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RESUM 
Les factoritzacions de la FFT (Fast Fourier Transform) que presenten un patró d’interconnexió regular entre factors o 
etapes son conegudes com algorismes paral·lels, o algorismes de Pease, ja que foren originalment proposats per 
Pease. En aquesta contribució s’han desenvolupat noves factoritzacions amb blocs que presenten el patró 
d’interconnexió regular de Pease. S’ha mostrat com aquests blocs poden ser obtinguts a una escala prèviament 
seleccionada. Les noves factoritzacions per ambdues FFT i IFFT (Inverse FFT) tenen dues classes de factors: uns pocs 
factors del tipus Cooley-Tukey i els nous factors que proporcionen la mateix patró d’interconnexió de Pease en blocs. 
Per a una factorització donada, els blocs comparteixen dimensions, el patró d’interconnexió etapa a etapa i a més cada 
un d’ells pot ser calculat independentment dels altres. 
 
ABSTRACT 
 
FFT (Fast Fourier Transform) factorizations presenting a regular interconnection pattern between factors or stages are 
known as parallel algorithms, or Pease algorithms since were first proposed by Pease. In this paper, new FFT/IFFT 
(Inverse FFT) factorizations with blocks that exhibit regular Pease interconnection pattern are derived. It is shown these 
blocks can be obtained at a previously selected scale. The new factorizations for both the FFT and IFFT have two kinds 
of factors: a few Cooley-Tukey type factors and new factors providing the same Pease interconnection pattern property 
in blocks. For a given factorization, these blocks share dimensions, the interconnection pattern stage-to-stage, and all of 
them can be calculated independently from one another. 

 
RESUMEN 
Las factoritzaciones de la FFT (Fast Fourier Transform) que presentan un patrón de interconexiones regular entre 
factores o etapas son conocidas como algoritmos paralelos, o algoritmos de Pease, puesto que fueron originalmente 
propuestos por Pease. En esta contribución se han desarrollado nuevas factoritzaciones en subbloques que presentan 
el patrón de interconexión regular de Pease. Se ha mostrado como estos bloques pueden ser obtenidos a una escalera 
previamente seleccionada. Las nuevas factoritzaciones para ambas FFT y IFFT (Inverse FFT) tienen dos clases de 
factores: unos pocos factores del tipo Cooley-Tukey y los nuevos factores que proporcionan el mismo patrón de 
interconexión de Pease en bloques. Para una factoritzación dada, los bloques comparten dimensiones, patrón 
d’interconexión etapa a etapa y además cada uno de ellos puede ser calculado independientemente de los otros.  
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1. INTRODUCTION 

The discrete Fast Fourier Transform, FFT, was first discovered by Gauss (see, e.g., [1]) and 
rediscovered by Cooley and Tukey [2] in the 1960s. It is very important in engineering and 
therefore many algorithms have been derived from the 1960s on, and there is a very extensive 
bibliography on the subject. There are algorithms referred to as higher radix [3] [4], mixed-radix 
[5], prime-factor [6], Winograd [7], split-radix [8] [9], identical geometry from stage-to-stage FFT 
[12], recursive [10], the combination of decimation-in-time and the decimation-in-frequency [11], 
among others. Reference [13] provides an interesting overview on the state of the art of FFT. 
Matrix representations for FFT provided by [14], [15], [16], [17] and new tendencies in the field 
of fast discrete signal transforms are reported in [18]. More recently, muticarrier modulations 
transceivers involving Fast Fourier Transform calculations have inspired new research in FFT 
architectures [4], [19], [20], [21]. Today it seems improbable that big implementation advantages 
can be reached by developing new algorithms with a smaller computational complexity than the 
algorithms in [23], [24], [25], [26] which are developed to be implemented by software. The 
hardware FFT implementation and the specific FFT architectures can still be of interest due to 
technological advances. As an example, more sophisticated Digital Signal Processing-oriented 
FPGAs devices (Field Programmable Gate Arrays) provide hundreds of real embedded 
multiplier elements that can operate at clock speeds of hundreds of MHz. Therefore an 
important part of the computation can be done in parallel. An algorithm designer has not only 
the possibility of having a lot of hardware resources allowing parallel implementations, but also 
the option of combining hardware-software solutions using a FPGA with a digital signal 
processor working together or with a (hard- or soft-) processor core inside the FPGA. A practical 
FFT/IFFT (Inverse FFT) implementation on FPGA in [27] has motivated the need of exploring 
new factorizations that can guide FFT/IFFT implementation with different level of parallelism.  
For the purpose of parallel processing, we require that the process be organized in a set of 
elementary operations that can be done simultaneously. There should be as few distinct types 
of elementary operations as possible. The parallel capability required shall be as simple and 
regular as possible. Local equal interconnection pattern properties at different lower scales 
provide this simplicity, especially when the scale in which the subblocks exhibit Pease property 
matches to the parallel hardware resources [12]. The factorizations presented in this paper 
open the possibility of exploring these new architectures. 
 A fast transform algorithm can be understood as a sparse factorization of the transform matrix. 
Each sparse matrix representing a factor in the FFT factorizations is called a stage. Matrix 
dimensions of a stage are the same as those of the original transform matrix. Typically, each 
row and each column of a stage contain only R values different from zero. The number R is 
called the radix of the decomposition and is usually a power of two. We can see from this 
observation that in a radix-R stage the basic operation consists in computing groups of R 
outputs from groups of R inputs.  When R is equal to 2, that is, in radix-2 factorizations, the 
basic operation is called a butterfly. Therefore in this case, assuming that N is the length of the 
transform, one should compute N/2 butterflies to complete a stage. 
 The interconnection pattern is a stage-to-stage relation between positions of the input data 
elements and the output data elements. In the matrix representing a factor, the interconnection 
pattern is given by the indices m,n of its non-zero elements, amn, meaning that the n-th input 
element is required to calculate the m-th output element at this stage. Following the matrix point 
of view, Pease factorizations have the particularity that each factor -or stage- addresses their 
inputs and their outputs from or to the same positions. Therefore the factors have the non-zero 
entries exactly at the same matrix locations. The regular input and output flow of data stage-to-
stage provided by the Pease factorization suggests a very simple and very fast parallel 
architecture, especially when all resources required to compute a stage in parallel can be 
mapped onto hardware [12]. Then, if we have all hardware computing a stage in parallel, it is 
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important to appreciate that a regular interconnection pattern lets each output ‘wired in’ to the 
correspondent input position. Computing the FFT is therefore reduced to the computation of 
logRN stages in a very simple iterative process. When a particular stage i is completed, the 
output set of the data is feedbacked in parallel to the input, in order to calculate the stage i+1, 
always in the same way.  
Following the example of a radix-2 FFT of length N, mapping a parallel hardware to compute a 
stage means to map N/2 butterflies with the registers to store data and the buses to 
interconnect them. We can guess the hardware cost by taking into account that an optimized 
radix-2 butterfly needs one complex multiplier and two complex adders only [27]. When 
mapping onto hardware of all resources to compute a complete stage in parallel is impossible 
for any reason or its efficiency is low, each stage has to be calculated sequentially in several 
steps. Under the assumption that hardware resources can only calculate one step in parallel, 
even in Pease architectures [27], since these steps have different data input-output patterns, it 
is necessary to map additional memory into hardware to save partial results and additional 
hardware resources with control functions. This is clear because some outputs in the 
computation of step n of stage i, should be feedbacked to the input registers to calculate stage 
i+1, but these registers cannot be used since they could contain valid input data of unfinished 
steps of the current stage i. Additional memory and control hardware means more area 
resources. A more sophisticated process needs to be organized in more clock cycles and, 
especially if they are combined with extra memory access, it means more power consumption. 
In order to preserve advantages that a regular interconnection pattern offers, we explore 
factorizations that reproduce the same pattern at the subblock scale, with the idea of better 
adapting to the hardware capability of parallel computing. The new factorizations we propose 
have two kinds of factors: a few Cooley-Tukey type factors and new factors that provide the 
same Pease interconnection pattern property in subblocks. We can find different strategies for 
the FFT/IFFT computation in [28], [29], [30] and [31]. Our factorizations provide a new approach 
to the existing strategies that can take advantage when the FFT/IFFT implementations can 
compute a part of a stage in parallel, then the regularity of a parallel processing in found at the 
subblock level. The presented factorizations can also be particularized to obtain different 
subblock sizes. All subblocks share the same interconnection pattern stage-to-stage and can be 
calculated independently from the others. In the hardware-software partition process of a design 
in which a FFT algorithm appears, it seems clear that the subblocks with a regular stage-to-
stage interconnection pattern could be implemented in hardware. It is interesting to observe that 
the regular interconnection pattern of a subblock of size N is the same as the Pease 
architecture of a FFT of size N [12]. Therefore the hardware that computes a subblock, using 
theses factorizations, can be used to compute FFTs of length N, 2N, 4N, etc. Only the multiplier 
coefficients should to be updated. 
 
2. NOTATIONS AND RADIX-2 FFT COOLEY-TUKEY FACTORIZATIONS  
 
The notation we use and the well-known radix-2 Cooley-Tukey factorizations [2] that will be the 
starting point of our argument are presented in this section. Since we always deal with square 
matrices in what follows, an N×N square matrix is denoted by a bold capital letter with subscript 
N. The number N is a power of two. The entry of matrix AN located at the row m, column n, is 
denoted by amn. We will sometimes use the notation AN={amn}. A column vector is represented 
by a small bold letter. Since the length of a column vector is always clear from the context, the 
subscript will indicate in this case the position of the column in a matrix. The N×N identity matrix 
is denoted by IN and it can be written by its column vectors ei as IN =[e1 e2 ·· en]. An even-odd 
permutation matrix PN in terms of vectors ei takes the form PN = [e1 e3 ·· en-1 e2 e4 ·· en]. We will 
often use it in this paper since permutation matrices involved in it can be written using PN. We 
will sometimes find it useful to divide a given matrix into submatrices. Most of the times we will 
use the Kronecker product to show a particular matrix structure. The symbol ⊗ stands for the 
right Kronecker product and, for arbitrary square matrices AM and BN, the Kronecker product AM 



                                                  Documents de Recerca � 2008 Universitat de Vic                                                   4 

⊗ BN is an MN×MN matrix that can be written using the elements amn of matrix AM as: 
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Next, we recall some useful properties involving the Kronecker product and the above defined 
even-odd permutation matrix PN. We have: 
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Note that superscript n in a matrix means the power n of this matrix. Finally, the factorization of 
an arbitrary matrix MN in terms of n factors (or stages) EN(i) is written as follows: 
 

).1()2()···()(
1

NNNN

n

i
N ni EEEEM == ∏

=

            (7) 

  
2.1 RADIX-2 FFT COOLEY-TUKEY FACTORIZATIONS 
 
Suppose that N=2n, that is, N is a power of 2, and j denotes the square root of -1. The Fourier 
transform matrix FN is defined as: 
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The Inverse Fourier transform matrix is related with the Hermitian of FN as FN = (1/N) FN

H
. 

In this section we will rewrite the radix-2 Cooley-Tukey factorizations originally presented in [2] 
by using the Kronecker product notation used in modern algorithm design as in [14][15].    
Let i2

B denote the matrix defined by: 
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where: 
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Consider the following well-known recursive properties involving matrices FN and FN/2: 
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( ) ,22 NNNN PFIBF ⊗=    (11)  
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and their Hermitian representations:  
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In (11-14), I2 is the 2×2 identity matrix, PN is above defined even-odd permutation matrix and the 
superscripts T, H and * denote transposition, the Hermitian conjugate and the complex 
conjugate respectively.  
 
The classical FFT/IFFT radix-2 Cooley-Tukey factorizations can be obtained by iterating 
expressions (11-14) and taking into account that the criterion for stopping the recursive process 
is: 
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Then from the recursion (11) and some algebra, we obtain: 
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And from (12) and some algebra: 
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Notice that the permutation matrix RN known as the bit-reversal permutation matrix, appears in 
(16) and in (17) written in two different ways. That is: 
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Since the matrix RN is well-known to be equal to its inverse, we have RN=RN

-1=RN
H=RN

T=RN
*. 

Therefore we will deal only with RN in what follows. Computing the transform RN only means a 
very easy hardware-made reordering. Note we have n = log2N factors or radix-2 stages. The 
factorizations obtained from (11-14) for the FFT can be rewritten in the following manner in 
order to present them as a product of n radix-2 stages: 
 

( ),
22

1
iin

n

i
NN BIRF ⊗= −∏

=

   (19)  



                                                  Documents de Recerca � 2008 Universitat de Vic                                                   6 

( ).1
1 22

1

+−
− ⊗= ∏

=

in
i

T
n

i
NN BIFR    (20)  

 
In a similar way from (13-14) the IFFT factorizations could be obtained and its expressions are: 
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The interconnection pattern between the stages is represented in Figure 1 for Cooley-Tukey 
factorizations. Observe that FFT factorizations in (19) and IFFT factorizations in (22) share the 
same interconnection pattern architecture in the same way that FFT factorizations in (20) and 
IFFT factorizations in (21). This can be interesting in IFFT/FFT hardware implementations. For 
example, in OFDM based communications both algorithms are used for modulation and 
demodulation, respectively, and this can be done with the same architecture. 
 

 
Figure 1 A 32-point radix-2 Cooley-Tukey stage interconnection pattern given by: A) expressions (19) 
and (22) B) expressions (20) and (21).  
 
2.2 RADIX-R COOLEY-TUKEY FACTORS AS A PRODUCT OF RADIX-2 FACTORS 
 
For any transform matrix FN such that N=RE and R=2F, one can readily find radix-R 
factorizations by observing that radix-R stages can be written by F products of consecutive 
radix-2 factors. Therefore, the radix R equivalent factorizations to expressions (19) and (20) 
take the form: 
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This means that the radix-R factors E(i), where i runs from 1 to E, for the solutions provided by 
(23) (chosen as an example), take the form: 
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Through E(i) can be simplified for a particular value of F, this simple notation allows radix-R 
stages to be written as a product of radix-2 stages. Moreover, this notation is very useful for 
obtaining mixed-radix factorizations. 
 
 
3. NEW FFT/IFFT FACTORIZATIONS WITH REGULAR INTERCONNECTION PATTERN 
STAGE-TO-STAGE SUBBLOCKS  
 
In [22], a radix-R equal stage-to-stage interconnection pattern factorization was derived for the 
Walsh-Hadamard Transform (WHT). The WHT has a factorization with the same stage-to-stage 
interconnection pattern as the Cooley-Tukey FFT factorization. This means that the same 
strategy used in [22] can be applied to FFT/IFFT to derive the well-known general radix-R 
Pease architectures. As we have already mentioned, the aim of this work is to obtain regular 
interconnection patterns at a scale lower than a stage. Since all Cooley-Tukey radix-R 
factorizations reproduce their interconnection pattern between stages at different smaller 
scales, as it is represented with a discontinuous line in Figure 1(A) for the radix-2 case, it is 
possible to find factorizations that reproduce the radix-R Pease property only partially at any of 
these smaller scales. Our new factorizations for both the FFT and IFFT will have two kinds of 
factors: a Cooley-Tukey type factors and new factors providing the same Pease interconnection 
pattern property in subblocks. The argument given in this section will become clear if we begin 
with the radix-2 case and further we generalize the results to radix-R.  
 
3.1 PARAMETER a  AND THE SIZE OF THE SUBBLOCKS WITH REGULAR INTERCONNECTION PATTERN 
PROPERTIES. 
 
It will be interesting to say something about the scale in which the property of the pattern 
regularity can appear. Consider a full radix-2 Pease factorization. In this case, the size of the 
block having the regular interconnection stage-to-stage property is just the size of the full 
transform, this is, N×N where N=2n. Now we consider new factorizations. In the case in where 
these factorizations have one radix-2 Cooley-Tukey type stage they can show two blocks with 
the regular interconnection pattern property. In the case in where they have two radix-2 Cooley-
Tukey type stages they can show four blocks with this property. A general rule is as follows: if a 
is the number of radix-2 Cooley-Tukey type stages, we can obtain 2a blocks of 2n-a×2n-a 
dimensions with the same regular interconnection pattern property. This can be seen in Figure 2 
for the case N=32, a=1 and a=2. 
 
3.2 THE FIRST FAMILY OF SOLUTIONS FOR THE FFT  
 
We begin with expression (19) without taking into account the bit reversed reordering given by 
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RN and considering only the right-hand side of this equation. In order to derive the new 
factorizations we first define the permutation matrices KN (N=2n) depending on the parameter a 
that controls the number of blocks with the same interconnection pattern property. Once a is 
selected, we have: 
 

( ).
22 anaN −⊗= PIK      (26) 

 
Another argument we have already mentioned is that our factorizations will have two kinds of 
factors: Cooley-Tukey type factors that we will be group in the below defined matrix YN, and the 
factors having the property we are looking for; that we will group in the bellow defined XN. If E(i) 
is the i-th radix-2 stage, we will write expression (19) as follows: 
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where XN and YN take the form:  
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In order to obtain new factorizations we will modify XN in the following way:  
 

( ) .1
22

1

+−
−

=

⊗= −∏ i
N

i
N

an

i
N iin KBIKX    (30)  

 
Note that the introduction in (30) of these powers of the permutation matrices KN, does not 
modify the value of XN. One can see from (30) that, if i=1, K-i+1=I, and if i=n-a, Ki =I. This can be 
proved using definition (1) and property (5): 
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The products of the remaining pairs of permutation matrices introduced between factors in (30) 
are equal to the identity matrix as a permutation matrix is just the inverse of the other. Observe 
also that the factors in (30) have the same mathematical complexity that in (29) since a 
permutation matrix only changes the order of operations. 
Next, the factors in (30) can be rewritten by properties (2), (3) and (5): 
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Let us consider a factor part of the last equation in (32) rewritten using (4) and (6) to the form: 
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to obtain: 
 

( ) ( ) .
222

1
2222 anainianiainan

ii
−−−−−−− ⊗=⊗ +− PIBPBIP   (35) 

 
Therefore XN in (30) becomes: 
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or, equivalently, by property (3):  
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What is interesting here is that the new stages in (36) or in (37) contain 2a blocks. The blocks 
can be calculated in n-a-1 stages and their structure is as follows: 
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Since the interconnection pattern is given by the position of the non-zero elements in each 
sparse matrix representing a factor, to show that these blocks have an identical interconnection 
pattern stage-to-stage, we can replace the matrix B by another simpler matrix B+ having its non-
zero values exactly in the same positions than matrix B. The matrix B+ is obtained by replacing 
the diagonal matrix A in (9) by the identity matrix I: 
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Once the parameter a is chosen, the stages of the modified blocks will be equal and 
independent of i, that is: 
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Once it is shown that the subblocks of XN have an identical interconnection pattern stage-to-
stage, the mathematical expression of these new factorizations with the parameter a controlling  
granularity of the blocks, is: 
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As an example, in Figure 2, we show on the left-hand side (A) the interconnection pattern for a 
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radix-2, N=32 (n=5) and a=1 factorization with 1 Cooley-Tukey type stage and 2 equal 
interconnection pattern stage-to-stage blocks. On the right-hand side (B), a radix-2 factorization 
with the same N=32 (n=5) and a=2, with 2 Cooley-Tukey type stages and 4 blocks with equal 
interconnection pattern stage-to-stage. 

 
Figure 2 A 32-point radix-2 stage-to-stage interconnection pattern representations for the required new 
first family of solutions. Case A) with parameter a=1: one Cooley-Tukey type stage and two blocks with 
regular interconnection pattern. Case B) with parameter a=2: two Cooley-Tukey type stages and four 
blocks with regular interconnection pattern. 
  
3.3 THE SECOND FAMILY OF SOLUTIONS FOR FFT.  
Now we begin with expression (20). We will consider the permutation matrices QN (N=2n) as 
follows:   
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We want a solution containing two kinds of factors: an a Cooley-Tukey type factors grouped 
now in the matrix XN and 2a factors with the property we are looking for grouped now in the 
matrix YN. If E(i) is the i radix-2 stage, we have then: 
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   (43) 

 
Where XN and YN are taken in the following way: 
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In order to change the interconnection pattern stage-to-stage, we transform YN as follows: 

( ) .1
2222

1
11

+−+−

+=
+−− ⊗= ∏ inTin

n

ai
N ninin QBIQY   (46) 

 
The factors Q in (46) can be written using the permutation matrix P via (42). With some algebra 
and taking into account properties (2), (3) and (5), we have: 
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  (47) 

 
and by properties (4) and (6) we have: 
 

( ) ( ) ,1
222

1
222 1111
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.1
2

1
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−−−
−− = anan

an PP     (49) 
 
Therefore YN can be written as follows: 
 

( ),11 22
1

22
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+=
∏ aiinana

T
n

ai
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or, equivalently, by property (3): 
 

( ).11 22
1

2
1
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T
n

ai
N IBPIY    (51) 

 
We see from (51) that the factors of YN contain 2a subblocks. These subblocks have an identical 
interconnection pattern stage-to-stage. Indeed, replace the matrix BT by the matrix B+ defined in 
(39), as we have already done in the previous section. The matrix B+ has its non-zero elements 
in the same positions as the matrix BT. Moreover, as we have already mentioned, the 
interconnection pattern is given by the position of the non-zero elements in each sparse matrix. 
Therefore this substitution does not change the interconnection pattern but shows that the 
modified factorization does not depend at the stage i. Then BT can be replaced by B+ and the 
modified factors independent on of the stage i take the form: 
 

( ).122
1

2 −−− ⊗−
anan IFP    (52)  

 
The second family of factorizations has the following expression: 
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Remember that the parameter a is the number of Cooley-Tukey type stages. If a=0, we obtain 
complete Pease factorizations. If a=log2N and a=log2N-1, we have complete Cooley-Tukey 
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factorizations. In Figure 3, for the same values of N and a as in Figure2, the radix-2 stage-to-
stage interconnection pattern solutions for the new second family of solutions corresponding to 
(53) are represented. Observe that these solutions are symmetric.  

 
Figure 3 A 32-point radix-2 stage-to-stage interconnection pattern representations for the required new 
second family of solutions. Case A) with parameter a=1: one Cooley-Tukey type stage and two blocks 
with regular interconnection pattern. Case B) with parameter a=2: two Cooley-Tukey type stages and four 
blocks with regular interconnection pattern. 
 
3.4 IFFT FACTORIZATIONS.  
The factorization given for FH in expression (21) shares the same interconnection pattern as that 
for F in expression (20). Using the same method that in sections 3.2 and 3.3, with the same 
permutation matrices presented in (42) and with the same parameter a to control granularity of 
the blocks, the new two families of factorizations for FH have the form:  
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and 
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From the point of view of the interconnection pattern (54) and (42) are equivalent, the same 
than (55) and (53). 
 
4. RADIX-R GENERALIZATION AND MIXED-RADIX FACTORIZATIONS  

Take R=2F. Then any discrete Fourier transform of size N=RE, admits a radix-R factorization of 
E radix-R factors E (́i) that can easily be written as a product of F successive radix-2 factors 
E(i):  

( ).)1()(´
1

fFii N

F

f
N +−= ∏

=

EE     (56) 

The radix-R factorization becomes: 
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  ( ).´
1

iN

E

i

E∏
=

                                         (57) 

This notation can be used for any kind of decomposition to obtain radix-R stages. In Figure 4, 
two different solutions A) and B) for the full radix-4 and N=16 equal interconnection patterns or 
Pease factorizations are represented. This case is a particular case of our factorizations with 
a=0.   

 

Figure 4 A 16-point radix-4 equal interconnection pattern stage-to-stage solutions obtained from A) 
the first family of solutions and B) the second family of solutions, both for parameter a=0. These two 
solutions have 0 Cooley-Tokey type stages and only 1 block exhibiting the same interconnection pattern 
and they are the same as the radix-4Pease solutions.  

 
It is interesting to note that representing higher radix stages in function of radix-2 factors is not 
restricted to regular radix-R representations. Mixed radix factorizations can sometimes provide 
certain numeric advantages or become interesting when the transform size does not allow full 
radix-R decomposition. This is shown as an example in Figure 5. In case A) the solution given 
in Figure 2-B) is modified by grouping together the radix-2 stages i=4 and i=5 to form the radix-4 
stage. In Figure 5.B) the solution given in Figure 2-A) is replaced by grouping together the radix-
2 stages i=1 and i=2 and stages i=3 and i=4 to form the radix-4 stages 1 and 2 respectively. 

 

Figure 5 32-point FFT mixed-radix factorizations combining (A) 1 radix-4 stage with 4 subblocks with 3 
radix-2 equal interconnection pattern stages and (B) 1 radix-2 stage with 2 subblocks with 2 radix-4 equal 
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interconnection pattern stages. 
 

5. CONCLUSIONS 

In this paper we have obtained a family of new factorizations that repeat the regular Pease 
interconnection pattern inside subblocks. It is shown that these new factorizations can be 
obtained to reproduce the regular interconnection pattern property at a previously selected 
scale and that we have some margin to select the size of these subblocks. A characteristic of 
the presented factorizations is that they exhibit two kinds of factors: Cooley-Tukey type factors 
and new factors providing subblocks with parallel or identical interconnection pattern stage-to-
stage. The number and the size of the introduced subblocks and the number of Cooley-Tukey 
type factors are related to each other. We have shown two kinds of topologies for both the FFT 
and the IFFT transforms and it is shown the way to obtain radix-R and mixed-radix factorizations 
from radix-2 ones. Our factorizations can find applications in FFT/IFFT implementation 
architectures, where the subblock part can be implemented in hardware, taking advantage of 
the parallel topology, while the Cooley-Tukey type stages can be implemented in software 
(some OFDM based standards have different operation modes that work with FFTs/IFFTs of 
different sizes). It is interesting to observe that, if we have the hardware to compute a block of 
size N in parallel, with this hardware architecture we can compute de FFT of size N using the 
pure Pease algorithm. With the same hardware, using one of these new factorizations, we can 
compute a 2N FFT by computing two equal interconnection pattern subblocks of size N, and 
since the first remaining stage, a Cooley-Tukey type stage, that can be computed without any 
multiplications, only with additions or subtractions as the coefficients of this stage are 1 or -1, it 
can be computed by software very efficiently. A forthcoming paper will deal with different 
practical implementations on a FPGA. Given that different discrete transforms have 
factorizations with a Cooley-Tukey type stage-to-stage interconnection, the same argument can 
easily be extended to them and the same kind of factorizations can be obtained for them. It will 
be also interesting to extend this kind of factorizations to the two dimensional case. 
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