fast
way by using the classical Fast Fourier Transform (FFT) implementation reaching
to a subquadratic complexity of order O(T log2(T )).

2 µ1 and µ2 are small scalars, typically 0.1 ∼ 0.2
3 mx and σx are the mean and the standard deviation of the signal x(t) respectively
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Fig. 2 Score function estimation for an uniformly distributed signal (left) and Extreme Value
distribution (right). Theoretical score function is plotted as a reference.

To illustrate our approach, we show in Fig. 2 two examples of the score function
estimation for: (a) an uniformly distributed signal whose pdf and score function
are py(u) = 1 and Ψy(u) = 0 for u ∈ [−0.5,0.5], respectively; and (b) using the
Extreme Value distribution, whose pdf and score functions are py(u) = eue−e

u

and Ψy(u) = 1−eu, respectively. From this figure, it is clear that the estimation of
the score function on few points (N = 10) can be used to interpolate it to all the
samples with minimal error of approximation, in fact, in the case of the Extreme
Value distribution the interpolated score function is more accurate than the one
estimated over all the available points (T = 1000).

5 Simulations and Results

In the following sections, we evaluate the computational time and performance of
our accelerated implementation of the Min-MI NL-BD algorithm and we compare
it to the original implementation which estimates the perturbation signal and the
score function in all the available samples. We consider several cases with different
filter h lengths. We have generated i.i.d signals using the uniform distribution
in the [−1, 1] interval and we applied a normalization step in order to guarantee
to have unit-variance signals. We have selected the nonlinearities such that they
significantly distort the input signals in this range. For the inverse filter we consider
symmetric filters defined by w = [w(−M), ..., w(−1), w(0),w(1), ..., w(M)] with
a total number of 2M + 1 coefficients and we evaluate the performance of the
algorithm as a function of the parameter M .

5.1 Computational Time Reduction Evaluation

In this section, we compare the computational time of the exact algorithm to
the approximated version by considering an i.i.d. random sequence s(t) as input,
filtered by the non-minimum phase FIR filter

h = [−0.0082,0,−0.1793,0, 0.6579,0,−0.1793,0,−0.0082], (7)

and then distorted with the nonlinear function f(u) = 0.1u+ tanh(5u).
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The algorithms were tested with sample sizes T = 200,400, 800,1000. For
the approximated algorithm, different numbers of N equally spaced points were
considered (for each T ) and used to approximate equations (4) and (5). In all the
cases the length of the filter w was arbitrarly set to 21 (M = 10), i.e. with the same
length for the causal and anti-causal parts. In Table 1 the cases of N from 50% to
1% are detailed in percentage of diminishing computational time: 100− (Ta/Te)×
100 where Ta is the computational time of the approximate method and Te is the
computational time of the exact method. We can see how the computational time
decreases using our approximate method, from 30% to 90% of the time needed for
the exact method, approximately.

Table 1 Percentage of diminishing time for all cases of T for the interesting cases of N . All
the percentage values are taken in reference to the exact case.

Exact Case N = 50% N = 20% N = 10% N = 2% N = 1%
T = 200 100% 28.59% 49.27% 56.43% 62.23% 63.07%
T = 400 100% 33.77% 63.36% 72.45% 80.09% 81.09%
T = 800 100% 36.85% 70.82% 81.59% 90.5% 91.61%
T = 1000 100% 36.5% 72.05% 83.26% 92.45% 93.61%

Table 2 Obtained mean Signal to Noise Ratio (SNR) in dB for all cases of T for interesting
cases of N .

Exact Case N = 50% N = 20% N = 10% N = 2% N = 1%
T = 200 11.84dB 11.70dB 11.48dB 11.62dB 8.43dB 5.31dB
T = 400 14.53dB 14.53dB 14.52dB 14.53dB 14.33dB 12.35dB
T = 800 17.48dB 17.48dB 17.48dB 17.52dB 17.86dB 18.38dB
T = 1000 18.96dB 18.95dB 18.96dB 18.99dB 19.16dB 19.21dB

But this enormous reduction on the computational time should not affect the
performance of the results. In order to evaluate the average performance, we com-
puted the mean values of SNR. The SNR can be directly measured with the output
signal to noise ratio σ2

s/σ
2
n = E[y2(t)]/E[(s(t)−y(t))2], where σ2

n is the error power
and σ2

s is the estimated signal power. In Figure 3 and Table ??, the mean SNR
versus the number of points N is shown for T = 200,400, 800, 1000. Dashed line
corresponds to the exact algorithm and solid line corresponds to the approximate
algorithm run over N points, ranging from 50% to 1% of T .

SNR values for the exact case and for the approximate cases are almost the
same for N at 50%, 20% and 10% of the T points considered in each case. For T =
200, if the number of points N is decreased to a 2% or less, the performance also
decreases and the results are not good enough. On the other side, for larger datasets
with T = 800 and T = 1000, the performance is not deteriorated even if the number
of points is decreased to 1%. If we focus on the cases corresponding to N in 50%,
20% and 10% of the points in T , where we maintain SNR values, we observe that
the reduction in computational time is within 30%- 80% approximately, but this
reduction is higher for larger datasets (T = 800 and T = 1000) and N at 2% and
1% of the T points, where we achieve reductions over 90%.
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Fig. 3 Signal to Noise Ratio (SNR) versus percentage of points considered over T for the
cases T = 200, T = 400, T = 800 and T = 1000

5.2 Performance Evaluation Under Various Conditions

Here we present a complete Monte Carlo analysis of the obtained performance by
considering various filter h lengths and different nonlinearities. In particular, we
compare the mean SNR obtained with our approximate algorithm by averaging
the results of 50 realizations.We consider the following filters with 3, 6 and 9 coeffi-
cients: h = [1, 0.2,−0.2] (case 1), h = [1,−0.0394,0.3419,−0.0523,0.0361,−0.0104]
(case 2) and h = [1,−0.0919,0.2282,−0.1274,0.1408,−0.0189,0.0173,−0.0072,0.0038]
(case 3); and two types of nonlinearities: f(u) = 0.1u+ tanh(5u) and f(u) = u3.
In all the realizations we have considered a total number of T = 1000 samples but
our algorithm computes explicitly the perturbation signal and the score function
only on a grid with N = 10 points, which represents 1% of the available points,
and linearly interpolates them to the rest o the points. In Fig. 4 we show the used
filters h, their corresponding inverse filters w (theoretical and estimated by our
algorithm) and the convolution w ∗ h using our estimated inverse filter w.

In Fig. 5 we show two different nonlinear functions f (scatter plot of z versus
e), the corresponding estimated inverse function g (scatter plot of e versus x) and
the composition of both functions, g◦f (scatter plot of z versus x) (see Fig. 1). We
can clearly observe that the algorithm is able to inverse the nonlinear functions
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Fig. 4 Illustration of filters h, inverse filters w and convolution w ∗ h for 3 (case 1), 6 (case
2) and 9 (case 3) non-zero coefficients. The selected number of nonzero coefficients for the
inverse filters are: 9(M = 4) for case 1, 9(M = 4) for case 2 and 19(M = 9) for case 3, which
correspond to the optimal values. The obtained SNRs are: 19.06dB for case 1, 18.10dB for case
2 and 18.15dB for case 3.

and hence cancel the effect of the distortion introduced by f in the convolution
system.

Finally, in Table 3, the obtained SNRs averaged over 50 realizations are shown
together with their associated standard deviations. From Fig. 4 and Table 3 it is
clear that our algorithm is able to identify correctly the Wiener system recovering
the input signals correctly.

5.3 Performance Versus Length of the Inverse Filter

In order to illustrate which is the effect of a wrong selection of of the inverse
filter w length, we performed some experiments using the same filters of of the
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Fig. 5 Scatter plots of two different nonlinearities f(u) (left), its estimated inverse functions
g(u) (center) and the composition of both nonlinear functions g(f(u)) (right), that theoretically
must be a straight line.

Table 3 Monte Carlo (MC) analysis (50 realizations): sample points T = 1000, number of
points in the interpolation grid N = 10 (1%) and the number of nonzero coefficients for the
inverse filters are: 9(M = 4) for case 1, 9(M = 4) for case 2 and 19(M = 9) for case 3 which
correspond to the optimal values.

f(u) = 0.1u+ tanh(5u) f(u) = u3

Case 1 (3 coefficients) 19.98dB±1.22dB 19.03dB±0.95dB

Case 2 (6 coefficients) 18.48dB±1.27dB 17.88dB±1.07dB

Case 3 (9 coefficients) 18.63dB±1.10dB 18.14dB±0.92dB

previous subsection (3, 6 and 9 coefficients), whose impulse response can be seen
in Fig. 4. Using an i.i.d. signal of T = 1000 samples and a nonlinear function
f(u) = 0.1u + tanh(5u), we have calculated the SNR of the system for different
values of M (from 0 to 20) and for each one of the proposed filters h. In Fig. 6
we can see the mean SNR obtained after 10 repetitions for each case. We observe
that, using very few coefficients does not allow the algorithm to recover the input
signal correctly. The optimal number of coefficients is found to be 11 (M = 5)
for case 1 and case 2, and 17 (M = 8) for case 3. If we use more coefficients, the
SNR degrades as these extra coefficients have low values but are not exactly zero
as they should be. Since the convolutional filter h is unknown, we don’t have any
a priori information about how long the inverse filter w must be. Therefore, a
practical solution can be to check the results for different filter lengths from 10
to 20 coefficients and adjust this parameter according to the results, taking into
account that having less coefficients that the optimal value is worst that taking
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more than the optimal, as can be seen in Fig. 6, where the slope of the curve
decays slowly after the optimal value of M .

5.4 Higher Order Interpolation Analysis

Linear interpolation is the simplest interpolation method. One can expect better
results if more a accurate interpolation method is used. Cubic spline interpolation
was investigated as a possible alternative interpolation strategy. In this case, a
series of unique cubic polynomials are fitted between each of the data points, with
the stipulation that the curve obtained will be continuous and appear smooth
(for a detailed explanation of properties and equations of spline curves see [15,16]
and references therein). Simulation results (same conditions of section 5.1) shown
similar SNR values as those obtained by linear interpolation (see Fig. 7b), but
computational time required for estimating all the parameters of the spline is very
high, yielding to a very slow inversion system. This aspect is shown in Fig. 7a,
where we can see how cubic spline interpolation takes more time than the exact
case, and only using 2% or less of the total available points we obtain a faster
system. Cubic spline prove to be useful only if 1% or less of the total available
points are considered, where linear method fails, giving a reasonable global SNR
result with more than 50% of reduction of the computational time. But even in
this case, better results and less computational time are obtained using a linear
interpolation over 2% of the points. Consequently, linear interpolation is the best
option considering SNR performance and computational time, allowing us to keep
a less complex algorithm.

6 Discussion and Conclusions

In this paper we have proposed a simple approximation for fast nonlinear decon-
volution and PNL source separation algorithms, based on the interpolation of the
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Fig. 7 On the left, computational time for the exact case (100%), cubic spline interpolation
and linear interpolation. Only at 2% or less of the available points cubic spline interpolation is
faster than the exact case, but in any case slower than the linear interpolation. On the right,
mean SNR for the same three cases. At 1% of the available points linear interpolation fails but
cubic spline interpolation is aible to obtain a good result.

two more complex equations of the original algorithms: the perturbation signal
ε(x(t)) (eq. (1) for the deconvolution case and eq. (9) for the PNL case) and the

score function ψ̂y(y) (4). This method allows us to reduce the original complexity
of critical parts from order O(T 2) to a linear complexity of order O(T ). Simula-
tion results for the deconvolution case, based on synthetically generated datasets,
clearly show that the performance is not affected by this approximation even if the
number of points (N) used for calculations is much smaller than the original one
(T ). For small datasets, the approximation is degraded if we use less than 10% of
the original points, while for large datasets we can diminish up to only 1% of the
original points, giving more than 90% of reduction in computational time without
any degradation in the results.

Real time algorithms for speech processing, spike signals deconvolution, mi-
croarray data analysis, etc. can be implemented using this method. In particular,
it could be useful for the treatment of speech signals where the filter h models the
linear distortion of the signal caused by the recording environment and the non-
linearity f can model typical nonlinear distortion associated to the microphone or
the amplifier. However, in real world situations such as the case of speech signals,
we usually handle non-i.i.d. signals. In such a situation, our algorithm will recover
an i.i.d version of the original signal, i.e. the innovation process of the original
speech signal. In fact, supposing that the speech signal can be modeled as an i.i.d.
sequence filtered with an autoregressive (AR) filter, we can merge the AR filter
and the channel filter h in a single combined filter. In other words, the inversion
system will recover the inverse of the cascade, and the output of the inversion
system will be the i.i.d. sequence at the input of the AR filter, i.e. the so-called
innovation process. This result was verified in [9] by applying the Min-MI NL-BD
algorithm to signals generated with an i.i.d. sequence (innovation process) as the
input of an AR filter, and to real music signals, which are no longer i.i.d. signals.
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Fig. 8 The PNL-BSSmodel. The unknown nonlinear mixing system and the separating system
are shown in the left and in the right, respectively.

Appendix A: Post-Nonlinear Blind Source Separation (PNL-BSS)

A.1 The PNL-BSS model

In [10,11], Taleb and Jutten have studied a realistic case of nonlinear mixtures,
called post nonlinear (PNL) mixtures which are separable. As it is shown in Fig. 8,
this two stage system consists of a linear mixing matrix A, followed by component
wise nonlinear distortions f1(.), ..., fn(.). We assume that the input of the system
consists of a set of n independent sources s1, ..., sn. The square matrix A ∈ Rn×n

is assumed unknown and invertible and the nonlinear distortions (memoryless)
fi : R → R (i = 1, 2, ..., n) are also assumed unknown and invertible. Again, we
assume that all involved stochastic processes are wide sense stationary and ergodic
so expectations are computed using time samples.

As in the blind deconvolution case, we will need to compute the score function
of the outputs. Due to now we have several outputs, each one with a corresponding
score function ψi, we also define a vector of score functions, the so-called marginal

score function Ψ = [ψ1, ψ2, ..., ψn]
T .

A.2 The Min-MI Post-Nonlinear Blind Source Separation Algorithm (Min-MI
PNL-BSS)

An algorithm for solving this problem was introduced in [12] where the separating
system coefficients (matrix B) and the compensation non-linearities g1, ..., gn are
chosen such that the mutual information among estimated sources y1, ..., yn is
minimized. The mixing observations are:

ei(t) = fi




n∑

j=1

aijsj(t)


 , (8)

where i = 1, 2, ..., n, sj(t) (j = 1, 2, ..., n) are the independent sources, ei(t) is the
i-th observation, aij denotes the entries of the unknown mixing matrix A and fi
is the unknown nonlinear mapping on the component i.

We highlight that, since the statistical independence among sources is the main
assumption, the separation structure is tuned so that the components of its output



14 Jordi Solé-Casals, Cesar F. Caiafa

become statistically independent. Similarly to the previous case (NL-BD) where
we minimized MI between time simples of the (only) output, in the PNL-BSS we
have to minimize the MI between estimated sources.

The gradient of the MI with respect to the parameters of the system can be
written as follows (see [10] for a detailed derivation of these equations). Special
perturbation signals ε(xi(t)) are needed to compensate the nonlinear distortions.
The vector composed by the perturbation signals is defined as follows:

ε(xj(t)) = −E

[{
n∑

l=1

ψl(sl(t))blj

}
K(yj(t)− τj) +K ′(yj(t)− τj)

]
, (9)

Additionally, the gradient of the MI with respect to matrix B becomes

∂I(y)

∂B
= −E

[
Ψy(y)x

T
]
−B−T , (10)

where K must satisfy an additional condition of positivity in order to insure con-
vergence of the gradient method.

As proposed in the NL-BD case, replacing expectations by their corresponding
time average we can obtain practical equations analogous to equations (5) and (6)
for the deconvolution problem. Additionally, we are able to reduce the complex-
ity of the algorithm by using the same strategy as proposed for NL-BD, i.e. by
computing eqn. 9 only at N points in a regular grid covering the ranges of the
variables. In Algorithm 2, the steps of the Min-MI PNL-BSS Algorithm are shown.

Algorithm 2 Min-MI PNL-BSS [10]

INPUT: Maximum Number of Iterations Niter and output signal e(t)
OUTPUT: Estimated input signal ŝ(t)
1: i = 1; B = I; Inicialization
2: y = Be

3: while i ≤ Niter and NOT convergence is reached do

4: for j = 1 : n do

5: Estimate the score function ψj (eq. (4))
6: Compute the perturbation signal ε(xj(t)) (eq. (9))
7: xj(t)← xj(t) + µ1ε(xj(t)); Nonlinear compensation 4

8: xj(t)← (xj(t) −mxj )/σxj ; Normalization
9: end for

10: Estimate E = ∂I(y)
∂B

(eq. (10))

11: B← B+ µ2E; Separating matrix update 4

12: y = Bx; Current Estimation of source signals
13: for j = 1 : n do

14: yj(t)← (yj(t) −myj )/σyj ; Normalization 5

15: B← Λ−1B; Normalization 6

16: end for

17: i = i+ 1;
18: end while

19: ŝ(t) = y(t);

4 µ1 and µ2 are small scalars, typically 0.1 ∼ 0.2
5 mx and σx are the mean and the standard deviation of the signal x(t) respectively
6 Λ is a diagonal matrix with the standard deviations of each source in its main diagonal,

i.e. Λi,i = σ̂ŝi
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