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Membrane proteins are targets for over 60 % of currently marketed drugs, as they are 

involved in a wide variety of diseases. During these last years, many single nucleotide 

polymorphisms (SNP) have been identified in the transmembrane region of alpha 

membrane proteins.  

 

The aim of this study is to develop a web server able to calculate, for all SNPs identified 

in the transmembrane region of membrane proteins, parameters that can be useful to 

predict if a SNP can affect the structure and/or function of a membrane protein, resulting 

in a pathological mutation. These parameters include entropy, amino acid frequencies and 

substitution score based on sequence alignments.  

 

In order to analyse the capacity of the web server to predict the effect of a SNP in the 

structure and function of the protein, the entropy, amino acid frequencies and substitution 

scores have been compared for pathological and non-pathological SNPs. 

 

The results show significative differences between the parameters of both groups, 

indicating that the information provided by the web server can be used to predict the effect 

of SNP on membrane proteins. 
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INTRODUCTION 

 

A genome is the complete set of nucleic acid sequence—Deoxyribonucleic acid in 

humans (DNA)—that contains all of the information needed to develop and maintain that 

organism. The genome consists coding regions (genes) and noncoding regions. In 

humans, a copy of the entire genome—more than 3 billion DNA base pairs—is contained 

in all nucleated cells. DNA consists of two biopolymer strands coiled around each other 

to form a double helix of four different nucleotides (adenine, cytosine, guanine and 

thymine, A, C, G and T respectively).1 

Genes control different characteristics such as eye colour, height or susceptibility to 

specific diseases. The development of new technologies has made genome sequencing 

dramatically easy and cheap, and the number of complete genome sequences is growing 

rapidly. This permitted to identify many genetic differences between the genome of 

different humans. New sequencing technologies, such as massive parallel sequencing, 

have also opened up the prospect of personal genome sequencing as a diagnostic tool. 

This diagnostic includes genetic illness and predisposition to an illness.2  

 

 

Genetic Variations 

 

Genomic information suffers alterations in its nucleotide sequence. Mutations appear 

when this change in the DNA sorts the error-prone repair and remains in the genome. 

Damage in DNA is constantly present, it can be caused by external processes or DNA 

replication damage3. 

There are differences between somatic and germinal cell mutations. If a somatic mutation 

occurs in a single cell in a developing somatic tissue, all cells descended from the mutated 

cells will be mutated. A germinal mutation occurs in the germline, a special tissue that is 

set aside in the course of development to form sex cells. If a mutant sex cell participates 

in fertilization, then the mutation will be passed on to the next generation. An individual 

of perfectly normal phenotype and of normal ancestry can harbour undetected mutant sex 

cells4. Depending on their specific localization in the genome, mutations may or not have 

altered function or expression5. 
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SNPs 

 

A single nucleotide polymorphism (abbreviated as SNP; Figure 1), is a genetic variation 

present to some appreciable degree within a population (e.g. >1%) in a single nucleotide 

that occurs at a specific position in the genome6. For example, base A may appear in most 

individuals at a specific base position in the human genome, but in a minority of 

individuals, the position may be occupied by base C. Thus, we will say that there is a SNP 

at this specific base position, and the two possible nucleotide variations —C or A— will 

be the alleles for this base position. 

Single-nucleotide polymorphisms may fall within coding sequences of genes, non-coding 

regions of genes, or in the intergenic regions (regions between genes)7. SNPs that falls in 

the protein coding region of a gene can be classified into three different kinds of SNP 

depending on whether it results in a change  in the amino acid sequence or not. Silent 

mutations code for the same amino acid, missense mutations code for a different amino 

acid nonsense mutation code for a stop codon (see Figure 1)8. SNPs that are not in protein-

coding regions may still affect gene splicing, transcription factor binding, messenger 

RNA degradation, or the sequence of non-coding RNA. Gene expression affected by this 

type of SNP is referred to as an eSNP (expression SNP) and may be upstream or 

downstream from the gene9.  

Thus, each SNP is different and may or not have functional consequences depending on 

its position or its amino acid change. SNPs underlie differences in our susceptibility to 

disease and may be associated with a wide range of diseases. Some of these SNP been 

associated to different kind of genetic diseases10, but the effect of most SNPs in 

pathologies or in predisposition to suffer certain pathologies is still unknown.   

In the context of the growing number of SNP recently identified, there is a need to develop 

tools able to predict the effect of SNPs in the structure and function of proteins and the 

association to pathologies. 

Figure 1. Nonsense mutations introduce a codon stop, while missense mutations result in a change in the amino 

acid. (Taken from Natural library of medicine) 
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Web servers available to predict the effect of SNPs  

 

During the last years, the number of sequenced human genomes have exponentially 

increased, and so has grown the number of reported new identified SNPs. Many different 

tools have been developed in order to study the effect of SNP that produce amino acid 

changes in regions encoding proteins. Usually, an amino acid change with similar size 

and physico-chemical properties (e.g. substitution of leucine by valine, as in SNP 

rs13166360) has mild effect, and vice-versa. Moreover, if a SNP disrupts secondary 

structure elements (e.g. substitution of proline by another residue in an alpha helix) such 

mutation usually may affect whole protein structure and function.  

Using those simple and many other machine learning derived rules a group of programs 

for the prediction of SNP effect was developed. Some examples are: SIFT11, SNAP212, 

SuSPect13, PolyPhen-214, PredictSNP15 and Variant Effect Predictor from the Ensembl 

project16. Most of these web servers have limited predictive power and were designed to 

be employed with globular proteins, which feature a wide diversity of folds and primary 

structures. 

 

 

Membrane proteins 

 

Membrane proteins represent over 25 % of all proteins in sequenced genomes and mediate 

the interaction of the cell with its surroundings, including selective molecular transport, 

signalling, respiration and motility17. Because of their accessibility from the extracellular 

environment, membrane proteins (see Figure 2), they are the targets for over 60 % of 

currently marketed drugs. Due to the difficulty in over-expressing, purifying and 

crystallizing them, only 2 % of the structures deposited in Protein Data Bank are 

membrane proteins. Membrane proteins display specific features that differ from those of 

water-soluble ones, due to their different environment18. For instance, the number of folds 

that membrane proteins can adopt is limited to only α-helical bundles and β-barrels, due 

to the physical constraints imposed by the lipid bilayer. Consequently TM regions have 

specific distributions of amino acids (mostly hydrophobic)19.  
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Given the lack of experimental structural information, computational tools specific for 

membrane proteins have become highly valuable. Thus developing tools for studying TM 

regions would help, for instance, studying how drugs target membrane proteins (see 

Figure 2). 

 

 

 

 

 

 

METHODS 

 

SNPtmDB web server consists of both a database of SNPs located on the TM domains of 

alpha membrane proteins and a tool that computes quantitative parameters that evaluate 

the amino acidic change. The server has the ability to systematically survey sequences of 

TM regions and provide the users parameters such as frequencies (considering the same 

amino acid on the same family of proteins in a sequence alignment), information content 

(of the alignment), as well as punctuation of the amino acid change (using a substitution 

matrix). These parameters can be useful to classify SNP as pathological or non-

pathological. SNPtmDB relies on Python programs in combination with a MySQL 

database and Bootstrap web-page interface. 

 

 

Figure 2. Cartoon representation of a membrane with different types of membrane proteins 

embedded (taken from http://oregonstate.edu/instruction/bi314/summer09/membranes.html) 



8 
 

 

Figure 3. Schematic representation of how the dataset of SNPtmDB was produced. “Black boxes show examples of 

the MySQL tables generated.” - The color-code employed in this figure is red: external input, yellow: programs, 

blue: MySQL tables names. 
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Construction of the database of SNP in transmembrane segments 

 

All human proteins are manually downloaded (in text format) from the UniProt web-

server (see Figure 3). The program 'grep.py' reads the text and extracts SNP located in the 

TM region of these membrane proteins. The Uniprot accession, the amino acid sequence, 

Pfam family ID20, amino acid change and position and pdb code was downloaded for each 

SNP. ‘table_SNP’, ‘table_regions’ and ‘table_proteins’ contains these data. 

 

 

Multiple sequence alignments of the transmembrane domains 

 

Using the database described in the previous section, the program ‘download.py’ 

automatically downloads the Pfam alignments and the files containing the information. 

Only Pfam accessions that appear in the TM proteins are downloaded (Figure 3).  

 

 

Frequency of each position  

 

The program 'conservation.py' combines the database with the Pfam-downloaded files to 

compute the frequency for an amino acid at each position of the alignment. Knowing the 

exact position of the SNP, ‘conservation.py’ looks for each amino acid in the column 

alignment and calculates frequencies of the reference amino acid (from the major allele) 

and the amino acid codified by the missense mutation. It also calculates the information 

content of the position alignment (see Figure 3). The relative frequencies of the amino 

acids are obtained as:  

Fa(i) = na(i)/n(i) 

 

Where na(i) is the number of sequences in which position i is occupied by amino acid a, 

and n(i) is the total number of aligned sequences in which position i is present (no gap at 

this position). Data is saved in 'table_conservation'. 
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Information content 

 

The information content I(X) corresponds to the reduction in uncertainty (Entropy H) that 

occurs in the alignment observed: 

I(X) = H(before) – H(after) 

 

Where H(before) and H(after) are the order of a system measured by its entropy, before 

and after the alignment and it can be used in particular for measuring sequence variability, 

as was proposed for example by Shenkin et al. (1991) 21 and has been implemented in a 

number of studies.  

Entropy for a position i is maximal if all 20 amino acids at this position have equal 

frequencies. We use entropy with the reverse sign defined on position-specific 

frequencies fa(i) to estimate the conservation index. Entropy does not take into account 

possible bias in amino acid composition or similarities among amino acids. 

Entropy is calculated as a measure of the average uncertainty of a random variable. If X 

is a variable that can take k values xi, entropy X is defined as: 

 

 

 

Instead of saying that the entropy before the alignment is random (saying that all 20 amino 

acids at this position have equal frequencies) we calculate it from all the TM regions of 

the membrane proteins. So using the value of the initial entropy, to know the information 

content, we calculate the entropy of the column alignment and solve the information 

content equation. The data is saved in 'table_conservation'. 

 

 

 

 

 

 

 

 

 

 

Fig 6: Entropy equation 
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Substitution Scores  

 

The program 'matrix.py' requests the amino acid change of the SNP and employs the 

PHAT75/73 (TM-specific) substitution matrix22 to produce a substitution score (see 

Figure 4). Data is saved in 'table_matrix'. 

 

 

 

 

 

Integration of all parameters  

 

The different MySQL tables are linked through the Uniprot accession code. The 

'final_table' combines the information obtained in the different steps: Uniprot accession 

code, protein ID, position in the sequence, sequence, amino acid change, aminoacid 

change frequencies, matrix punctuation, information content, pathological or non-

pathological mutation and transmembrane or non-transmembrane position.  

The web application collects the requested data from this table and return as output the 

information for all SNPs of the selected protein. (see Figure 3)  

 

 

 

 

 

 

Figure 4. The PHAT 75/73 matrix (H=0.5605) constructed from PHDhtm 75 (H = 0.5007) target values 

and Persson–Argos 73 background frequencies (H = 0.5038). 

 



12 
 

 

Statistical Analysis  

 

In order to validate the prediction capability of the parameters computed by SNPtmDB, 

we addressed the comparison between pathological and non-pathological mutations. It is 

important, however, to take into account that not all SNPs that affect the structure and 

function are classified as pathological. This is the case, for instance, of SNPs that modify 

the binding sites of taste receptors. Although the result of such SNPs is the lack of (or 

decreased) taste sensation, these this does not derive into a pathology. For this reason, our 

non-pathological mutations contain only those mutations that appear in proteins with 

known pathological SNPs. The mean and the standard deviation were computed for each 

parameter of each group. Normality test and t-test were used in order to identify 

statistically differences between both groups. The statistical analysis, including box plots, 

was performed with scipy module of Python23. 

 

 

Database Update  

 

The database will be regularly and automatically updated twice a year, in order to 

incorporate new SNP and the computed parameters. 
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RESULTS AND DISCUSSION 

 

Overview of the current data  

 

The initial set of SNPs was extracted from the UniProt database24. Table 1 shows an 

overview of main important data contained in SNPtmDB. The database currently contains 

20.197 unique Homo sapiens proteins from which only 5192 proteins contained a TM 

domain. These proteins represent 1380 distinct families according to Pfam20. From the 

5192 proteins with a TM domain, 1299 of them had at least a SNP that fell in the TM 

region. Approximately half of the SNPs in transmembrane regions are pathological. 

Contrastingly, approximately 30% of SNP in non-transmembrane regions are 

pathological (see Table 1).  

 

 

 Number (amount) 

Filtered proteins 5192 

Total SNPs 24564 

 

Pathogenic SNPs 9726 

Transmembrane regions 4312 

pathogenic SNPs and transmembrane 2265 

pathogenic SNPs and non-transmembrane 7461 

non-pathogenic and transmembrane 2047 

non-pathogenic and non-transmembrane 12791 

 

 

 

 

 

Table 1. Overview of the data contained in SNPtmDB. There are 5192 human proteins containing a 

transmembrane domain. There are 2265 pathological SNP and 2047 non pathological SNP in the 

transmembrane region of human membrane proteins. 
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Pathological vs non-pathological SNP  

 

We have performed statistical analyses in order to determine if the parameters computed 

for pathological and non-pathological mutations reveal that the two populations can be 

separated. Table 2 displays average values and their standard deviations. Figure 5 displays 

the same information in the form of a box-plot. It can be seen in the figure that both 

populations overlap (due to large standard deviation). All variables display groups with a 

normal distribution (D’Agostino and Pearson’s normal test, see Table 2). Therefore, we 

could perform t-tests for each parameter that revealed significant differences in all cases 

(see Table 3). 

  

 Mean (punctuation) Desvest  (punctuation) Normal test (p-value) 

fi 0.246 0.219 <10e-11 

fip 0.388 0.291 <10e-59 

infCont 0.737 0.537 <10e-06 

infContp 0.986 0.657 <10e-24 

matrixScore 0.209 2.614 <10e-07 

matrixScorep -2.131 2.998 <10e-84 

 

 T-test (p-value) 

fi 1.0577e-07 

infCont 1.0713e-05 

matrixScore 3.5225e-19 

 

Table 2. Mean, standard deviation and p-value of the normal test for initial frequency (fi and fip), content of 

information (infCont and infContp) and substitution matrix score (matrixScore and matrix scorep) for pathological 

and non pathological mutations (p indicating pathological mutations). 

Table 3. p-value for the T-test comparing initial frequency (fi), content of information (infCont), substitution 

matrix score (matrixScore) for pathological and non-pathological mutations.  Significative differences arise 

between the two groups. 



15 
 

  

 

 

If the final frequency is greater than the initial frequency then usually is a non-

pathological SNP, whatever the score or the information content values. So, if the 

frequency of the amino acid in the column of the alignment is high it means that it is a 

conserved residue and its change can affect more in a pathological way than if it is not 

conserved. 

Matrix score values presents big differences between the two groups, the mean of 

pathological matrix score (Figure 5) is negative, indicating that the amino acid has a 

biggest effect in the SNP pathological effect. 

 

 

 

 

 

 

 

 

Figure 5. Box plots for initial frequency (fi), final frequency (fp), content of information (infcont) and matrix 

substitution score (matrixScore) for pathological and non-pathological mutations. 
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EXAMPLE OF USAGE 

 

Figure 6 displays the input page of the web application. The page displays two HTML-

forms where the user can provide either the protein name (Uniprot accession or Uniprot 

ID) or the gene name.  

 

 

 

A click on “Run” requests the preparation of a table with all the SNPs for such protein. 

The output consists on a list of SNPs(both VAR-code and rs-code, if available), the Pfam 

family, the score associated to the amino acid change, the reference amino acid (from the 

major allele) and final (from the SNP) frequencies in the alignment, the amount of 

information of the SNP position (see Figure 7). Each SNP is also classified as pathological 

(tagged as “1”) or non-pathological (tagged as “0”). Pathological mutations are linked to 

OMIM database10. 

SNPtmDB web-page has an easy-to-use interface and returns results in less than one 

second. 

 

 

 

 

 

 

 

 

 
Fig 9: Web-page interface 

Fig 11: Web-page interface 

Figure 6. Input of SNPtmDB. The user can introduce the name of the protein or the name of a gene. 

Figure 7. The Output of SNPtmDB consists on the initial and final frequency, the entropy and the 

substitution score for all SNP on a gene or protein. 
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CONCLUSIONS 

 

We have developed a web server database (SNPtmDB) that computes the initial and final 

frequencies, content of information and substitution score for all SNP located in the 

transmembrane regions of membrane proteins. 

Comparison of these parameters between pathological and non-pathological SNP shows 

that there are statistical differences between the two groups.  

These results suggest that these parameters can be used to predict if a mutation can be 

pathological or not and points SNPtmDB as a predictor of pathological mutations in 

membrane proteins. 
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