Treball final de màster

Estudis i primera fase per la implementació del FOFB al Sincrotró ALBA

Xevi Serra Gallifa

Màster en Tecnologies Aplicades de la Informació
Director: Moisès Serra
Vic, març de 2012
Índex de continguts

1 Introducció ... 6
 1.1 Objectius .. 6
 1.2 Estructura de la memòria .. 7

2 Antecedents .. 8
 2.1 Sincrotró ALBA .. 8
 2.2 Plantejament del problema. .. 8
 2.2.1 Fast Orbit FeedBack (FOFB) .. 9
 2.2.2 Altres consideracions d’ALBA .. 12
 2.3 Estat de l’art. Altres fonts de llum sincrotró .. 12
 2.3.1 Swiss Light Source (SLS) .. 13
 2.3.2 Diamond Light Source (DLS) ... 14
 2.3.3 Altres Fonts de llum sincrotró ... 15

3 Desenvolupament del projecte ... 16
 3.1 Estudis previs de viabilitat ... 16
 3.2 Topologia de la Xarxa de BPM .. 20
 3.3 Definició de l’algoritme ... 21
 3.4 Alternatives del Hardware ... 23
 3.5 Explicació del VHDL (lectura de Dades) .. 27
 3.5.1 Modul In_Out .. 28
 3.5.2 ArbMux ... 32
 3.5.3 FoD .. 33
 3.5.4 Milllores futures ... 33
 3.6 Càlcul del retard en l’adquisició de dades ... 33
 3.7 Presentació de les dades obtingudes .. 37

4 Conclusions ... 40

5 Bibliografia .. 41
Índex d’il·lustracions

Il·lustració 2.1: Esquema Fast Orbit FeedBack (FOFB) .. 9
Il·lustració 2.2: Simulació dels BPM button ... 10
Il·lustració 2.3: Libera BPM. A dalt, la part frontal. A baix, la part posterior 11
Il·lustració 2.4: Sincrotró Swiss Light Source (SLS) ... 14
Il·lustració 2.5: Sincrotró Diamond Light Source (DLS) .. 15
Il·lustració 3.1: Sonda Hall FW Bell GH-700 ... 17
Il·lustració 3.2: Dades llegides amb la sonda Hall a l’aplicar un canvi abrupte a la intensitat dels imants ... 18
Il·lustració 3.3: Diagrama de Bode dels actuadors del sistema ... 19
Il·lustració 3.4: Representació esquemàtica del sistema FOFB .. 19
Il·lustració 3.5: Representació de la topologia de la xarxa d’adquisició de dades 21
Il·lustració 3.6: Diagrama de blocs de l’algorisme de control .. 23
Il·lustració 3.7: Foto del hardware seleccionat ... 25
Il·lustració 3.8: Esquema de la unitat de control ... 27
Il·lustració 3.9: Diagrama de blocs de la lectura de dades ... 28
Il·lustració 3.10: Esquema de la màquina d’estats de transmissió .. 29
Il·lustració 3.11: Esquema de la màquina d’estats de la recepció .. 31
Il·lustració 3.12: Muntatge realitzat per mesurar el retard produït en la mesura pels Libera BPMs ... 34
Il·lustració 3.13: Imatge de l’oscil·loscopi utilitzada per mesurar els retards. En violeta la senyal generada pel generador de polsos i en groc el pin de detecció de desconexió del canal D del Libera ... 35
Il·lustració 3.14: Muntatge realitzat per mesurar el retard produït per la retransmissió dels missatges en els Libera BPMs. .. 36
Il·lustració 3.15: Imatge de l’oscil·loscopi utilitzada per mesurar els retards quan hi ha 3 retransmissions. En violeta la senyal generada pel generador de polsos i en groc el pin de detecció de desconexió del canal D del Libera ... 37
Il·lustració 3.16: Dades adquirides del BPM id:17 eix Horitzontal en un segon 38
Il·lustració 3.17: Anàlisi freqüencial de les dades del BPM id:17 eix Horitzontal 38
Il·lustració 3.18: Detall de l’anàlisi freqüencial de les dades del BPM id:17 eix Horitzontal en les freqüències que es podran corregir .. 39

Índex de taules

Taula 1: Retard en el càlcul respecte la freqüència estable màxima .. 20
Taula 2: Estimació de les operacions necessàries per la implementació del FOFB en un sector ... 22
Taula 3: Alternatives de targetes amb FPGA per implementar la unitat de control 26
Agraïments

A la Xènia i la Núria per el recolzament donat.

A l'Òscar Matilla i en Jörg Klora per l'oportunitat brindada de fer el projecte a ALBA.

A tota la secció d'electrònica i també a l'Àngel Olmos, en Marc Muñoz, en Jairo Moldes i en Sergi Blanch per les converses i el seu suport tècnic.

I agrair finalment a la UVIC i SenseFields per les facilitats que m'han donat per realitzar el projecte.
Resum del treball de final del Màster en Tecnologies Aplicades a la Informació

Títol: Estudis i primera fase per la implementació del FOFB al Sincrotró ALBA
Paraules Clau: FOFB
Autor: Xevi Serra Gallifa
Director: Moisès Serra Serra
Data: Març de 2012

Aquest treball és la culminació de les pràctiques realitzades al sincrotró ALBA. Situat a Cerdanyola del Vallès, ALBA és un accelerador de 3a generació que permet emmagatzemar un feix d'electrons confinat de fins a 400 mA a 3GeV d'energia, amb l'objectiu d'obtenir llum a partir dels girs provocats al feix.

Els sincrotrons moderns com el d'ALBA, el que prenenés és aconseguir un major control i estabilitat de la llum. Per aconseguir-ho, cal que el feix d'electrons que creen la llum estiguin controlat al màxim i la seva òrbita sigui estable. Amb aquest objectiu els sincrotrons estant implementant sistemes de Fast Orbit FeedBack (FOFB) o sistemes realimentats de correcció ràpida de l'òrbita, per realitzar correccions d'almenys 100Hz que estabilitzin el feix d'electrons amb menys d'un 10% de l'amplada del feix (5-10µm).

El treball exposa el desenvolupament d'una part del sistema de correcció ràpida de l'òrbita dels electrons (FOFB) que s'està duent a terme al sincrotró ALBA. Concretament, s'han revisat els estudis previs realitzats durant la fase de disseny del sincrotró, s'han recalcurat funcions de transferència i retards de tots els elements involucrats al sistema. També s'han realitzat simulacions per confirmar la viabilitat del sistema amb les noves dades i finalment s'ha desenvolupat part de la unitat de control determinant el Hardware i s'ha adquirit dades que permetran analitzar el soroll de l'òrbita que en futurs treballs determinaran millor l'algorisme de la unitat de control.
Final Project Summary

Title: Studies and first stage of FOFB implementation in ALBA Light Source
Keywords: FOFB
Author: Xevi Serra Gallifa
Director: Moisès Serra Serra
Date: March 2012

This project is the end of a stage in the Alba Light Source. Placed in Cerdanyola del Vallès, ALBA is a 3rd generation Light source that allows to store an electrons beam of 400 mA at 3GeV.

We have to keep in mind that modern light sources like ALBA, want to achieve the maximum control and stability of light, the way to attain the target is that the electrons beam that generate the light were very controlled and their orbit very stable. With that target light sources are implementing Fast Orbit FeedBack (FOFB) systems, that have to correct the electrons orbit at least at 100Hz and stabilize the electrons beam at 10% of their thickness (5-10µm).

The project shows the development of part a Fast orbit FeedBack (FOFB) that is being implemented in ALBA Light Source. Particularly, all the modelling and studies done in the ALBA design has been reviewed including a empirical calculation of transfer function and latency time of all the subsystems involved in FOFB. These system characterization have been used to confirm the viability of the system and to develop the control unit, determining its Hardware and acquire data that will allow analyse the noise figures that will determine the best beam orbit correction algorithm.
1 Introducció

Aquest treball correspon a l’última fase per la finalització del Màster en Tecnologies Aplicades a la Informació, impartit de forma semipresencial per la Universitat de Vic.

El projecte s'ha realitzat en el transcurs d'una estada de pràctiques al sincrotró ALBA, i ha format part de la primera fase del projecte de major abast anomenat FOFB, que s'està duent a terme actualment i que té prevista la seva finalització a finals de 2012.

1.1 Objectius

Degut a l'extensió que suposa el projecte d'implementació d'un sistema de correcció ràpida d'àrbita (FOFB), cal aclarir que el treball que presento avarca només una part del projecte complet. Degut a aquesta raó, en aquest apartat per una banda exposo els objectius del projecte FOFB i per l'altra, els objectius del treball.

Objectius del projecte FOFB

- Tenir un sistema d'adquisició de la posició del feix que permeti analitzar l'àrbita del feix d'electrons, almenys fins a freqüències de kilo Hertzs.

- Reduir les oscil·lacions en l'àrbita del feix d'electrons fins a freqüències de 200Hz, especialment els pics que es puguin trobar a 50/60Hz. La reducció ha de permetre mantenir el feix confinat amb variacions menors a un micròmetre.

- Modelar tots els elements implicats en l'àrbita del feix, de forma que es puguin simular modificacions en qualsevol dels seus elements, així com l'efecte que pot tenir la incorporació de nous elements al sincrotró.
Objectius del TFM

- Caracteritzar els principals elements implicats en el FOFB, els quals inclouen: el sistema d'adquisició de dades (BPM); els imants de correcció; la cambra de buit; l'algoritme de correcció.
- Definir el hardware que s'utilitzarà per la implementació del FOFB.
- Desenvolupar el sistema d'adquisició de dades per tal de realitzar un anàlisi del soroll actual del feix i poder definir l'algoritme de correcció més adequat.

1.2 Estructura de la memòria
Per a la realització de la memòria s'ha estructurat el treball en els apartats que es detallen a continuació:

Apartat 2. Antecedents
En aquest apartat es presenta el sincrotró ALBA i es planteja el problema del Fast Orbit FeedBack. Alhora, també es fa un resum d'altres fonts de llum sincrotró com són el SLS, el Diamond DLS i altres ESRF.

Apartat 3. Desenvolupament del projecte
Aquest apartat és el més important del projecte ja que és on es desenvolupa el projecte. En primer lloc, s'exposen els estudis previs de viabilitat. Seguidament, es defineix l'algoritme i es presenten les alternatives del hardware. Més endavant, es presenta la solució proposada, s'explica el VHDL i es fa un càlcul del retard en l'adquisició de dades. I finalment, es presenten les dades obtingudes.

Apartat 4. Conclusions
En aquest apartat s'exposen les conclusions del projecte així com la proporció en què els objectius inicials han estat assolits.
2 Antecedents

2.1 Sincrotró ALBA
ALBA està localitzat a Cerdanyola del Vallès (Barcelona) i actualment és l'única font de llum sincrotró localitzada a la península ibèrica. La instal·lació inclou un accelerador lineal, un accelerador booster, un anell d'emmagatzematge (SR) i actualment 7 línies experimentals, nombre que s'incrementarà en els propers anys.

ALBA és un accelerador de 3ra generació amb un perímetre de l'anell d'emmagatzematge de 268m, que permet emmagatzemar un feix d'electrons confinat de fins a 400mA a 3GeV d'energia. L'objectiu de mantenir el electrons a aquestes energies és obtenir llum provocant girs al feix, amb els anomenats insertion devices. Aquesta llum té una gran intensitat a l'espectre dels Raig X, preveient obtenir per exemple una brillantor a energies dels fotons de 20keV de $\text{10}^{19}\text{Ph/mm}^2\text{mrad}^2/0,1\%\text{BW}$ amb onduladors de buit amb una separació de 5mm.

2.2 Plantejament del problema

Als sincrotrons moderns l'objectiu no és l'obtenció de fotons de més alta energia, sinó que el que es pretén és aconseguir una major brillantor i principalment un major control d'aquesta, així com la màxima estabilitat d'aquesta brillantor. Per tal d'aconseguir la major estabilitat en la llum és necessari que el feix d'electrons que la crea estigui controlat al màxim i la seva òrbita sigui al màxim coneguda i estable.

Degut a fonts de soroll, el feix d'electrons oscil·la respecte la seva òrbita ideal (Golden Orbit) provocant que la llum generada no tingui la qualitat desitjada. Les fonts d'error que provoquen aquestes oscil·lacions poden ser de baixa
freqüència com les desalineacions dels imants produïdes per dilatacions tèrmiques, o de més alta freqüència com les produïdes per vibracions, soroll electromagnètic i pels canvis de fase produïts pels *insertion devices*.

Les fonts d'error de baixa freqüència són corregides amb sistemes de control anomenats *Slow Orbit FeedBacks (SOFB)*, utilitzats des de fa molts anys i que permeten correccions de freqüències inferiors a 1Hz i de fins a pocs mil·límetres.

En canvi, les fonts d'error a freqüències superiors fa pocs anys que han començat a ser corregides amb els sistemes anomenats *Fast Orbit FeedBack (FOFB)* o sistemes realimentats de correcció ràpida de l'òrbita.

2.2.1 Fast Orbit FeedBack (FOFB)

El sistema FOFB que es vol implementar a l'ALBA pretén permetre correccions d'almenys 100Hz que permetin estabilitzar el feix amb menys d'un 10% de l'amplada del feix (5-10µm). A part es vol realitzar una correcció de l'òrbita global, analitzant les dades de tota l'òrbita per tal de calcular la correcció.

![Il·lustració 2.1: Esquema Fast Orbit FeedBack (FOFB)](image)

El FOFB és en realitat una millora del SOFB amb un increment de les freqüències susceptibles de ser corregides. De totes formes l'estructura dels dos sistemes és pràcticament igual. Un sistema d'adquisició de dades BPMs (Beam Position Monitors) adquireix dades, una unitat de control calcula les correccions a aplicar i finalment uns imants modifiquen l'òrbita del feix. La diferència rau en el fet que en el FOFB cada una de les parts ha de ser molt
més ràpida i amb un ample de banda major per tal de corregir el soroll del feix a més altes freqüències.

En la definició del projecte ALBA s’elaboraren una sèrie d’informes previs per tal d’implantar un SOFB, molt més estudiat i necessari per mantenir el feix. En la definició del projecte es va preveure però que en un futur s’implementaria un FOFB, posant en les especificacions dels BPM i imants de correcció que havien de permetre la incorporació d’un FOFB.

D’aquesta manera, abans de començar aquest projecte ja es disposa per una banda de documentació del projecte i per l’altra, d’una part del Hardware del FOFB comprat i instal·lat a l’anell d’emmagatzematge.

A continuació, anem a descriure aquests elements:

Illustració 2.2: Simulació dels BPM button

BPMs. Els BPMs estan formats típicament de dues parts. Per una banda, els BPM buttons i per l’altra, l’electrònica d’adquisició. Un BPM button és una part de la cambra de buit per on circula el feix que té la característica de tenir 4 electrodes on el feix induirà una tensió tal com si es tractés de 4 condensadors.

Electrònica del BPM. L’electrònica que adquireix les dades adquirides pels BPM buttons és de l’empresa iTech model: libera brillance, versió de Firmware

1 Un estudi en profunditat sobre el disseny dels BPM buttons dissenyats a l’ALBA es pot trobar a la bibliografia [11].
v2.02(5894). *Libera brilliance* es tracta de la segona versió de BPM fabricats per iTech i són l'única solució comercial que permet implementar el FOFB.

Els Libera BPM s'han adaptat per adquirir dades a 9,729kHz, múltiple de la freqüència de la màquina (producte del nombre de paquets d'electrons per la seva velocitat i dividit per la longitud de l'anell). Hem de tenir present que les lectures es fan síncrones a la freqüència de la màquina, que pot variar lleugerament i per tant, la freqüència d'adquisició també ho farà.

La sortida de les dades es realitza pels 8 ports frontals equipats amb una connexió tipus SFP i amb un protocol similar a FiberChannel 2,12GHz, els quals tenen implementat un protocol que el converteix a més en repetidors dels missatges rebuts per qualsevol dels ports.

Actualment ALBA té instal·lats a l'anell d'emmagatzematge 120 BPM buttons, dels quals només 104 estan connectats a un Libera.

Els actuadors. Els actuadors es composen de 3 parts principals: els imants de correcció, les fonts d'alimentació dels imants i un tercer element implicat de forma passiva que és la cambra de buit que distorsionarà el senyal que nosaltres vulguem aplicar. Actualment ALBA utilitza una controladora cPCI que
es comunica mitjançant un senyal diferencial (LVDS). Aquest és convertit per una petita electrònica a un senyal POF a 5MHz. La fibra POF connecta amb una segona controladora que genera una senyal PWM que s'utilitza finalment per generar l'alimentació dels imants amb les següents característiques: ample de Banda 1kHz, 55V @ 10A.

L'alimentació produeïda ataca als imants que van ser realitzats a mida per l'ALBA. Aquests tenen com a característiques més importants: \(L=152\text{mH}\) i \(R=2,13\Omega\) per la correcció horitzontal i \(L=211\text{mH}\) i \(R=2,24\Omega\) per la correcció vertical.

Malgrat que la cambra de buit podria ser passada per alt, hem de pensar que aquesta és d'alumini i per tant, s'hi produiran efectes com les corrents d'Eddy que converteixen la cambra de buit en un fíltre passa baixos.

En el seu moment es va decidir instal·lar 88 imants per implementar el FOFB a l'ALBA.

2.2.2 Altres consideracions d'ALBA

ALBA s'organitza en 16 sectors els quals es concentren totes les connexions d'una part de l'anell. Això fa que el FOFB s'hagi d'estructurar d'aquesta forma i tenir-ho present en el seu disseny.

Una altra consideració és tenir present com es controlarà el FOFB. Hem de tenir present que a ALBA s'han d'utilitzar els estàndards que hi ha definits. En relació a això podem dir que la unitat de control haurà de connectar-se via cPCI a un ordinador on s'haurà de definir un driver per una distribució Debian de Linux que serà controlat per TANGO (sistema de control distribuït).

2.3 Estat de l'art. Altres fonts de llum sincrotró

Com deu resultar evident, el sincrotró ALBA comparteix moltes semblances
amb altres sincrotrons, però no evita que no existeixi cap altre sincrotró com l'ALBA. D'aquesta manera podem dir que s'han hagut d'aplicar solucions diferents i en tractar-se d'una màquina única moltes d'aquestes solucions són pensades *ad hoc* a cada problemàtica. És per aquest motiu que s'ha considerat elaborar aquest apartat, en què s'expliquen les característiques de les fonts de llum sincrotró més semblants a ALBA i on podem veure com per una banda es comparteixen moltes característiques però com alhora també existeixen moltes diferències que fan impossible d'aplicar el mateix sistema FOFB a ALBA.

2.3.1 Swiss Light Source (SLS)

El Swiss Light Source està localitzat Villigen (Suïssa), dintre el Paul Scherrer Institut i es posà en marxa el 2001. Amb una energia de 2,4GeV i 288m de perímetre, es tracta d'un dels sincrotrons més semblants a ALBA. Va ser el primer sincrotró de 3ra generació en aplicar un FOFB i va desenvolupar conjuntament amb l'empresa iTech els BPM libera que van permetre la seva implementació. Les fonts d'alimentació que utilitza ALBA precisament són dissenyades i utilitzades pel Paul Scherrer Institut. La principal diferència és que el FOFB utilitzat al SLS és local, cada sector realitza les correccions independentment dels altres. Només l'operador de torn pot fer ajustos de forma manual entre sectors i la freqüència de la màquina.
2.3.2 Diamond Light Source (DLS)

Entrà en funcionament el 2007. Ubicat a Oxfordshire, té una energia de 3GeV i un perímetre de 561m. Va desenvolupar juntament amb iTech modificacions importants al firmware dels BPM Libera que van permetre utilitzar els 8 ports SFP frontals per enviar dades del feix amb una freqüència de mostreig de 10kHz. Amb aquestes modificacions es va fer factible la implementació d'un FOFB amb correcció global de l'òrbita, que va entrar en funcionament 2010. Tot i que és el sistema més semblant al que es vol aplicar a ALBA i s'utilitzarà la mateixa versió de firmware als BPMs, el sistema de control està pensat per EPICS mentre que a ALBA s'utilitza TANGO. El hardware de les unitats de control tampoc és traslladable a ALBA degut a que utilitzen el bus VME mentre que a ALBA s'utilitza el bus cPCI, a part que les unitats de control utilitzen una
Viretex II, que actualment ja no està en producció.

![Illustració 2.5: Sincrotró Diamond Light Source (DLS)](image)

2.3.3 Altres Fonts de llum sincrotró

Tot i que els sincrotrons exposats anteriorment són els que més similituds tenen amb ALBA, seria un error deixar de parlar d’altres sincrotrons com l’ESRF.

ESRF va ser el primer sincrotró de 3ra generació i va entrar en funcionament el 1994, amb un perímetre de 844m. En breu posarà en funcionament una actualització que incorpora un FOFB que ha de permetre una reducció important de les vibracions de l’àrbita.

Altres sincrotrons com ELETTRA també estant elaborant actualitzacions per implementar el seu propi FOFB i es preveu que als propers anys tots els sincrotrons de 3ra generació ho incorporaran com una part més del sistema de control del sincrotró.
3 Desenvolupament del projecte
A continuació s'exposa com s'ha desenvolupat el següent projecte.

3.1 Estudis previs de viabilitat
Existeixen diversos estudis previs de viabilitat del projecte FOFB que van permetre determinar les especificacions dels imants correctors, els sistemes d'adquisició de dades (BPM) i la geometria i material de la cambra de buit. Aquests estudis eren purament teòrics o realitzats a partir de simulacions. L'últim dels quals, realitzat el 2007, és un informe final que recopila tota la informació per tal de tirar endavant la compra de BPM i actuadors. Aquest informe final2 es centra principalment en les fonts d'error d'ALBA per analitzar el rang i resolució que els imants correctors havien de tenir. Però no es centrà en el càlcul del temps màxim de resposta que la unitat de control ha de tenir.

El primer pas per calcular el temps de resposta de la unitat de control va ser caracteritzar cada una de les parts implicades mitjançant la funció de transferència.

El primer element implicat en el FOFB són el BPM buttons. Aquests, en tractar-se d'un condensador, es van caracteritzar a partir de la seva capacitat, la qual va ser mesurada. Es va comprovar que tenint present els errors de la mesura aquesta coincidia amb la simulada en el disseny d'aquests. Així, s'agafa el valor de les simulacions prèvies amb un valor de $C=2,7\mu F$, que ens dóna una funció de transferència de:

$$H(s)=\frac{1}{1+s/p_{6}} \quad on \quad p_{6}=R*C=50\text{Ohm} \cdot 2,7 \mu F$$

D'aquesta manera, veiem que tindrem un primer pol a $f_{c}=1,7\text{GHz}$, que degut a la seva alta freqüencial pràcticament no ens afectarà al sistema. Els 50Ohm

2 Es pot consultar la simulació a la bibliografia [1].
corresponen a la resistència de terminació a l'electrònica del BPM.

La segona part del sistema és l'electrònica dels BPMs, que en un primer moment es va simular segons la funció de transferència donada pel fabricant.

\[H(s) = \frac{e^{\alpha t} \cdot w_n}{s^2 + 2\xi w_n + w_n^2} \quad \text{on} \quad t_{\max} = 450 \mu s \quad ; \quad w_n = 2\pi 1900 \quad ; \quad \xi = 0.47 \]

L’última part a caracteritzar foren els actuadors, formats per les fonts d'alimentació, imants i cambra de buit. Per tal de fer una estimació de la funció de transferència es procedí de la següent forma: es programà la font d'alimentació dels imants per generar un esglaó mentre es mesurava amb l'ajuda d'una sonda Hall FW Bell GH-700, mesurant només un dels 3 eixos. La font d'alimentació utilitzada per alimentar la sonda era una Kiethley 6220 que permetria aconseguir una gran precisió, si no fos que la sonda es va col·locar de forma aproximada dins la cambra de buit. La raó era que només es volia caracteritzar la funció de transferència i no el valor absolut del camp magnètic. L’adquisició es va realitzar amb un datalogger marca Keithley i model 2701 DVM.

Il·lustració 3.1: Sonda Hall FW Bell GH-700
Il·lustració 3.2: Dades llegides amb la sonda Hall a l’aplicar un canvi abrupte a la intensitat dels imants.

Per fer l’estimació de la funció de transferència, es transformà la resposta a la funció esglaó a l’equivalent a una funció impuls, fent la derivada i seguidament realitzant una transformada de Fourier. L’anàlisi de les dades s’ha realitzat en Matlab amb el següent codi:

```matlab
function [freq,fres]= stepresponse(data, DT)
res1=data;
res1([1],:)=[];
N=length(data);
res2=data;
res2([N],:)=[];
Imp=(res1-res2)/DT;
fres=abs(fft(Imp)*DT);
freq=[0:N-2]’/(N*DT);
loglog(freq,fres);
```

Així s’ha estimat la següent funció de transferència de les dades. Hem de pensar que el procediment no és el de més precisió per calcular la funció de transferència, però sí que ens permetrà fer una quantificació qualitativa del sistema:

\[H(s) = \frac{1}{1 + s/(2\pi f_c)} \quad \text{on } f_c = 200\text{Hz} \]

Així tot, el sistema queda caracteritzat pel següent diagrama:

Un cop tenim el sistema caracteritzat, s’ha procedit a calcular quina seria la freqüència màxima que podem teòricament corregir. Per crear la taula següent s’ha calculat la freqüència a la que es produeix un canvi de fase de 135° i que
per tant, implicaria una inestabilitat. Cal tenir en compte que la inestabilitat es produiria a 180º, però s'agafa un marge de 45º per poder assegurar-la.

<table>
<thead>
<tr>
<th>Latency(µs)</th>
<th>Frequency with a phase shift of 135º (Hz)</th>
<th>Amplitude margin(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>640</td>
<td>6.4</td>
</tr>
<tr>
<td>600</td>
<td>460</td>
<td>5.5</td>
</tr>
<tr>
<td>800</td>
<td>359</td>
<td>5</td>
</tr>
<tr>
<td>1000</td>
<td>294</td>
<td>4.6</td>
</tr>
<tr>
<td>1200</td>
<td>249</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Taula 1: Retard en el càlcul respecte la freqüència estable màxima.

3.2 Topologia de la Xarxa de BPM

Com s'ha dit anteriorment, els Libera amb el firmware modificat per la gent de Diamond retransmet tots els missatges que arriben per cada un dels ports a la resta de ports, a part d'afegir el seu propi missatge. Aquest comportament fa que múltiples topologies de xarxa siguin possibles i per tant, se n'ha d'escollir una.

Per la definició de la topologia de la xarxa s'ha tingut present:

- Els sectors en què està estructurat ALBA. A cada sector es concentren tots els dispositius en una fila de racks.
- La quantitat màxima de BPMs i fonts d'alimentació varia en cada sector però hi ha un màxim de 8 BPM i 18 fonts d'alimentació per sector.
- Cada retransmissió afegixeix un retard en la distribució de les dades.
- La xarxa ha de ser redundant de forma que si una de les fibres és desconnectada, el sistema ha de continuar funcionant.

Tenint present consideracions anteriors s'ha escollir utilitzar una xarxa anomenada d'anell millorat (improved ring topology), que es pot veure representada a la següent figura.
Com es pot veure a la figura anterior, tots els BPM de cada sector estant units en una topologia d'anell i al seu torn els sectors estant units també amb una segona topologia d'anell. També veureu que s'ha escollit utilitzar una unitat de control per sector, que es comunicaran utilitzant el mateix protocol que els Libera BPMs. Les unitats de control, també anomenades PMC, estan connectades als BPM que connecten amb els sectors veïns per tal de reduir el nombre de retransmissions mínimes per llegir les dades de tots els BPMs. Així es pot veure que el missatge que haurà de ser retransmès més vegades ho serà sols 18 cops.

3.3 Definició de l'algoritme

Aquesta part és una mica espinosa, degut al fet que no s'ha pogut realitzar encara un estudi de la variació de l'òrbita ni s'ha pogut realitzar cap simulació de com realitzar la correcció. De totes maneres, estimarem un algorisme tenint en compte la correcció que es realitza al SOFB i tindrem en compte l'experiència que van tenir al SLS. Cal dir que en aquest punt vam tenir la
col·laboració del personal de la Divisió d'acceleradors, alguns dels quals havien treballat al SLS i eren experts en dinàmica del feix.

L'algorisme consisteix en llegir les dades de la posició de l'àrbita procedents dels BPMs i seguidament calcular la desviació respecte l'àrbita desitjada (Golden Orbit). D'aquesta manera, podrem treballar amb l'error en lloc del valor de la posició reduint significativament els bits implicats als càlculs. El següent pas és multiplicar la posició de l'àrbita per la matrícia de resposta del sistema, que ens indicarà quines són les correccions a realitzar. I seguidament, s'implementa un PID i un fíltre digital per tal de garantir l'estabilitat del sistema.

Una altra de les coses que es va decidir en quant a l'algorisme de correcció va ser la utilització de només 88BPMs dels 104BPMs disponibles. La raó de la decisió és el fet que només es disposa de 88 correctors d'àrbita i així la matrícia de resposta és quadrada i sembla ser que facilita l'ajust del sistema. La resta de BPMs es volen utilitzar com un sistema de control.

El següent pas fou el càlcul de la quantitat de càlculs implicats per cada unitat de control. Cal tenir present que la matrícia de correcció és 176x176, ja que s'han de tenir en compte les correccions creuades entre l'eix X i Y. Un altre punt és veure que el PID no és necessari implementar-lo, ja que pot implementar-se en el producte de la matrícia i el fíltre IIR. El fíltre vol permetre la incorporació d'uns 20 elements en els càlculs. Per últim, recordar que cada unitat de control haurà de fer els càlculs per a cadascuna de les 16 fonts d'alimentació.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Tamany de les dades (bits)</th>
<th>Nombres d'operacions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumes</td>
<td>32x32</td>
<td>3132</td>
</tr>
<tr>
<td>Productes</td>
<td>16x25</td>
<td>3120</td>
</tr>
</tbody>
</table>

Taula 2: Estimació de les operacions necessàries per la implementació del FOFB en un sector
3.4 Alternatives del Hardware

Un cop analitzats els diferents components que intervenen o formen part del sistema del FOFB, es procedí a adquirir les unitats de control. Un dels requisits que ha de tenir la unitat de control és que ha de ser capaç de llegir el protocol de dades transmès pels Liberar BPM i alhora, ha de permetre comunicar-se amb la controladora de les fonts d'alimentació dels imants.

Les diferents alternatives que es van estudiar s'exposen a continuació:

a) Targeta de comunicacions per llegir les dades dels BPMs i processar les dades en un ordinador i controlar les fonts d'alimentació.
b) Targeta de comunicacions amb un DSP o co-processador per processar les dades i connectada a un ordinador per tal de controlar les fonts d'alimentació.

c) Targeta amb una FPGA que permeti llegir les dades dels BPMs, processar les dades i controlar les fonts d'alimentació. Evidentment, connectada a un ordinador per tal de configurar-la i obtenir dades de l'estat del FOFB.

Un cop exposat el ventall de possibilitats, el principal aspecte que es tingué en compte per escollir la opció més vàlida fou que el temps de correcció de l'òrbita és molt crític. Per tant, és molt important la quantitat de càlculs a realitzar, tal com ja s'ha vist en el punt 3.3, i el temps de resposta màxim és força petit.

L'ús d'una unitat de càlcul unida a l'ordinador (opció b) podia solucionar el problema de les operacions, però implicava compilar un sistema operatiu en temps real amb el driver de la unitat de càlcul. En quan a la tercera opció suposava un temps de desenvolupament un pèl superior a la segona opció, però en canvi donava una major flexibilitat i permetia mantenir tots els ordinadors de control de ALBA amb la mateixa distribució de Sistema Operatiu, simplificant així el seu manteniment. A més, la utilització de la FPGA proporcionava flexibilitat, ja que permetia realitzar una primera versió utilitzant les controladores actuals de les fonts d'alimentació, per finalment controlar-les des de la mateixa targeta, optimitzant al màxim el FOFB i per tant, tenint un major ample de banda del sistema.

Així doncs, escollida la opció més viable (opció c), es procedí a buscar al mercat les diferents targetes amb FPGA que encaixessin. A continuació, s'anoten les característiques que havia de complir la targeta:

- Connexió de la targeta a un bus cPCI 32bits, ja que és l'utilitzat a ALBA de forma estàndard.
Desvolupament del projecte

- Disposar de 2 connexions sèrie a una velocitat de 2,12Gbps, segons l'estàndard SFP-MSA o l'estàndard FiberChannel 2,125M a 850nm MM).

- Un connector amb un mínim de 32 connexions LVDS per ser utilitzats com a controladora de les fonts d'alimentació. S'ha de tenir present que el sector amb més fonts d'alimentació en té 16 per cada un dels eixos.

- 1 port (preferiblement 2) per l'entrada d'un rellotge. D'aquesta manera es pretén que en un futur que el sistema sigui síncron amb la màquina.

- Una FPGA amb la màxima capacitat. És preferible una Virtex 5 o superior.

Després de tenir en compte totes aquestes consideracions, es confeccionà la taula que hi ha a continuació i conjuntament amb personal de la Divisió d'acceleradors i controls, es realitzà una reunió per escollir la millor solució. Els comentaris que sorgiren durant la reunió es poden consultar a la mateixa taula. Com es pot veure, s'escollí la Alpha Data ADM-XRC-5T1 perquè es considerà la targeta que complia millor les especificacions i al menor cost. La mateixa tarja podia escollir-se entre diferents FPGAs, degut a les necessitats de calcul no molt elevades es triar la XC5VLX110T, que amb 64 Slices DSP48E eren suficients per realitzar totes les multiplicacions necessàries.

![Il·lustració 3.7: Foto del hardware seleccionat](image-url)
<table>
<thead>
<tr>
<th>No</th>
<th>Maker</th>
<th>Model</th>
<th>Item</th>
<th>FPGA</th>
<th>PC Bus</th>
<th>SMA</th>
<th>COM</th>
<th>GIO</th>
<th>Date quotation</th>
<th>Delivery Time (Wks)</th>
<th>Price (USD)</th>
<th>Price (EUR)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Innovative Integration</td>
<td>X5-COM</td>
<td>80209.0 X5-COM Module</td>
<td>V5 SX95T</td>
<td>XMC/PCIe</td>
<td>4-SFP</td>
<td>8wk</td>
<td>$ 8,120</td>
<td>5,684 €</td>
<td>512MB DDR2 DRAM supporting 4 GB/s transfer rates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compact PCI to XMCs</td>
<td></td>
<td></td>
<td>Support</td>
<td>1 Stock</td>
<td>$ 950</td>
<td>665 €</td>
<td>Rejected. Bus is only PCIe and needs special carrier. There are other options similar with 10% lower price.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DVD</td>
<td>1 Stock</td>
<td>$ 3,495</td>
<td>2,447 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For 16 (board+carrier)</td>
<td>5 Stock</td>
<td>$ 5</td>
<td>4 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Price 1 board + drivers+ carrier</td>
<td>8 wk</td>
<td>$ 8,390</td>
<td>5,873 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Price 16 boards + carrier</td>
<td></td>
<td></td>
<td>8,799 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Alpha Data</td>
<td>ADM-XRC-5T1</td>
<td>ADM-XRC-5T1/LX110T-1</td>
<td>FPGA PMC/XMC 512MB DRAM, 4MB SRAM</td>
<td>V5 LX110T speed 1</td>
<td>D</td>
<td>7/7/2011</td>
<td>8-10Wk</td>
<td>$ 3,500</td>
<td>512 DDR2 SDRAM @ 3.2GB/s. SMA option available (+5k€) so final configuration could be: 25 LC duplex + 2 SMB. It has also one Virtex-4 FPGA to control the PCI bus completly independent.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XRM-OPT2/RocketIO adapter with 2 x Optical Transceivers</td>
<td>optional (5000€) NRE</td>
<td>2 -OPT</td>
<td>1 stock</td>
<td></td>
<td>1,400</td>
<td>990 €</td>
<td>Selected. Also available in V5 SX95T if it is discovered that is needed after initial test. Good impression about support level. Possibility of hardware input/output using SMB.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CP390 3U/4HP CPC1 3.3 VIO KONTRON 28477</td>
<td></td>
<td></td>
<td>Price 1 board + drivers+ carrier</td>
<td></td>
<td>5,200</td>
<td>3,495 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Price 16 boards + carrier</td>
<td></td>
<td>83,200</td>
<td>59,400 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Alpha Data</td>
<td>ADM-XRC-6T1</td>
<td>ADM-XRC-6T1/LX240T-1</td>
<td>FPGA PMC/XMC 512MB DRAM, 4MB SRAM</td>
<td>V6 LX240T speed 1</td>
<td>D</td>
<td>7/7/2011</td>
<td>8-10Wk</td>
<td>$ 3,800</td>
<td>2-25MB DDR3 SDRAM @ 3.2GB/s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XRM-OPT2/RocketIO adapter with 2 x Optical Transceivers</td>
<td>optional</td>
<td>2 -OPT</td>
<td>No Stock</td>
<td></td>
<td>1,750</td>
<td>1,250 €</td>
<td>Rejected. The chip used is not supported in current available Xilinx ISE license at Cells. Bus is only PCIe and needs special carrier.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3U XMC to PCI adapter</td>
<td></td>
<td></td>
<td>Price 1 board + drivers+ carrier</td>
<td></td>
<td>6,215</td>
<td>4,300 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Price 16 boards + carrier</td>
<td></td>
<td>99,440</td>
<td>66,000 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Curtiss-Wright</td>
<td>SCP-201-000</td>
<td>SCP-201-000 - 3U Form Factor Carrier Card (VITA 30.1), cPCI back</td>
<td></td>
<td></td>
<td>No Stock</td>
<td>10/3/2011</td>
<td>20Wk</td>
<td>$ 10,355</td>
<td>$ 7,249</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Price 1 board + drivers+ carrier</td>
<td></td>
<td>512MB DDR2 SDRAM, is the former Vnetro. Solution being used in currently in Diamond.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XPF5-XFL</td>
<td>Support and sources for Linux</td>
<td></td>
<td>$ 3,000</td>
<td>2,100</td>
<td>2,100 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Price 16 boards + carrier</td>
<td></td>
<td>126,070</td>
<td>88,648 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4dsp</td>
<td>FM381</td>
<td>XC4VFX60 or XC4VFX20</td>
<td>V4</td>
<td>PMC</td>
<td>2-OPT</td>
<td>3/31/11</td>
<td>10Wk</td>
<td>$ 8,795</td>
<td>6,157 €</td>
<td>64M DDR2 SDRAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cPCI to PMC / Dynamic Engineering</td>
<td></td>
<td></td>
<td>reference design</td>
<td>$ 350</td>
<td>245 €</td>
<td>Rejected. There are other chips offered for similar price that are not Virtex 4 but Virtex 5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Price 1 board + drivers+ carrier</td>
<td></td>
<td>8,341</td>
<td>5,911 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Price 16 boards + carrier</td>
<td></td>
<td>75,201</td>
<td>50,110 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>TERMICRO</td>
<td>XF05F-S05</td>
<td>XF05F-S05 V5 SX95T</td>
<td>PM</td>
<td>XMC/PCIe</td>
<td>4-SFP</td>
<td>10/3/11</td>
<td>10Wk</td>
<td>$ 8,795</td>
<td>6,157 €</td>
<td>512 MB DDR3 RAM. Four SFP MM OM3 + 2 SMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SCP-201-000 - 3U Form Factor Carrier Card (VITA 30.1), cPCI back</td>
<td></td>
<td></td>
<td></td>
<td>$ 10,355</td>
<td>7,249</td>
<td>7,560 €</td>
<td>Rejected. Same chip than ADM-XRC-5T1 (but without Virtex-4) 20%more expensive. First unit delivery date 10 weeks.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No Stock</td>
<td>1,500</td>
<td>1,100 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 350</td>
<td>245 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 3,000</td>
<td>2,100</td>
<td>2,100 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 10,800</td>
<td>7,560</td>
<td>7,560 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 126,640</td>
<td>88,648</td>
<td>58,648 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 14,017</td>
<td>9,917</td>
<td>9,917 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>512MB DDR3 RAM. Four SFP MM OM3 + 2 SMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>512MB DDR3 RAM. Four SFP MM OM3 + 2 SMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>512MB DDR3 RAM. Four SFP MM OM3 + 2 SMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.5 Explicació del VHDL (lectura de Dades)

Un cop decidit el hardware que s'utilitzaria per implementar la unitat de control, s'han definit les línies bàsiques del disseny de la unitat de control. A la il·lustració de sota es mostra un esbós de com seria. El sistema ha d'estar format per 4 blocs bàsics: en primer lloc, el Comunication Controller que s'encarregarà de rebre els missatges de tots els BPMs i retransmetre'ls, com també d'enviar missatges entre les diferents unitats de control. En segon lloc, una unitat de control que haurà de fer els càlculs descrits amb l'algorisme de control de la forma més eficient. Una tercera part, que s'encarrega de comunicar amb les fonts d'alimentació. I finalment, una última part que ha d'incorporar les comunicacions a través del bus cPCI per configurar les 3 unitats anteriors i controlar els errors que es produeixin en aquestes unitats.

[Diagrama de blocs]

Il·lustració 3.8: Esquema de la unitat de control

En el projecte s'implementa sols una part del Communication controller i del sistema de control per tal de comunicar-nos amb l'ordinador.

A continuació, anem a veure la implementació del Communication controller, del qual n’implementarem una part. El següent gràfic en mostra un diagrama de blocs.
3.5.1 Modul In_Out

Aquest mòdul instància un port GTP que gestiona les comunicacions amb els Libera i dos FIFOs de doble rellotge, permetent separar els rellotges de la recepció de missatges de resta de codi de la FPGA. El mòdul funciona amb un rellotge de 106,25MHz, una vintena part de la recepció de dades 2,125GHz, i es tracta de 2 màquines d'estats, una per la recepció de missatges i una segona per la transmissió. Cal dir que els missatges tenen una longitud fixe de 16 bytes, més 4 bytes per un CRC, 2 bytes per enviar un SOP i 2 bytes per enviar el EOP. Així els missatges tenen una longitud total de 24 bytes i com a mínim s'han d'enviar 4 bytes per sincronitzar el rellotge entre missatges. Hem
de tenir present que s'utilitza un protocol pràcticament igual a FiberChannel2, que incorpora un codificador 8/10bits fent que cada cicle de rellotge rebem 2bytes. D'aquesta manera, cada vegada que llegim o transmetem dades ho realitzem de 2 bytes en 2 bytes. A sota expliquem com funcionen les màquines d'estats del mòdul, començant per la màquina encarregada de la transmissió.

![Diagrama de les màquines d'estats de transmissió](image)

Il·lustració 3.10: Esquema de la màquina d'estats de transmissió.

El primer estat és **Reset**, al qual s'accedeix de forma asíncrona des de qualsevol dels estats anteriors si la senyal de reset és activada. A més, és l'estat inicial. En aquest estat s'inicialitzen totes les variables a partir d'un missatge guardat a la FIFO de transmissió de dades i es fa un reset als mòduls GTP.
El segon estat és **TX_sync**, el qual s'utilitza per sincronitzar el rellotge entre receptor i transmissor. Es roman en aquest estat 2^{14} clks en els quals s'envia el senyal d'IDLE i cada 2^{13} clks un senyal de SEND_ID amb el número d'ID del libera.

El tercer estat és el **TX_Idle** on es realitza el mateix que a l'estat anterior, però a diferència que se surt quan tenim dades a la FIFO per enviar i estem en el temps hàbil per enviar dades (time_frame=0).

A l'estat **TX_SOP**, simplement s'envia el càracter SOP que indicarà l'inici d'un missatge. Seguidament es passa a l'estat TX_data.

TX_data s'encarrega de llegir de la FIFO els 8 caràcters del missatge i enviar-los durant 8 cicles de rellotge.

Seguit de TX_Data es passa a l'estat **TX_crc_wait** on s'envien durant 2 cicles de rellotge 0x0000, per donar temps al mòdul GTP a calcular el CRC32.

El següent estat és **TX_EOP**, on enviem el caràcter EOP i passem a l'estat TX_WAIT.

A **TX_WAIT** esperarem 4 cicles de rellotge en els que el mòdul GTP enviarà els caràcters de rellotge per mantenir la sincronització. Un cop passats, si hi ha dades per enviar (TX_data_ready) i es poden enviar dades (time_frame=0) es passa a l'estat TX_SOP. En cas contrari es passa a l'estat TX_Idle.
Il·lustració 3.11: Esquema de la màquina d'estats de la recepció.

Al primer estat de Reset es buida la FIFO de recepció i s'inicialitzen les variables de la màquina d'estats. En aquest cicle ens hi mantindrem 8clk ja que així ho especifica el mòdul GTP.

Al segon estat ens hi mantindrem fins a rebre un mínim de 4096 Idles seguits, així garantim que la recepció té el rellotge sincronitzat i té dades vàlides.

L'estat RX_SOP llegirà les dades fins a rebre un caràcter SOP, canviant llavors a l'estat RX_DATA. Mentrestant els missatges SEND_ID rebuts s'agafaran les dades dels BPM veïns al nostre.

Un cop rebut el SOP durant 8 rellotges guardarem les dades en registres temporals.

Passants els 8 cicles arribarem a l'estat RX_EOP on ens mantindrem fins a
rebre el caràcter EOP. Si romanem en aquest estat 3Clk es produeix un error i passaríem a l'estat RX_SOP. En rebre l'EOP canviarem a l'estat CRC_idle.

Ens mantindrem l'estat CRC_idle fins que el senyal crc_checking del GTP no canviï de valor, passant a l'estat CRC_Check. En cas d'estar més de 7Clks en aquest estat, passaríem a l'estat RX_SOP.

A l'estat CRC_Check es comprova que el CRC és correcte i llavors es passen les dades guardades temporalment a la FIFO de dades rebudes i passaríem a l'estat RX_SOP.

A més, hi ha implementat un algorisme apart de les 2 màquines d'estat descrites per tal de gestionar els missatges d'error. En detectar-se un error com un timeout, caràcter erroni, crc erroni, un error als mòduls GTP, ... aquest és guardat a un registre i un senyal d'error és activat. El registre guardarà l'error fins que s'activi el senyal error_clr o es faci un reset.

3.5.2 ArbMux

El mòdul instància els mòduls In_Out per cada un dels transivers que implementi la targeta, en el nostre cas 2. Aquest mòdul implementa una màquina d'estats amb un algorisme de Round-Robin per tal de assegurar que llegim de tots els ports per igual.

Funciona de la següent forma: un bucle mira un a un si hi ha algun missatge a la FIFO. En cas d'existir un missatge, extreu els 128bits del missatge i els guarda a un registre temporal i activa un bit de Data_rdy per indicar que hi ha dades disponibles. Seguidament espera un cicle de rellotge i passa a mirar el següent mòdul In_Out.

Aquest mòdul també és el responsable de què quan rep un missatge a transmetre, el posa a la FIFO de tots els mòduls In_Out. També és el responsable de llegir els missatges d'error generats pels mòduls In_Out amb un
DESENVOLUPAMENT DEL PROJECTE

segons algorisme de round-robin per fer-los arribar al mòdul de control del
Comunication Controller.

3.5.3 FoD
Aquest mòdul anomenat Forward or Discard (FoD), s'encarrega de mantenir
una taula amb les dades de tots els BPMs. Per fer-ho legeix els missatges del
mòdul ArbMux i mira si ja havia rebut el missatge, en aquest cas el descarta.
En el cas de no haver-lo rebut en guarda les dades i el retorna al mòdul ArbMux
per què el retransmeti.

El mòdul també s'encarrega de determinar el time_frame, temps en el qual es
permé transmetre missatges (aquest temps ha de ser menys a un 90% del
temps de mostreig 10kHz) que hem posat a 7000 cicles de rellotge. El punt on
s'inicia el temps per enviar missatges es podia fer de 2 formes, com indica el
protocol: sincronitzant amb el rellotge de la màquina o a partir de la recepció
d'un missatge amb el bit TimeFrameStart activat. Nosaltres hem escollit la
segona opció per simplicitat.

3.5.4 Millores futures
Com ja s'ha fet constatar al llarg del treball fi de màster, s'ha desenvolupat sols
la primera part del projecte d'implementació del FOFB, quedant moltes parts
per implementar. El mòdul comunication controller falta que s'implementi la
unitat de control que ha de permetre una gestió dels errors produïts. També
faltaria implementar un mode de debug en el qual es puguin simular el
funcionament de la FPGA a partir de dades emmagatzemades en memòria.

3.6 Càlcul del retard en l'adquisició de dades
Amb la part de codi del controlador de comunicacions s'ha realitzat una nova
mesura amb la finalitat de que quan es continua el projecte es tingui millor

3 S'ha de pensar que la tarja FPGA disposa de 512MB de RAM.
DESENVOLUPAMENT DEL PROJECTE

caracteritzat el sistema. Per aquesta raó, s’ha mesurat el retard que es produeix als Liberis i la seva funció de transferència. Per fer-ho, s’ha elaborat el muntatge que es pot veure a la il·lustració de sota.

![Diagrama de la configuració de mesura del retard]

Il·lustració 3.12: Muntatge realitzat per mesurar el retard produït en la mesura pels Libera BPM.

Tal i com es veu a la il·lustració anterior, un generador de RF (Rohde&Schwarz SM300) genera un senyal de 449,654MHz a -10dBm, per simular el pas dels electrons. Aquest senyal és enviat a un spliter 1:4, on 3 de les senyals són connectades directament al Libera (canals A, B i C), mentre que la quarta hi és connectada (canal D) a través d’un interruptor de radiofrequència (Instrumentation Technologies RF Gate AP13HI-IT01-001). Les longituds totals de cable utilitzades en els quatre canals s’han mantingut iguals per evitar problemes de retard. El següent pas ha estat connectar la sortida òptica del Libera a la tarja FPGA, on una modificació del firmware fa que en detectar-se la desconnexió del canal D activa un pin de la targeta FPGA. Per altra banda tenim un generador de polsos (Tektronix AFG3102) programat amb un senyal de 0 a 3V amb un període de 100ms i un duty cicle de 50%, el qual activa l’interruptor de radiofrequència i el trigger d’un oscil·loscopi. Amb l’oscil·loscopi es mesura el pin de la placa FPGA, que indica la desconnexió de del canal D, posant l’oscil·loscopi amb el temps de persistència a infinit. A sota es pot veure
una imatge del resultat a l'oscil·loscopi.

Il·lustració 3.13 Imatge de l'oscil·loscopi utilitzada per mesurar els retardats. En violeta la senyal generada pel generador de pulsos i en groc el pin de detecció de desconexeixió del canal D del Libera.

Com es veu la mesura té un retard d'entre 235,7 µs i 338,5 µs, que redueix el temps màxim indicat pel fabricant. Els resultats s'han realitzat en 4 liberes diferents corroborant els resultats per tots 4. A més, analitzant les dades obtingudes a la tarja FPGA es pot veure que en general no s'aprecia el filtrat de segon grau que les dades haurien de tenir i sols en algun cas la primera mesura té un valor mig al valor de l'esglaó.

Un cop mesurat el retard produït en la mesura per part dels Libera s'ha volgut mesurar el retard produït per les retransmissions en els Libera. Per fer-ho, s'ha modificat la mesura tal i com il·lustra el següent esquema.
Com es pot veure, hem col·locat 4 Liberas connectats amb una topologia d'anell i la placa FPGA al *libera* més allunyat del que fa la mesura, provocant que s’hagin de produir 2 retransmissions dels missatges del Libera 1 de la figura abans de ser llegit per part de la placa FPGA. La resta del muntatge és equivalent al primer esquema. El resultat es pot veure a la següent imatge.
Com es pot veure, el nou retard passa a ser d'entre 237,4µs i 340,1µs. Així podem concloure que cada retransmissió afegeix un retard a les dades d'aproximadament 1µs. Tenint present que s'ha estimat el nombre de retransmissions màxim a 18, implica un retard en la retransmissió d'uns 18µs.

Els retards deguts a la longitud del cable de fibra òptica es consideren despreciables ja que recórrer els 268m de perímetre del sincrotró implica menys d'1µs.

3.7 Presentació de les dades obtingudes

L’11 de novembre es va fer una adquisició de dades a un libera de l'anell d'emmagatzematge on hi havia un corrent de 14,5mA. A sota es poden veure diversos gràfics amb les dades i la distribució freqüencial del soroll d'aquestes.
Il·lustració 3.16: Dades adquirides del BPM id:17 eix Horitzontal en un segon.

Il·lustració 3.17: Anàlisi freqüencial de les dades del BPM id:17 eix Horitzontal.
Il·lustració 3.18: Detall de l’anàlisi freqüencial de les dades del BPM id:17 eix Horitzontal en les freqüències que es podran corregir.

Com es pot apreciar a les dades, apareix el pic de soroll a 50Hz clarament marcat, però sobresurten 2 pics entre 1kHz i 2kHz que no estaven previstos segons les simulacions prèvies.
4 Conclusions

Tot i que queda molta feina abans de tenir implementat un FOFB a l'ALBA, amb el desenvolupament d'aquest treball s'ha realitzat un gran avanç perquè pugui entrar en funcionament. Com es pot veure al llarg del treball ja s'han assolit pràcticament dos dels tres objectius del FOFB: per un cantó, hem caracteritzat els elements involucrants en el FOFB a excepció de la unitat de control en què falta definir l'algoritme. Per un altre cantó, també hem aconseguït obtenir dades de l'òrbita. Tot i que el sistema utilitzat per aconseguir les dades dista molt de la forma definitiva, ja es podran començar a analitzar les dades. De totes maneres, encara queda molta feina per aconseguir cancel·lar les oscil·lacions ràpides de l'òrbita.

Respecte als objectius del treball, s'ha aconseguit caracteritzar el FOFB com es comentava anteriorment. També s'ha definit el hardware a utilitzar per implementar la unitat de control, definint finalment tots els dispositius que formen el FOFB. En quant a l'últim objectiu, l'adquisició de dades, hem de dir que l'última versió de codi VHDL exposada al treball ha quedat pendent de provar-se a ALBA per manca de temps. De totes formes, durant la tardor passada es va aconseguir la obtenció de dades amb una versió molt primitiva del firmware i l'ajuda de l'IP chipscope, i per tant han estat aquestes les dades que s'han exposat en aquest treball.

Personalment, el fet que s'hagi pogut tirar endavant un conveni de cooperació entre la UVIC i ALBA ha suposat per a mi una experiència molt gratificant, ja que he pogut treballar amb el que de ben segur serà un centre de referència en l'àmbit científic.
5 Bibliografía

