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ABSTRACT 
Individual size-based interactions play a significant role in the community 

dynamics and ecosystem processes of aquatic ecosystems, because body size is a key 

trait of organisms that is highly linked to metabolic rates. Climate change and 

disturbances influence freshwater planktonic food webs, weakening the strength of 

size-based interactions. Earlier studies mostly focused on alterations in body-size 

distributions in single trophic levels, but the understanding of size-based interactions 

among adjacent trophic levels is still limited. Moreover, only a few studies explored the 

short-term resilience of communities to disturbances. However, evaluation of body size 

structure of interacting trophic levels simultaneously while accounting for intraspecific 

variation and understanding resilience of communities would bring novel insights into 

strength of trophic interactions.  

In this thesis, we conducted four related but independent studies to obtain a 

deeper understanding of the size-based trophic interactions. We aimed to demonstrate 

biotic and environmental factors influencing size-based interactions in planktonic food 

webs using different research approaches (e.g. observational and experimental 

approaches) at different locations: (1) snap-shot sampling of 30 shallow lakes in Turkey 

along a latitudinal gradient, assessing size-structured predation on prey size structures 

from fish to phytoplankton, accounting also for the effects of physical factors (e.g. 

temperature and resource availability); (2) mesocosm experiment in Lake Mývatn, 

Iceland, testing the effect of fish predation and cyanobacteria blooms on the size 

structure of lower trophic levels and the energy transfer along the food web; (3) 

mesocosm experiment in Lake Müggelsee, Berlin, evaluating the effect of fish removal 

on the resilience of planktonic communities and their cascading effects along the food 

web; and (4) microcosm experiment in ponds of Empordá Wetlands, Catalonia, assessing 

the effect of intraspecific variation in zooplankton predators on their prey size structure, 

and possible consequences for the community functioning. 

Overall, our key findings from this thesis can be summarized as follows: 1) In 

Turkish shallow lakes, we observed positive correspondence between fish and 

zooplankton size structure in interacting trophic levels, after confounding for the 
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environmental factors such as temperature and resource availability. While 

phytoplankton size structure was mainly driven by the physical factors such as nutrients 

and temperature, zooplankton size structure was related to the diversity in predators. 

2) In the mesocosm experiment in Lake Mývatn, fish presence caused negative changes 

in zooplankton size and community structure. However, the increased phytoplankton 

size diversity due to occurrence of cyanobacteria blooms overrode the fish effects and 

weakened efficient energy transfer along the food web. 3) Our results from short-term 

fish predation experiment close to Lake Müggelsee (IGB, Berlin) indicated low resilience 

in zooplankton communities. Zooplankton community composition shifted, releasing 

grazing control on phytoplankton in enclosures with fish. 4) In the microcosm 

experiment in Mediterranean ponds, we found differences in prey (bacterioplankton 

and phytoplankton) size structure as a result of predation by different developmental 

stages of zooplankton, indicating possible implications on food web functioning such as 

energy transfer and food web capacity. This thesis suggests that integrating size-based 

relationships and resilience of communities together with intraspecific variation is 

important while studying trophic interactions. Understanding these interactions will 

allow us to better manage and restore aquatic ecosystems in the face of climate change 

and other human-induced disturbances. 
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RESUM (in Catalan) 
Les interaccions basades en la mida individual dels organismes tenen un paper 

important en la dinàmica de la comunitat i en els processos dels ecosistemes aquàtics, 

ja que la mida d’un individu és un tret clau dels organismes molt vinculat a la seva taxa 

metabòlica. El canvi climàtic i les pertorbacions afecten a les xarxes tròfiques 

planctòniques d'aigua dolça, debilitant les interaccions basades en la mida dels 

individus. Estudis anteriors sobre el tema es centren principalment en l’estudi de les 

alteracions de les distribucions de mides en un nivell tròfic determinat, però la 

comprensió de les interaccions basades en la mida dels individus de nivells tròfics 

adjacents encara és limitada. A més, molt pocs estudis han explorat la resiliència a curt 

termini de les comunitats a les pertorbacions. Tanmateix, l'avaluació de l'estructura de 

mides simultània entre nivells tròfics adjacents tenint en compte la variació 

intraespecífica i entenent la resiliència d’aquestes comunitats portarà nou coneixement 

sobre la força de les interaccions tròfiques. 

En aquesta tesi es van desenvolupar quatre estudis relacionats però independents 

per obtenir una comprensió més profunda de les interaccions tròfiques basades en la 

mida individual dels organismes. L’objectiu era demostrar com els factors biòtics i 

ambientals afecten les interaccions basades en la mida dels individus de xarxes tròfiques 

planctòniques utilitzant diferents aproximacions (observacionals i experimentals) en 

diferents localitats: (1) mostreig de 30 llacs poc profunds de Turquia distribuïts al voltant 

d’un gradient latitudinal per avaluar com l’estructura de mides dels depredadors afecta 

l’estructura de mides de les preses, tenint en compte els efectes de factors físics com la 

temperatura o la disponibilitat de recursos; (2) experiment de mesocosmos al Llac 

Mývatn, Islàndia, per testar l’efecte de la depredació (de peixos) i els blooms de 

cianofícies en l'estructura de mides de nivells tròfics més baixos i de la transferència 

d'energia al llarg de la xarxa tròfica; (3) experiment de mesocosmos al Llac Müggelsee, 

Berlin-Alemanya, per determinar l’efecte de l'eliminació de peixos en la resiliència de les 

comunitats planctòniques i els seus efectes en cascada a la resta de la xarxa tròfica; i (4) 

experiment de microcosmos a llacunes dels Aiguamolls de l’Empordà per avaluar 

l’efecte de la variació intraespecífica de depredadors de zooplàncton en l’estructura de 
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mides de les seves preses, i les possibles conseqüències per al funcionament de la 

comunitat. 

Generalitzant, les nostres troballes clau d'aquesta tesi es poden resumir de la 

manera següent: 1) Vam observar una correspondència positiva entre l'estructura de 

mides de nivells tròfics interactuants com són els peixos i el zooplàncton en llacs somers 

turcs, després de considerar factors ambientals com la temperatura i la disponibilitat de 

recursos. Mentre que l'estructura de mides del fitoplàncton estava principalment 

impulsada per factors físics (nutrients i temperatura), l'estructura de mides del 

zooplàncton estava relacionada amb la diversitat de depredadors. 2) En els experiments 

de mesocosmos al Llac Mývatn, la presència de peixos va provocar canvis negatius en la 

mida del zooplàncton i l'estructura de la comunitat. Tanmateix, un augment posterior 

de la diversitat de fitoplàncton a causa de l’aparició d’un bloom de cianofícies va 

sobrepassar els efectes dels peixos i va afeblir la transferència d'energia al llarg de la 

xarxa tròfica. 3) Els experiments de depredació de peixos a curt termini al costat del Llac 

Müggelsee (IGB, Berlin) van mostrar la baixa resiliència de les comunitats de 

zooplàncton, amb canvis en la composició de la comunitat que van produir un 

alliberament en el control que exerceix el zooplàncton en el fitoplàncton. 4) Els 

experiments a les llacunes mediterrànies dels Aiguamolls de l’Empordà van mostrar 

diferències en l’estructura de mides de les preses (bacterioplàncton i fitoplàncton) com 

a resultat de la depredació per part de diferents estadis de desenvolupament del 

zooplàncton, indicant possibles implicacions en el funcionament de la xarxa tròfica (com 

transferència d'energia i capacitat de la xarxa tròfica). Aquesta tesi ressalta la 

importància d’integrar les relacions basades en la mida dels organismes i la resiliència 

de les comunitats amb la variació intraespecífica dels organismes a l’hora d’estudiar les 

interaccions tròfiques entre els organismes d’un ecosistema aquàtic. La comprensió 

d'aquestes interaccions ens permetrà gestionar i restaurar millor els ecosistemes 

aquàtics davant el canvi climàtic i altres pertorbacions induïdes per l'home.  
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GENERAL INTRODUCTION 

Trophic interactions in aquatic food webs 
Organisms interact with each other and the environment around them. They can 

compete for resources, predate on each other (i.e. cannibalism) or on other preys, 

altering the dynamics of aquatic ecosystems. The study of these trophic interactions has 

been an important topic in food web ecology since early 1940s (Lindeman, 1942). Later, 

several studies contributed to the knowledge on consumer-resource interactions in 

aquatic ecosystems (Carpenter, Kitchell, & Hodgson, 1985; Pace, Cole, Carpenter, & 

Kitchell, 1999; Polis, Sears, Huxel, Strong, & Maron, 2000). These interactions in the food 

web can be controlled through predation (top-down) and resource availability (bottom-

up) (Jeppesen et al., 1997; Polis et al., 2000). However, the relative contribution of top-

down and bottom-up controls has been still intensively debated. Trophic cascades 

illustrate top-down control properly. A trophic cascade can be defined as an indirect 

positive impact of a predator on the lower trophic level such as primary producers. For 

instance, planktivorous fish predation on zooplankton could release zooplankton grazing 

on phytoplankton and therefore favor phytoplankton growth (Pace et al., 1999). 

However, bottom-up controls imply the modification of interactions depending on 

nutrient availability in the system (Figure 1).  

Several approaches exist to study trophic interactions, from taxon-based to trait-

based approaches. Many studies examined interactions between organisms and their 

effects on community structure, abundance and biomass using taxon-based approach 

which considers species identity rather than their functional roles in the community 

(Carpenter, 1987; Jeppesen, Jensen, & Søndergaard, 2002; Polis et al., 2000). 

Nonetheless, not many studies have focused on community structure based on 

individual sizes, although individuals within communities differ in terms of body size, 

and ontogenetic stage, especially in aquatic ecosystems due to indeterminate growth 

(Brose, Jonsson, et al., 2006; Trebilco, Baum, Salomon, & Dulvy, 2013). This fact results 

in size-structured communities, that differ in their size-specific life history characteristics 

(e.g. feeding, growth, mortality). All these size-related differences could modify trophic 
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interactions along the food web. Therefore, further research on size-based approaches 

is required for understanding of complex trophic interactions.  

 

 

Figure 1. Example of a tri-trophic level food web. First trophic level: primary producers (i.e. 

phytoplankton), second trophic level: primary consumers (i.e. zooplankton), third trophic level: 

secondary consumers (i.e. planktivorous fish). Solid arrows indicate top-down control (e.g. 

predation, grazing) on the lower trophic level. Dashed arrows indicate bottom-up control (e.g. 

nutrient uptake). Change in abundance, biomass or size in one trophic level has an effect on the 

adjacent trophic level(s). For example, high fish predation can decrease zooplankton abundance 

and body size. 

 

Role of body size in trophic interactions of aquatic 

ecosystems 
Body size is one of the key traits of all organisms. It is highly linked to metabolic 

rates, such as growth, reproduction and population growth rates (Calder, 1984; Robert 

Henry Peters, 1983) and thus provides important biological and ecological information 

(White, Ernest, Kerkhoff, & Enquist, 2007). Changes in body size structure (Figure 2) 
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could inform about predator-prey interactions, population dynamics, nutrient cycling, 

and trophic energy transfer in food webs (Brose, Jonsson, et al., 2006; Sommer, Peter, 

Genitsaris, & Moustaka-Gouni, 2017; Woodward et al., 2005). The underlying links 

between organisms’ body size and these ecosystem processes can be quantitatively 

predicted by the Metabolic Theory of Ecology (MTE) (Brown, Gillooly, Allen, Savage, & 

West, 2004). According to MTE, metabolic rates of organisms and ecological processes 

scale with body size and temperature. Predator-prey interactions between the 

organisms link individual metabolism to communities and ecosystems through energy 

flow in the food web (Trebilco et al., 2013).  

Earlier studies revealed the relationship between the size structure of prey and 

predators and trophic transfer efficiency (TTE) (Barnes, Maxwell, Reuman, & Jennings, 

2010; Jennings, Warr, & Mackinson, 2002). Trophic transfer efficiency (TTE) reflects how 

efficient energy (i.e. biomass, production) is transferred from one trophic level to upper 

trophic levels. It was first explained by Lindeman (1942) as total production ratios 

between adjacent trophic levels. A recent study in a marine ecosystem has shown 

contrasting effects of prey (phytoplankton) and predator (zooplankton) size diversity on 

TTE, that is, high predator size diversity facilitated TTE, while high prey size diversity 

decreased it (García-Comas et al., 2016). This study is one of the first assessing the 

consequences for body size structure across interacting trophic levels (García-Comas et 

al., 2016). More work on such studies may be very promising to understand the strength 

of interactions across all trophic levels (Brose et al., 2016; Trebilco et al., 2013). 
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Figure 2. Conceptual scheme simplifying size-based interactions from fish to phytoplankton in 

tri-trophic level food web. Solid arrows indicate top-down control (e.g. predation, grazing) on 

the lower trophic level. Dashed arrows indicate bottom-up control (e.g. nutrient uptake). Graphs 

for each trophic level show body size distributions. Predators with a certain size in one trophic 

level can feed on a certain range of preys in the lower trophic level, affecting size structure of 

the food web.  

 

The community size structure also responds to environmental changes such as 

flooding, climate warming and land use intensity (Brucet, Boix, López-Flores, Badosa, 

Moreno-Amich, et al., 2005; Emmrich, Brucet, Ritterbusch, & Mehner, 2011; Woodward, 

Perkins, & Brown, 2010), thus has several applications in terms of conservation and 

management (Trebilco et al., 2013). All these findings make body size as valuable and 

informative measure as species for understanding trophic interactions and ecosystem 
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functioning (Woodward et al., 2005). Moreover, it could provide a good measure of 

biodiversity in aquatic ecosystems (Brucet et al., 2017; Brucet, Boix, López-Flores, 

Badosa, & Quintana, 2006). Taxonomic identification does not give much information 

about the organisms functions’ in the ecosystems, whereas body size predicts well the 

functional relatedness in terms of niche, diet and growth. Because measurement of 

biodiversity indices is dependent on taxonomic expertise, sized-based approaches are 

good alternatives to traditional biodiversity indices and also can potentially complement 

the taxon-based approaches. 

 

Size-based indices 
Several size-based indices have been developed to understand the patterns in 

body size structure in aquatic ecosystems: 

1. Mean body size 

Mean body size is calculated as geometric or arithmetic mean of individuals of the 

same species. Mean body size is a simple and basic measure to understand body size 

structure. Several studies (Brucet et al., 2010; Emmrich et al., 2014; Gardner, Peters, 

Kearney, Joseph, & Heinsohn, 2011) have shown that it varies significantly with biotic 

and environmental changes. However, it does not have the ability to integrate the 

variability in the body size distributions. 

2. Size spectrum 

In 1972, Sheldon and his colleagues developed the idea of the biomass size 

spectrum, one of the first sized-based approaches where they related biomass with 

body sizes of microorganisms from oceans and explored underlying trophic interactions. 

Biomass size spectrum predicts a linear decrease in abundance with body size in log-log 

scale (mostly in log2 or log10)(Platt & Denman, 1978). This approach was initially used for 

plankton (Sprules & Munawar, 1986). Later on, similar relationships between organisms’ 

biomass and size were observed for other groups such as fish and macroinvertebrates 

(Kerr & Dickie, 2001; Rochet & Trenkel, 2003; Sweeting, Badalamenti, D’Anna, Pipitone, 

& Polunin, 2009).  
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Normalized biomass spectra (NBS) was developed as an alternative to biomass size 

spectra (Platt & Denman, 1978). It is constructed by dividing biomass in each size class 

interval to the linear width of the interval. Normalization allows comparison of spectra 

from different studies which have different logarithmic scales, because the width of the 

logarithmic size class intervals increases as body size classes increase (Sprules & Barth, 

2016 and references therein). The normalized abundance spectrum (i.e. individual size 

distribution) gives a linear relationship between normalized numerical abundance of 

individuals and size classes (White et al., 2007) (Figure 3). Linear slopes of -1 and -2 are 

very common for normalized biomass and abundance spectra, respectively (Sprules & 

Barth, 2016). 

 

Figure 3. Size spectrum example from two different communities with different body size 

distributions. The solid line shows the community that is dominated by large-sized individuals 

(flatter slope); while the dashed line shows the one with higher abundance of small-sized 

individuals (steeper slope). 

 

One of the most important parameters of the size spectrum is the slope. It 

represents the relative contribution of different sized individuals and thus provides an 

understanding of the patterns in body size distribution. It can be used to make an 

estimate of predation pressure or fishing intensity (Blanchard et al., 2005; Zimmer, 

Hanson, Butler, & Duffy, 2001). For instance, if the slope is steeper, it indicates high 

relative abundance of small-sized individuals in the community, where large-sized 
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individuals were strongly predated (Emmrich et al., 2011). Moreover, it could inform 

about the food availability where steeper slopes indicate decreased food availability for 

large size classes (Zhou, 2006). The slope of the body size spectrum can also be an 

estimator of trophic transfer efficiency (Kerr & Dickie, 2001; Mehner et al., 2018). 

Steeper slope indicates lower efficiency in energy transfer through the food web to 

larger organisms (Benejam, Tobes, Brucet, & Miranda, 2018; Dossena et al., 2012).  

Intercept of size spectra is used to estimate productivity potential and food web 

capacity (Gaedke, 1993; Sprules & Munawar, 1986). Thus, systems with high 

productivity are more likely to have higher intercepts and flatter slopes (Finlay, Beisner, 

Patoine, & Pinel-Alloul, 2007; Zhang et al., 2013). Another parameter of the spectrum is 

R2 (coefficient of determination of the regression), which is a index of stability (García-

Comas et al., 2014). Variations in the linearity may explain how much the observed 

spectrum deviates from the fitted spectrum under steady state conditions (Chang et al., 

2014). These variations can result from the appearance of secondary structures that 

occur due to complex trophic links such as intraguild predation (Chang et al., 2014). 

Furthermore, a recent study by Arranz, Hsieh, Mehner, & Brucet (2018) has shown that 

these deviations from linearity may inform about alterations in predator-prey 

interactions due to environmental disturbances such as fishing pressure and 

eutrophication. 

3. Size diversity  (µ) 

 Size diversity is a single measure that is based on Shannon-Wiener diversity index 

for continuous variables (Pielou, 1969). It is calculated by using the individual size 

measurements of organisms with non-parametric kernel estimations as probability 

density functions (Quintana et al., 2008, 2016). It is calculated by following the equation:  

2 = 	−	3 45(,)89:;45(,)	<,
=>

?
 

where px(x) is the probability density function of size x. 

It gives information about size range (i.e. variability) and evenness (i.e. regularity) 

of the body size distributions as Shannon-Wiener diversity index combines the number 

of individuals and relative abundance (Brucet et al., 2010, 2006; Quintana et al., 2008). 
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For instance, high size diversity indicates a wide size range and even representation of 

the different sizes along the size distribution (Emmrich et al., 2011). In highly dynamic 

systems with non-linear size spectrum, size diveristy is a better indicator than slope of 

the size spectrum (García-Comas et al., 2014). Size diversity also has the ability to 

capture information about intraspecific variability (Brucet et al., 2018), which is a highly 

important variable to be considered in eco-evolutionary studies.  

4. Size evenness (Je)  

While size diversity index is about regularity and variability in the body size 

distributions, size evenness index represents regularity (Quintana et al., 2016). Size 

evenness index is practical to understand changes in size diversity irrespective of the 

size range. It is calculated by dividing the exponential of the size diversity by its possible 

maximum for a given size range following the formula:  

@A(X) = 	
expF2(G)H
expF2(IJ)H , 0 ≤ 	 @A

(X) 	≤ 1 

where 2(IJ) is size diversity of Log-Normal distribution.  

Both size diversity and size evenness indices have many advantages over other size 

metrics. The use of diversity and evenness terms in ecology makes their interpretation 

very clear. They are easy to calculate and do not involve statistical fitting as body size 

spectrum. Moreover, they can be compared across organisms or studies because they 

are scale invariant (Quintana et al., 2008, 2016).  

 

Factors affecting size-based interactions in planktonic 

food webs 
So far, most studies explored modifications in size structure of each trophic level 

individually and their consequences in the ecosystem functioning. Nonetheless, distinct 

trophic levels can be influenced differently by a variety of biotic and environmental 

factors, which could influence overall patterns in the food web functioning. Consumer-

resource relationships are central in shaping prey community and their size structure. 
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For instance, size-selective fish predation can have a negative effect on prey abundance, 

mean size and size diversity, resulting in community dominated by smaller individuals 

and few large individuals (Brooks & Dodson, 1965; Brucet et al., 2010; Quintana et al., 

2015; Ye, Chang, García-Comas, Gong, & Hsieh, 2013). On the other hand, large-sized 

individuals can have advantages over small-sized individuals for avoiding predation due 

to their resistance to grazing (Arim, Abades, Laufer, Loureiro, & Marquet, 2010; Ger, 

Urrutia-Cordero, et al., 2016). High resource availability (i.e. productivity) is another 

cause of the increase in large-sized phytoplankton (Downing, Watson, & McCauley, 

2001). In contrast, low resource availability favors small-sized algae which are better at 

nutrient uptake (Finkel et al., 2010). At the same time, low resource availability could 

increase size diversity in fish and zooplankton communities because of stronger 

competitive interactions (Arranz et al., 2016; Quintana et al., 2015). In this way, 

organisms can avoid competitive exclusion and better exploit low resources because 

they diversify into different sizes, thus feeding niches (i.e. niche partitioning).  

Another factor affecting these predator-prey interactions is intraspecific trait 

variation. Darwin was one of the earliest ecologists recognizing individual differences in 

same species such as age, size, shape and behavior, which forms the foundation of 

natural selection and evolutionary biology (Bolnick et al., 2011). Most of this variation 

comes from changes in body size during the developmental stages of organisms (Miller 

& Rudolf, 2011). Several organisms in aquatic ecosystems experience ontogenetic shifts 

and change size and diet during their lifetime, which can modify competitive and 

predatory networks and consequences for trophic cascades (Bolnick et al., 2011; Violle 

et al., 2012). For example, Rudolf & Rasmussen (2013) showed that stage-specific roles 

of aquatic macroinvertebrates resulted in changes in community structure. Therefore, 

differences in ecosystem processes such as net ecosystem production and respiration 

were observed. Similar developmental changes can be observed in certain groups of 

zooplankton, which are located in a fundamental position in the food web (i.e. 

sandwiched in-between phytoplankton and fish) (Jeppesen et al., 2011) and thus have 

significant roles in cascading trophic interactions. Several studies have focused on these 

effects of intraspecific variation in zooplankton with different traits ranging from 

resource use, feeding and amino acid composition (Berggren, Bergström, & Karlsson, 
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2015; Brucet, Boix, López-Flores, Badosa, & Quintana, 2005; Brucet, Compte, Boix, 

López-Flores, & Quintana, 2008). However, to our knowledge changes in their prey size 

spectra due to intraspecific variation in predation of different developmental stages 

have not been explored yet. Considering that these effects on prey size spectra can allow 

us to understand the consequences of disregarding intraspecific variability while 

studying trophic interactions. 

In addition to consumer-resource interactions and intraspecific variability, 

temperature could also influence the size structure because individual size is directly 

related to metabolic rates and growth of individuals (Brown et al., 2004). Evidence from 

field experiments and model predictions suggest that communities are altered and 

dominated by smaller individuals when temperature increases (Daufresne, Lengfellner, 

& Sommer, 2009; Gardner et al., 2011), following the temperature-size rule (Atkinson, 

1994). For instance, in fish communities, the relative abundance of smaller fish is 

predicted to be higher with climate warming as a result of higher and earlier 

reproduction, and faster growth rate (Jeppesen et al., 2010). As a result, greater fish 

predation pressure with climate warming could cause stronger top-down controls, 

which cascades down the food web and changes ecosystem production (Jeppesen et al., 

2010, 2014). Phytoplankton communities display a similar response to higher 

temperature, as smaller individuals increase at warmer temperatures (Morán, López-

Urrutia, Calvo-Díaz, & Li, 2010; Sommer et al., 2017; Yvon-Durocher, Montoya, Trimmer, 

& Woodward, 2011). This change in size distribution is highly related to greater 

metabolic rates and nutrient uptake rates of small phytoplankton in warmer conditions 

(Litchman, Klausmeier, Schofield, & Falkowski, 2007) as predicted by the MTE (Brown et 

al., 2004). Consequently, with increased demand for resources, smaller sized individuals 

perform better and obtain a competitive advantage over larger ones (Winder, Reuter, & 

Schladow, 2009) due to their high surface area to volume ratio and high growth rates 

(Litchman, de Tezanos Pinto, Klausmeier, Thomas, & Yoshiyama, 2010). At the same 

time, occurrence of large inedible phytoplankton taxa with filaments or colonies (e.g. 

Cyanobacteria) are also related to higher temperatures (Paerl & Huisman, 2008). 

Overall, size-based relations in the food web are complex and are controlled by 

several different factors at varying trophic levels. Deeper understanding of these factors 
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and corresponding changes is necessary to identify the strength of size-based trophic 

interactions (Brose et al., 2016).  

 

Resilience to environmental disturbances in size-based 

interactions of planktonic food webs  
Aquatic ecosystems are facing anthropogenic disturbances, such as pollution, 

climate warming, invasive species intrusion, fish stocking and habitat disruption at an 

unprecedented level, which have consequences on community and size-based trophic 

interactions. Therefore, with several factors affecting size-based interactions across 

different trophic levels, the need for assessing their ability to return to pre-disturbance 

state (i.e. resilience, Pimm, 1991) arises.  

Earlier studies found evidence of changes in size-based trophic interactions as a 

result of environmental disturbances such as changes in land-use, impacts of 

hydropower plants, fishing pressure, fish stocking and human-induced climate warming 

(Arranz et al., 2018; Benejam, Saura-Mas, et al., 2016; Brucet et al., 2013). In this thesis, 

we focus on the effects of high fish predation (i.e. disturbance) on resilience of 

zooplankton community and size structure. We expect to observe a high abundance of 

small-sized fish as temperatures increase (Brucet et al., 2013; Jeppesen et al., 2010, 

2014), because of the metabolic constraints (explained above in MTE). Additionally, fish 

stocking can also cause high fish predation pressure. Fish stocking is a common problem 

in most of the naturally fishless mountain lakes, which could have severe consequences 

on the other food web components such as zooplankton, macroinvertebrates etc. 

(Knapp, Matthews, & Sarnelle, 2001; Schabetsberger, Luger, Drozdowski, & Jagsch, 

2009). Thus, in warmer future, stronger fish predation could create decreased top-down 

control of phytoplankton with consequences on the quality of aquatic ecosystems 

(Brucet et al., 2013; Jeppesen et al., 2010). Identifying resilience in zooplankton 

communities and cascading size-based trophic interactions to fish predation disturbance 

is therefore necessary for management and restoration purposes.  

  





OBJECTIVES 

 13 

OBJECTIVES 
The main objective of this thesis was to evaluate biotic and environmental factors 

shaping body size distributions and thus community structures in planktonic food webs 

of shallow lakes and ponds. Here, we focused on tri-trophic food web, which is 

composed of primary producers (i.e. phytoplankton), primary (i.e. zooplankton) and 

secondary consumers (i.e. planktivorous fish). We aimed to determine the effects of 

consumer-resource dynamics, intraspecific variation and environmental factors on size-

based trophic interactions. We further investigated the relationship between body size 

distributions and trophic energy transfer along the food web, and resilience of aquatic 

communities to disturbances of high fish predation. We wanted to answer these key 

questions in the following chapters using different study approaches:  

 

ü How does size-structured predation affect prey size structure across interacting 

trophic levels (fish, zooplankton, phytoplankton)? How do confounding factors 

such as resource availability and temperature influence body size distributions 

across trophic levels and interact with predation effects? (Chapter 1) 

 

ü How do size-based interactions among individuals affect top-down and bottom-

up processes on the planktonic food web, and trophic transfer efficiency (TTE)? 

(Chapter 2) 

ü How resilient zooplankton community is to short-term fish predation from a 

taxonomical and size-based perspective? How does this effect of resilience 

cascade down to the food web? (Chapter 3) 

ü How does intraspecific variation in zooplankton predation affect their prey 

(bacterioplankton and phytoplankton) size structure in Mediterranean ponds? 

(Chapter 4)  
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STUDY APPROACH 

Observational and experimental studies as tools in 

determining size-based interactions of planktonic food 

webs  
There are different research approaches to study the ecology of aquatic 

ecosystems, from observational (e.g. snapshot sampling, monitoring), experimental 

(e.g. in-situ, laboratory) to modelling. While observational studies aim at identifying 

existing relationships without any manipulation, experimental ones focus on the 

responses of systems to previously defined manipulations. For example, snapshot 

sampling is sampling of several locations at the same period according to a standard 

protocol. When combined with space-for-time substitution (SFTS) approach, 

observational studies could allow high spatial resolution for investigating 

macroecological concepts. This approach has been used in many studies to compare 

similar ecosystems in different climatic regions (Gyllström et al., 2005; Jeppesen et al., 

2014; Kosten et al., 2009). It strengthens the inference and predictive power of the 

studies, because it allows identifying long-term changes by using spatial gradients as a 

measure of time. Nonetheless, still local geology, biogeography and land use differences 

could be disregarded in this approach (Jeppesen et al., 2014; Meerhoff et al., 2012) .  

Experiments can vary in scale from micro to meso and also in location from in-situ 

(i.e. field) to laboratory. They allow us to manipulate controlled systems that mimic 

natural conditions and observe causal relationships (O’Gorman et al., 2012). They have 

many advantages, as they facilitate replication, investigate complex ecosystem 

mechanisms that otherwise would be difficult to observe in nature. Although some 

argue that experimental studies are reliable for studying short-term responses of 

ecosystems in small scale (Benincá et al., 2008; Stewart et al., 2013), there are some 

studies showing long-term responses ranging from 1 year up to 20 years (Olsen et al., 

2015; Sistla et al., 2013). However, to what extent these experimental results represent 

real, natural ecosystems has been debated (Schindler, 1998; Yvon-Durocher, Jones, 

Trimmer, Woodward, & Montoya, 2010).  
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Each of these research approaches has their own advantages and weaknesses. 

Therefore, single approaches are not enough to identify fully the complex patterns in 

ecosystems. Data from experiments, observations and models should be combined for 

full comprehension of the complex relations of nature (Woodward et al., 2010). 

Different methods together could be more powerful and fill the deficiency in one 

another to predict better the ecological patterns.  

In this thesis, to answer our key questions (explained above) we used a mix of 

observational and experimental approaches mostly in shallow lakes and ponds around 

the world (explained below). 
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STUDY AREA & EXPERIMENTAL SET-UP 
This thesis is composed data from snapshot sampling of 30 lakes and field 

experiments in different parts of the world, involving different climates from polar, 

temperate to arid (Figure 4).  

 

 

Figure 4. Objectives and methodology of each chapter of the thesis. 

 

In the first chapter, we focused on the size-based interactions in aquatic food webs 

of 30 shallow lakes from Turkey (41°520N, 27°580E- 37°060N, 29°360E). The lakes were 

sampled once during summer between 2007-2010 using standardized methods with 

snapshot sampling and using spatial gradient. Sampling sites spanned 5° latitudinal 

gradient, encompassing two different climate zones from the semiarid to warm 

temperate subhumid. They also had high variations in terms of physical and chemical 

parameters.  

In the second chapter, we conducted a field mesocosm experiment in Lake 

Mývatn, north-east Iceland (65°400N, 17°000W, 277 m a.s.l.) to investigate the effect of 

• Observational study: 30 lakes along a latitudinal 
gradient (Turkey)

Size-based trophic 
interactions from fish to 

phytoplankton 

• Mesocosm experiment: enclosures with and 
without fish in Lake Mývatn (Iceland)

Effect of fish predation on 
size-based interactions of 

zooplankton and 
phytoplankton 

• Mesocosm experiment: fish removal in Lake 
Müggelsee (Germany)

Recovery after fish 
predation in zooplankton 

and phytoplankton 
interactions 

• Microcosm experiment: Winkler bottles with 
different developmental stages of zooplankton 
in Empordà wetlands (Catalonia)

Effect of intraspecific 
variation in zooplankton 

predation on phytoplankton 
size structure



STUDY AREA & EXPERIMENTAL SET-UP 

 

 18 

fish predation on size-based interactions in the planktonic food web. Although most 

Arctic and sub-Arctic lakes are oligotrophic and have simple food webs (Hobson & 

Welch, 1995), Lake Mývatn is a naturally eutrophic sub-Arctic lake, with high loading of 

nutrients from past and present volcanic areas (Einarsson, 2004). Consumer-resource 

interactions of zoobenthos, fish and algae play an important role in the nutrient 

dynamics of the lake. We chose Lake Mývatn to observe how fish would influence 

trophic interactions in these cold and eutrophic lake with simple food web structures. 

In the third chapter, we conducted a field mesocosm experiment consisting of 12 

enclosures (8 with fish, 4 without fish) to assess recovery of zooplankton community 

after short-term fish predation. The experiment was established inside a small channel 

connected to Lake Müggelsee at the IGB’s ground in Berlin, east Germany (52°26'53.1"N 

13°38'52.7"E).  

In the fourth chapter, we used a dataset from (Brucet et al., 2008), which is an in-

situ feeding experiment of different developmental stages (i.e. nauplii, copepodite and 

adult) of a calanoid copepod. The experiment was composed of 20 Winker bottles with 

four treatments (3 for each developmental stage + control), each replicated five times. 

The experiment was conducted in the Mediterranean shallow lagoons of Empordà 

Wetlands Natural Park (NE Spain). The zooplankton communities of these wetlands are 

often dominated by single species. Therefore, intraspecific variation in predation could 

play an important role in determining trophic interactions. Using this dataset, we 

focused on the effect of intraspecific variations in predation of different developmental 

stages of a calanoid copepod on their prey (bacterioplankton and phytoplankton) size 

structure.  
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Abstract 
Body size is a key trait of an organism which determines the dynamics of predator–

prey interactions. Most empirical studies on the individual size distribution of the 

aquatic community have focused on the variations in body size of a single trophic level 

as a response to certain environmental variables or biotic factors. Few studies, however, 

have evaluated how individual size structure is altered simultaneously across interacting 

trophic levels and locations. Such comparative examinations of the size distribution in 

predator and prey communities may bring insight into the strength of the interactions 

between adjacent trophic levels. 

We assessed the potential predation effect of size-structured predators (i.e. 

predation by individuals of different sizes) on prey size structure using data from 30 

shallow Turkish lakes spanning over five latitudinal degrees. We correlated size diversity 

and size evenness of predator and prey assemblages across the planktonic food web 

after accounting for the confounding effects of temperature and resource availability. 

We expected to find a negative relationship between size diversity of predators and prey 

due to the enhanced strength of top-down control with increasing predator size 

diversity. We also hypothesised that competitive interactions for resources in less 

productive systems would promote a higher size diversity. We further expected a shift 

towards reduced size diversity and evenness at high temperatures. 

In contrast to our hypothesis, we found a positive correlation between size 

structures of two interacting trophic levels of the planktonic food web; thus, highly size-

diverse fish assemblages were associated with highly size-diverse zooplankton 

assemblages. The size evenness of fish and phytoplankton assemblages were negatively 

and positively related to temperature, respectively. Phytoplankton size diversity was 

only weakly predicted by the resource availability.  

Our results suggest that size structure within a trophic group may be controlled by 

the size structure at adjacent trophic levels, as well as by temperature and resource 

availability. The positive relationship between the size diversity of fish and zooplankton 

suggests that higher diversity of the resources drives a higher size diversity of consumers 

or vice versa, and these effects are beyond those mediated by taxonomic diversity. In 
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contrast, the size diversity and size evenness of phytoplankton are mainly influenced by 

physical factors in this region and perhaps in warm shallow lakes in general. 

Keywords: fish, phytoplankton, predator-prey interactions, size diversity, zooplankton 
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Introduction 
Body size is one of the most important traits of an organism because it is related 

to biological rates, such as growth, respiration, mortality (Brown et al., 2004; Robert 

Henry Peters, 1983), and population abundance (Brown et al., 2004); and it also 

determines the dynamics of predator–prey interactions and the resilience of the food 

webs (Arim et al., 2010; Brose, Williams, & Martinez, 2006; De Roos & Persson, 2002). 

Accordingly, variations in size structure may affect ecosystem functioning (Brose et al., 

2012; Petchey, McPhearson, Casey, & Morin, 1999; Rudolf, 2012).  

It is well known that size-selective predation has strong effects on the size 

structure of prey communities (Brooks & Dodson, 1965; Brucet et al., 2010; Jonsson, 

Cohen, & Carpenter, 2005; Zimmer et al., 2001). However, empirical research including 

simultaneous evaluation of individual size structures across interacting trophic levels 

and locations (Brose, Jonsson, et al., 2006; García-Comas et al., 2016) is limited, probably 

because equally well-resolved size data comprising the entire food web are scarce 

(Woodward et al., 2005) and because the statistical fitting of the size distribution may 

be complicated by the appearance of non-linear relationships (e.g. Mehner et al., 2016; 

Vidondo, Prairie, Blanco, & Duarte, 1997). As a result, the effects of size-structured 

predation (i.e. predation by individuals of different sizes) on the individual size structure 

of prey are poorly understood (Brose, Jonsson, et al., 2006; García-Comas et al., 2016; 

Mehner et al., 2016; Rudolf, 2012). Comparative examination of the distribution of 

abundance among body sizes in predator and prey communities may bring insight into 

the strength of the interactions between adjacent trophic levels (Brose et al., 2016; 

Brose, Jonsson, et al., 2006; Mehner et al., 2016; Trebilco et al., 2013) and into the 

biomass transfer through the food web (García-Comas et al., 2016). For example, recent 

studies have shown that the altered size structure of predator populations induced by 

climate change can leave predators incapable of controlling prey size distribution, 

ultimately causing an allometrically induced trophic cascade, which affects ecosystem 

functioning (Brose et al., 2016; Jochum, Schneider, Crowe, Brose, & O’Gorman, 2012).  

In this study, we provide a broad picture of the size distribution across interacting 

trophic levels of the planktonic food web (fish, zooplankton, and phytoplankton) in 30 
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warm water lakes by using two synthetic measures of size distribution: the size diversity 

and size evenness indices (Brucet et al., 2006; Quintana et al., 2008, 2016). Size diversity 

is based on the Shannon-Wiener diversity index (Pielou, 1969) and integrates the 

amplitude of the size (either weight or length) range and the relative abundance of the 

different sizes in the same way as Shannon species diversity integrates the number of 

species and their relative abundance. Both variability and regularity of the distribution 

of size data contribute to size diversity, and the size evenness index accounts for the 

regularity ( i.e. shape of the size distribution; Quintana et al., 2016). In contrast to the 

traditional biomass size spectrum (Kerr & Dickie, 2001), size diversity and size evenness 

indices have the advantage that they do not require statistical fitting (thus, their 

estimates are insensitive to the strength of model fit). Furthermore, both indices are 

scale invariant and comparable for any type of distribution (Quintana et al., 2008, 2016), 

which may facilitate comparative inspection of the distribution of abundance among 

body sizes at interacting trophic levels. Previous studies showed that the size diversity 

index provides relevant information on the effects of predation on prey size distribution 

(Quintana et al., 2015; Šorf et al., 2015; Tavşanoğlu et al., 2015; Ye et al., 2013). 

Specifically, some studies have shown that predation normally accumulates prey within 

a narrow size range, leading to low size diversity (Badosa et al., 2007; Brucet et al., 2010; 

Compte, Gascón, Quintana, & Boix, 2011, 2012). Size diversity may, however, also be an 

indicator of resource niche partitioning (García-Comas et al., 2014; Ye et al., 2013) 

because in aquatic ecosystems body size is often a good proxy for ecological niche 

(Jennings, Pinnegar, Polunin, & Boon, 2001; Stouffer, Rezende, & Amaral, 2011; 

Woodward & Hildrew, 2002b). Recent investigations (García-Comas et al., 2016; Ye et 

al., 2013) provided evidence that in zooplankton communities, higher size diversity 

represents increased strength of top-down control on phytoplankton. The underlying 

mechanism is that each size group of predators has its own optimal prey size; thus, 

increasing size diversity of predators promotes diet niche partitioning in terms of prey 

sizes and elevates the strength of top-down control (García-Comas et al., 2016; Rudolf, 

2012; Ye et al., 2013). 

Shifts in temperature and resource availability may also affect the size structure 

of aquatic communities and may confound the potential effects of size-structured 



CHAPTER 1 

 25 

predation on prey (Binzer, Guill, Rall, & Brose, 2016; Emmrich et al., 2014; Garzke, Ismar, 

& Sommer, 2015; Marañón, Cermeño, Latasa, & Tadonléké, 2012; Sommer et al., 2017). 

In accordance with the temperature–size rule (Atkinson, 1994) and empirical evidence 

(e.g. Daufresne, Lengfellner, & Sommer, 2009; Gardner, Peters, Kearney, Joseph, & 

Heinsohn, 2011; Morán, López-Urrutia, Calvo-Díaz, & Li, 2010), higher temperatures 

should induce a shift towards reduced body size, which may be reflected in lower size 

diversity and evenness. The effect of resource availability is less clear. According to 

theoretical models (Kerr & Dickie, 2001), resource availability would increase the 

relative abundance of large organisms. However, a negative relationship between 

resource availability and zooplankton and fish size diversity was found in empirical 

studies and was explained by competitive interactions for resources in less productive 

systems, promoting diversification of communities by size (Brucet et al., 2006; Emmrich 

et al., 2011; Quintana et al., 2015) or an effect of population dynamics (i.e., pulses of 

reproduction due to increased food availability, resulting in dominance of small 

individuals and low size diversity) (García-Comas et al., 2014). Furthermore, resource 

availability may have a bigger effect on phytoplankton than in other trophic groups 

(Marañón, Cermeño, Latasa, & Tadonléké, 2015; Quintana et al., 2015). 

Here, we assessed the potential predation effect by size-structured predators on 

prey size structure by searching for relationships between size diversity and size 

evenness of predator and prey across the planktonic food web (fish, zooplankton, and 

phytoplankton). We also accounted for the effects of temperature and resource 

availability in the models. We hypothesized that the enhanced strength of top-down 

control at increasing predator size diversity (García-Comas et al., 2016; Ye et al., 2013) 

will lead to a negative relationship between size diversity and size evenness of predators 

and prey (i.e. negative relationship between fish and zooplankton size diversity or 

between zooplankton and phytoplankton size diversity). A simultaneous comparison of 

size diversities of predators and prey communities across several lakes is not yet 

available, but a negative relationship has been found between zooplankton and 

phytoplankton size diversities in marine systems (García-Comas et al., 2016). We also 

hypothesised a negative relationship between productivity (i.e. resource availability) 

and size diversity and evenness, due to competitive interactions for resources in less 
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productive systems. Concerning temperature, we expected a lower size diversity and 

evenness in warmer lakes.  

In accordance with studies on species diversity, an alternative hypothesis in which 

predator and prey size diversity are positively correlated could also be plausible: 

predator diversity could reduce the strength of top-down control by promoting intra-

guild interactions among predators and diminishing enemy impacts on preys (Finke & 

Denno, 2005), and prey size diversity could increase predator size diversity because the 

diversity of resources is expected to promote diversity of consumers (Fox, 2004; Ritchie, 

2010). 

We further evaluated the relationship between the size diversity of the prey and 

the log biomass ratio between adjacent trophic levels as a measure of classic top-down 

control (i.e. when assessing factors determining phytoplankton size diversity, we added 

the log zooplankton:phytoplankton biomass ratio as an additional predictor). We 

expected to find a negative relationship indicating that increased density of predators 

reduces prey size diversity as a result of the accumulation of organisms in the less 

predated sizes (Brucet et al., 2010; Quintana et al., 2015). 

 

Methods 
Site description  

Thirty shallow (<18 m maximum depth) lakes spanning over almost five latitudes, 

from the warm temperate north (41°52´N, 27°58´E) to the semiarid south (37°06´N, 

29°36´E) of the Western Anatolian Plateau of Turkey, and with an altitude range of 1-

1328 m, were selected (Figure 5). The lakes included two distinct climates, the semiarid 

region located in mid to south-west Turkey and the warm temperate subhumid region 

located in north-west Turkey, exhibiting average annual (1980–2010) temperatures and 

precipitation of 14.5 and 12.0ºC and 545.4 and 632.3 mm, respectively, and net 

evaporation of 616.3 and 338.8 mm, respectively (Turkish State Meteorological Service; 

www.mgm.gov.tr). The lakes also covered wide gradients of nutrient concentrations, 

conductivity, and lake area (Table 1). Fishing and stocking is expected to be negligible in 

these lakes because in Turkey these activities are mainly conducted in large lakes or 
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reservoirs that were not part of this study. Furthermore, inland fishing in Turkey 

constitutes only a low share of total fish production (Harlioǧlu, 2011) and the recent 

increase in aquaculture production has led to a further decline in inland catches (Turkish 

Statistical Institute, http://www.tuik.gov.tr). 

 

Figure 5. The location of the study lakes and their names. The Freshwater Ecoregions from Abell 

et al. (2008) are shown and the names of these freshwater ecoregions in the western part of 

Turkey are given as abbreviations: LD Dniester-Lower Danube, Th Thrace, NA Northern Anatolia, 

CA Central Anatolia, WA Western Anatolia. Figure modified from Boll et al. (2016) 

 

Sampling and laboratory analysis  

The 30 lakes were sampled once during the peak growing season (July to August) 

of 2007–2010, following largely the standardized sampling protocol described in detail 

by Moss et al. (2003) (for details of the sampling see Levi et al. (2014) and Çakıroğlu et 

al. (2014)). Mean annual temperatures interpolated for a 30 arc-second spatial 

resolution (1 km2 resolution) grid were assembled from the WorldClim database using 

the sampling location coordinates of each study lake (Hijmans, Cameron, Parra, Jones, 

& Jarvis, 2005). Dissolved oxygen (mg L-1), conductivity (±1 µS cm-1), pH, and Secchi disc 

transparency were measured in situ at the deepest part of the lake.  

Water samples for chemical analysis (total phosphorus (TP), total nitrogen (TN), 

and chlorophyll a (chl-a) and determination of biological variables (zooplankton and 

phytoplankton) were taken from depth-integrated, mixed samples (40 L) at the deepest 



CHAPTER 1 

 

 28 

point in the pelagic zone. Water samples were kept frozen until analysis and the 

methods for analyses of TP, TN, and chl-a are given in (Özen, Karapinar, Kucuk, Jeppesen, 

& Beklioglu, 2010). Per-cent plant volume inhabited (PVI%) (plant coverage × average 

plant height/water depth sensu Canfield et al. (1984)) for each submerged and floating-

leaved plant species was recorded at even intervals along each transect line. 

From the 40 L mixed pelagic sample, 50 ml were taken and fixed using 2% Lugol 

solution for phytoplankton counting. Depending on the sample size, different 

phytoplankton volumes were settled for 16-24 hours and horizontal transects were 

counted until 100 individuals of the most abundant species had been enumerated. At 

least 10 individuals were measured from each species and biovolume was calculated 

according to Hillebrand, Dürselen, Kirschtel, Pollingher, & Zohary (1999) and Sun & Liu 

(2003).  

 

Table 1. Physico-chemical, morphometric, and biotic characteristics of the study lakes. Standard 

deviation (SD) (n=30). Annual precipitation and net evaporation (estimated as evaporation 

minus precipitation) were assembled from the Turkish State Meteorological Service 

(www.mgm.gov.tr). 

 Mean Minimum Maximum SD  
Latitude (°) 39.7 36.7 41.8 1.5  

Altitude (m) 657.5 1.0 1328.0 504.1  

Lake area (ha) 91.5 0.1 635.0 145.8  

Maximum depth (m) 4.3 0.6 1.7 3.8  

Mean temperature (°C) 24.4 18.3 32.4 3.5  

Sum of precipitation (mm) 716 424 1044 146.1  

Net evaporation  558.3 432.9 765.3 119.6  

pH 8.31 6.92 9.64 0.6  

Conductivity (µS cm-1) 1248 104.0 8583 2219  

Total phosphorus (μg L-1) 128 15 633 141  

Total nitrogen (μg L-1) 1081 239 2180 596  

Secchi depth/maximum depth  0.32 0.05 1.00 0.20  

Dissolved oxygen (mg L-1) 6.6 0.6 15.3 2.9  

Chlorophyll-a (μg L-1) 19.8 2.4 95.1 21.9  

NPUE (number of fish net-1 night-1) 162 0.3 1160 247  

Plant Volume Inhabited (%) 14 0 78 20  
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For pelagic zooplankton, 20 L of the mixed pelagic sample were filtered through a 

20 μm mesh size filter. Additionally, we sampled littoral zooplankton using a tube 

sampler, taking a 20 L composite water sample covering the whole water column and 

subsequently filtering it through a 20 μm filter. Pelagic and littoral zooplankton samples 

were analysed separately. Zooplankton was preserved in 4% Lugol solution. All 

zooplankton taxa were identified to genus or species level, whenever possible. In case 

of subsampling, we assured that at least 100 individuals of the most abundant taxa were 

counted. In order not to miss rare species, we examined the whole sample. For each 

lake, the body size of at least 25 individuals of each species was measured, when enough 

individuals were present in the sample. For copepods, 25 individuals were measured 

from each development stage (nauplii, copepodites and adults) to account for 

ontogenetic differences. Biomass dry weight (dry wt) estimations were obtained from 

the allometric relationship between the weight and the length of the body (Dumont, 

Van de Velde, & Dumont, 1975; McCauley, 1984). For Rotifera, biovolume was estimated 

from measurements of the principal diameters of the organisms, and biomass dry 

weight was calculated by converting biovolume into dry weight (Dumont et al., 1975; 

Malley, Lawrence, Mac Iver, & Findlay, 1989; Ruttner-Kolisko, 1977). Shannon–Wiener 

diversity (H) was calculated according to Shannon and Wiener in (Pielou (1969). 

Composition and relative abundance of the fish were determined using Nordic 

benthic multimesh gill nets (CEN standard, 14757, 2005). Multimesh gill nets (12 mesh 

sizes between 5.0 and 55 mm in a geometric series) were set in a random-stratified 

sampling design in the pelagic and the littoral areas of the lakes. The smallest mesh size 

of 5 mm allowed 0+ fish to be included in the catches. The number of nets used per lake 

was proportional to the lake area, the maximum number being eight (Boll et al., 2016). 

Nets were set for a 12-h period from before dusk and lifted after dawn. The data 

represent the average net catch per lake, expressed as catch per unit effort (NPUE; 

number of fish net-1 night-1). The fork length of all fish was measured. 

 

Size metrics 

We used two non-taxonomic size metrics: body size diversity and body size 

evenness. We calculated size diversity and size evenness (Brucet et al., 2006; Quintana 
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et al., 2008, 2016) for each fish, zooplankton, and phytoplankton sample using individual 

size measurements as proposed by Quintana et al. (2008). For zooplankton and 

phytoplankton, we obtained the actual distribution of individual body sizes in each lake 

by multiplying the proportion of individuals of a given body size for a given species (or 

life stage in the case of copepods) by the total number of this species (or life stage in the 

case of copepods). For fish, this was not needed since all fish in the sample were 

measured. Thus, for all three trophic groups, size diversity and size evenness were 

estimated from the body sizes (weight for zooplankton and phytoplankton and length 

for fish) of individuals and not from the mean size of each species. Both size metrics 

were based on individual abundance (not on biomass). 

Size diversity and size evenness were calculated according to Quintana et al. (2008, 

2016). The proposed size diversity (µ) is computed based on the Shannon diversity 

expression adapted for a continuous variable, such as body size. This measure takes the 

form of an integral involving the probability density function of the size of the individuals 

described by the following equation:  

2 = 	−	3 45(,)89:;45(,)	<,
=>

?
 

where px(x) is the probability density function of size x. The non-parametric kernel 

estimation was used as a probability density function, which is applicable to any type of 

size distribution. Before computing size diversity, data are automatically standardized 

by division of each size value by the geometric mean of the size distribution. The size 

diversity index (µ) is the continuous analogue of the Shannon diversity index and it 

produces values in a similar range to those of the Shannon species diversity index 

(Brucet et al., 2010; Quintana et al., 2008). However, negative values of size diversity 

(extremely low size diversity) are feasible in that the method uses a continuous 

probability density function for the probability estimation, and probability densities over 

1 are possible. 

The use of size diversity for analysis of the shape of size distributions has several 

advantages: 1) its meaning is easy to interpret since the concept of diversity is well 

established – high size diversity means a wide size range and/or similar proportions of 
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the different sizes along the size distribution (e.g. Emmrich et al., 2011); 2) after data 

standardization, samples measured with different units, such as length, weight, or 

volume, are comparable; 3) in contrast to the traditional biomass size spectrum, size 

diversity and size evenness indices do not require creation of arbitrary size classes and 

statistical fitting and their estimates are therefore insensitive to the strength of model 

fit (but see Edwards, Robinson, Plank, Baum, & Blanchard, 2017); 4) it is a single-value 

metric, which simplifies the comparison between samples (e.g. Brucet et al., 2010).  

Size evenness (Јe) is calculated by dividing the exponential of the size diversity by 

its possible maximum for a given size range (Quintana et al., 2016). The size evenness 

ranges between 0 and 1 because of the division by the maximum exponential diversity. 

Based on the total number of individuals measured in each sample, we estimated that 

all samples from all trophic levels had a size diversity and size evenness error estimation 

lower than 10%. 

It was not possible to analyze piscivorous fish as a separate trophic level since they 

had low abundances in most of the samples (on average just 5% of total fish NPUE), 

meaning that the number of individuals available to calculate size diversity with an error 

lower than 10% was too small. However, we ran additional models by including only 

non-piscivorous fish as a trophic group. Since juveniles of several piscivorous fish species 

are planktonic, we established a threshold size of 15 cm below which we considered 

them non-piscivorous (e.g. Mehner et al., 2016), and we re-calculated fish size diversity 

excluding the true piscivores. From here on, we refer to fish size diversity and fish size 

evenness when all fish were included in the calculations and non-piscivorous fish size 

diversity and non-piscivorous fish size evenness when piscivorous fish were excluded.  

 

Predictor variables 

As a measure of size-structured predation, we included size diversity and size 

evenness of potential predators (i.e. when assessing factors determining phytoplankton 

size diversity, we added size diversity of zooplankton as predictor). As a measure of 

resource availability, we included the size diversity and size evenness of potential prey. 

In each model, we also included mean temperature (log-transformed) and TP (log-
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transformed) as well. Moreover, we added the log biomass ratio between adjacent 

trophic levels as a more classic measure of potential predation impact (i.e. when 

assessing factors determining phytoplankton size diversity, we added the log 

zooplankton:phytoplankton biomass ratio as an additional predictor of grazing 

pressure on phytoplankton). We could not evaluate the effect of fish size 

diversity/evenness on non-piscivorous fish size diversity/evenness because there were 

few lakes with piscivorous fish and the relationship would thus have been misleading 

(i.e. the two metrics had the same value for several lakes). 

 

Data analysis 

We ran general linear models (GLMs) for each phytoplankton, zooplankton, and 

fish size structure metric. In each model we used the previously mentioned predictor 

variables: size diversity (or size evenness) of potential predators, mean temperature, TP, 

the size diversity (or size evenness) of potential prey as a measure of resource 

availability and the log biomass ratio between adjacent trophic levels. We searched for 

the most parsimonious model by an automatic stepwise backward selection of one 

predictor variable at a time by minimizing the Akaike information criterion (AIC). The 

most parsimonious model was the combination of variables having the strongest impact 

on outcomes. To compare the relative strength of the significant predictors, we 

additionally calculated their standardised (beta) coefficients. In the model for 

zooplankton size diversity, we did not include phytoplankton size diversity because it 

was correlated with TP, and in the model for zooplankton size evenness, we did not 

include phytoplankton size evenness because it was correlated with temperature (both 

correlation coefficients higher than 0.4). 

We additionally ran a second set of GLMs (see Table 7) to explore whether a 

relationship existed between size diversity and species diversity within each 

assemblage, as well as with environmental factors influencing community diversity 

other than temperature and resources (i.e. weakly correlated variables in Table 1). Thus, 

as predictor variables we included the taxonomic diversity of each organism group, 

temperature, TP, net evaporation, conductivity, lake area, and depth [temperature and 
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altitude were highly correlated (correlation coefficient higher than 0.6), so altitude was 

not used as a predictor variable].  

We further analyzed the relationship between fish and zooplankton trophic levels 

by calculating the average fish trophic level in a lake and searching for its relationship 

with zooplankton size diversity using GLM. We estimated the average trophic level of 

the fish species in a lake using the information in www.fishbase.org. The trophic level of 

a fish species defines its position within a food web, and it is estimated by considering 

both its diet composition and the trophic level of its food item(s). We calculated the 

average trophic level of the fish assemblage in a lake by weighting the trophic level index 

of each species by its abundance in a given lake. For young-of-the-year (YOY) and 

smallest fish (< 6 cm) that could not be identified, the trophic index was set to 2.5, which 

roughly represents a diet consisting of 50% phytoplankton and 50% zooplankton. We 

are aware that the diet of these fish depends on the fish species and may vary with 

climate, and we therefore re-ran the analysis using a trophic index of 3 (a higher 

percentage of zooplankton in the diet). 

For all the analyses, we inspected residual plots to assure that there were no 

deviations from normality and homoscedasticity, and we checked that the assumption 

of no autocorrelation in residuals was not violated using Durbin-Watson tests. We 

inspected the variance inflation factor (VIF) and tolerance values to ensure that there 

was no multicollinarity among predictors in the final set used for the analyses. GLMs 

were performed in ‘R’ version 2.9.1 (Development Core Team 2009) using the BRODGAR 

v. 2.7.2 statistical package (Highland Statistics Ltd., Newburgh, U.K.). 

 

Results 
Size diversity (µ) ranged between a minimum of -0.81 for fish to a maximum of 4.0 

for phytoplankton (Table 2). Negative values (extremely low size diversity) were rare 

(only 3 of the 120 samples analyzed). Size evenness (Јe) ranged between a minimum of 

0.39 to a maximum of 0.90, both for fish. No significant differences were found for µ and 

Јe of zooplankton between the pelagic and littoral habitats (1.88 ± 0.49 and 1.99 ± 0.62 

for µ in the pelagic and littoral and 0.70 ± 0.1 and 0.74 ± 0.1 for Јe in the pelagic and 
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littoral, respectively; ANOVAs, p>0.05) and the predictors of both models were the 

same; thus, only the results for pelagic zooplankton are presented as from here. 

 

Table 2. Size metrics (i.e. response variables) (n=30) of different assemblages, their minima, 

means, maxima, and standard deviation (SD). 

 Mean Minimum Maximum SD 
Fish (all fish)     

Size diversity  1.32 -0.81 2.42 0.71 

Size evenness 0.71 0.39 0.90 0.12 

     

Non-piscivorous fish     

Size diversity 1.33 -0.81 2.42 0.68 

Size evenness 0.72 0.44 0.91 0.11 

     

Zooplankton     

Size diversity 1.88 0.80 2.50 0.49 

Size evenness 0.70 0.49 0.83 0.09 

     

Phytoplankton     

Size diversity 2.48 -0.03 4.00 0.94 

Size evenness 0.68 0.45 0.86 0.11 

     

 

Fish size diversity (µfish) was significantly positively related to zooplankton size 

diversity (µzooplankton), explaining 35.5% of the variation in the data (Table 3, Figure 6). As 

judged from the significant positive relationship between µfish and µzooplankton (Table 3), 

fish size distributions with a wide size range and more similar proportions of the 

different sizes were associated with zooplankton size distributions with similar 

characteristics (Figure 7). High µzooplankton reflected the presence of large-sized Cladocera 

or Copepoda in similar proportions as small-sized rotifers and nauplii (Figure 7), causing 

a bimodal size distribution with a second dome (i.e. curved-shaped), corresponding to 

large sizes beginning around size class -0.7 (log2 µg dry weight). However, when only few 

sizes of fish dominated (low µfish, Figure 7), µzooplankton was low, and the zooplankton size 

distribution had a unimodal shape and a narrower size range, with dominance of small 

sizes mainly represented by rotifers. When only non-piscivorous fish were analyzed, 

their size diversity was also positively related only to µzooplankton but the relationship was 

slightly weaker (Table 3).  
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Table 3. Results of general linear models (GLMs) showing the variables significantly affecting the 

size structure of phytoplankton, zooplankton and fish assemblages. For zooplankton size 

diversity, we ran two models, one including fish size diversity (all fish) and another including 

non-piscivorous fish size diversity as predictors, and both models were significant. Only the most 

parsimonious model is presented. Coefficients (estimates and standard error, SE), beta 

(standardised) coefficients (Beta coeff.), t-value, significance (p value) and variability explained 

by the model (%). n.s., non-significant; log Fish:Zooplankton, fish:zooplankton biomass ratio; log 

Zoo:Phyto, zooplankton:phytoplankton biomass ratio. 

Response 
variable 

Model AIC Predictors Estimate SE Beta 
coeff. 

t-
value 

p 
value 

% 

Fish (all fish)          

Size 

diversity 

Full  -25.2 Zooplankton size diversity 0.865 0.235 0.596 3.69 .001 36.0 

  Log temperature 0.623 1.370 0.074 0.45 .653  

   Log TP -0.032 0.279 -0.019 -0.11 .910  

 Best  -29.0 Zooplankton size diversity 0.861 0.225 0.593 3.82 .001 35.5 

Size 

evenness 

Full  -133.0 Zooplankton size evenness 0.173 0.243 0.121 0.71 .483 29.7 

  Log temperature -0.566 0.244 -0.406 -2.31 .028  

   Log TP  -0.086 0.048 -0.302 -1.80 .082  

 Best  -136.1 Log temperature -0.625 0.231 -0.448 -2.70 .011 20.1 

Non-piscivorous fish         

Size 

diversity 

Full  -23.1 Zooplankton size diversity 0.645 0.243 0.471 2.65 .014 22.3 

  Log temperature 0.376 1.420 0.047 0.26 .793  

   Log TP 0.028 0.290 -0.018 -0.09 .923  

 Best  -27.1 Zooplankton size diversity 0.643 0.233 0.470 2.77 .010 22.1 

Size 

evenness 

Full  -128.6 Zooplankton size evenness 0.221 0.263 0.167 0.84 .408 4.2 

  Log temperature 0.010 0.265 0.008 0.04 .969  

   Log TP 0.026 0.052 0.098 0.50 .621  

Zooplankton          

Size 

diversity  

Full  -45.3 Fish size diversity 0.399 0.114 0.579 3.50 .002 36.7 

  Log Fish:Zooplankton -0.049 0.109 -0.086 -0.45 .655  

   Log temperature 0.388 0.961 -0.067 -0.40 .690  

   Log TP -0.120 0.226 -0.101 -0.53 .601  

 Best  -50.6 Fish size diversity 0.408 0.107 0.593 3.82 .001 35.5 

Size 

evenness 

Full  -146.5 Fish size evenness 0.105 0.153 0.150 0.68 .500 11.7 

  log Fish:Zooplankton -0.002 0.021 -0.024 -0.11 .610  

   Log temperature 0.360 0.204 0.369 1.76 .090  

   Log TP 0.011 0.045 0.056 0.25 .805  

Phytoplankton         

Size 

diversity 

Full  -7.60 Zooplankton size diversity -0.338 0.302 -0.249 -1.12 .273 11.2 

  Log Zoo:Phyto -0.145 0.249 -0.121 -0.58 .566  

   Log temperature 0.040 2.306 0.004 0.02 .986  

   Log TP 0.505 0.357 0.267 1.41 .169  

 Best  -11.0 Log TP 0.615 0.339 0.325 1.82 .080 10.5 

Size 

evenness 

Full  -134.9 Zooplankton size evenness -0.169 0.242 -0.132 -0.70 .491 22.1 

  Log Zoo:Phyto -0.031 0.032 -0.191 -0.98 .338  

   Log temperature 0.368 0.249 0.294 1.48 .152  

   Log TP 0.053 0.046 0.209 1.16 .255  

 Best  -138.2 Log temperature 0.480 0.214 0.385 2.25 .032 14.8 
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Figure 6. Relationship between size metrics of different organism groups (all fish, non-

piscivorous fish, zooplankton, and phytoplankton) and the independent variables (see Table 3 

for statistical results). TP, Total Phosphorus. 
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Figure 7. Example of a lake with a fish and zooplankton community of high size diversity (panels 

above) and a lake with a fish and zooplankton community of low size diversity (panels below). 

Size class represents log2 with size in micrograms dry weight for zooplankton and cm for fish. µ, 

size diversity. Note that the size classes were used in this figure only for better representation 

of the number of individuals of each size. However, the size diversity and size evenness index 

were not calculated using size classes but using individual size measurements. 

 

 

Figure 8. Relationship between average fish trophic level in a lake and zooplankton size diversity. 

 

GLMs showed that temperature was related to Јe fish, while there were no links to 

the other trophic levels (Table 3, Figure 6). Fish size evenness was lower at higher 

temperatures. No variables were found to be significant for the size evenness of non-

piscivorous fish and zooplankton models.  

Phytoplankton size diversity (µphytoplankton) was only weakly and positively predicted 

by TP (Table 3, Figure 6) and there were no links to the other trophic levels. Јe phytoplankton 
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was positively related to temperature. The log biomass ratio between adjacent trophic 

levels was not significant in any case.  

The additional GMLs (Table 7) including as predictors species diversity within each 

assemblage and other environmental factors which may influence community diversity 

(Table 1) showed that size diversity of fish, non-piscivorous fish and zooplankton was 

positively related with species diversity of the trophic group. However, according to beta 

coefficients (i.e. which give information on the relative strength of the significant 

predictors), the size diversity of the interacting trophic level was still the strongest 

predictor in the model for fish, non-piscivorous fish and zooplankton size diversity, 

whereas no environmental variables were significant. 

Average fish trophic level in the lakes explained 36.7% of the zooplankton size 

diversity variation (Figure 8). When using a trophic index of 3 for YOY, average fish 

trophic level in the lakes explained 24.5% of the zooplankton size diversity variation. 

 

Discussion 
In contrast to our first hypothesis, our results showed correspondence of size 

structures between interacting trophic levels of the planktonic food web. Thus, highly 

size diverse fish assemblages were associated with highly size diverse zooplankton 

assemblages, a relationship that was not violated by variation in temperature and 

resource availability (TP). The correspondence between fish and zooplankton size 

diversity agrees with the correspondence found in the size distributions of piscivorous 

and non-piscivorous fish in European lakes (Mehner et al., 2016). A potential explanation 

is that higher diversity of resources drives higher consumer size diversity. Albeit our 

focus is size diversity, the underlying mechanism would be similar to that proposed for 

the positive relationship between species diversity of adjacent trophic groups in 

terrestrial (e.g. Haddad et al., 2009) and model (Fox, 2004) systems: a prey community 

(zooplankton) highly diverse in sizes could promote size diversity at the higher trophic 

levels (fish) via productivity effects or by enabling niche partitioning (Currie, 1991; 

Tilman, 1982). In contrast, low zooplankton size diversity (e.g. lower abundance of large 

body sizes) could create energetic bottlenecks in fish, potentially explaining the low size 
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diversity values. Evidence that a diversity of prey sizes may favour a size diverse predator 

community has previously been found in laboratory and field experiments, although the 

signal was weak (Rudolf, 2012). 

An alternative explanation may also be possible: higher diversity of sizes in 

consumers could also promote diversification of resources by size. Thus, high size 

diversity in fish assemblages may create more chances for resource partitioning in terms 

of prey size (e.g. zooplankton, macroinvertebrates) (Woodward & Hildrew, 2002b), likely 

resulting in a reduced predation pressure on large-bodied zooplankton (Jansson, 

Persson, De Roos, Jones, & Tranvik, 2007; Persson et al., 2003) and thus an increase in 

zooplankton size diversity. This agrees with the correlation observed between the 

average trophic level of fish in the lakes and zooplankton size diversity (Figure 8) – the 

higher the average trophic level of fish in a lake (i.e. more fish and macroinvertebrates 

prey), the higher the size diversity of zooplankton. Hence, the mechanism would be 

similar to that observed in studies on species diversity in which predator diversity 

reduces the strength of top-down control by promoting intra-guild interactions among 

predators and diminishing enemy impacts on preys (Finke & Denno, 2005). Conversely, 

a community of predators with similar-sized individuals (e.g. dominance of small size 

fish) occupying similar niches may result in a prey community less diverse in size because 

some prey sizes would be disproportionally predated over the rest (Brucet et al., 2010).  

One may argue that species diversity could be the main factor driving the 

correspondence between fish and zooplankton size diversity relationships. However, we 

did not find a significant relationship between fish and zooplankton species diversity 

(p>0.05). When we additionally explored whether a relationship existed between 

species and size diversity within each assemblage (Table 7) a significant percentage of 

the variability in size diversity of fish and zooplankton was explained by species diversity 

(i.e. the fish and zooplankton assemblages most diverse in species were also the most 

diverse in body size), but the size diversity of the interacting trophic level was still the 

variable contributing most in the two models. These results suggest that size diversity 

within a given organism group may have effects on other organism groups and that 

these are beyond those mediated by taxonomic diversity. Furthermore, size diversities 

of fish and zooplankton were not significantly related to any other environmental 
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variable, suggesting that the effect of confounding factors in the observed patterns can 

be excluded. 

Our results provide further evidence of the negative effect of temperature on fish 

body size (Emmrich et al., 2014; Jeppesen et al., 2010, 2012) since the size evenness of 

fish assemblages (including all fish) decreased in warmer lakes. The major temperature 

gradients in Turkish lakes are associated with altitudinal and, to a lesser extent, 

latitudinal gradients (Boll et al., 2016). Thus, high altitude and colder Turkish lakes 

exhibited fish size distributions where individual sizes were more evenly distributed than 

those in low altitude warm lakes. This is in agreement with studies conducted at 

European scale (Emmrich et al., 2014), showing that warmer lakes have monotonically 

decreasing size distributions dominated by small sizes, whereas large sizes are scarcer. 

The results from the size evenness index indicate that temperature has a greater 

influence on the relative distribution of fish sizes (i.e. the shape of the size distribution) 

than the amplitude of the size range. Yet, temperature did not influence the size 

evenness of non-piscivorous fish (Table 3), probably because large piscivorous fish are 

mainly found in colder lakes (Boll et al., 2016), and the effect of temperature weakens 

when piscivores are excluded from the analysis.  

We did not find any relationship between zooplankton and phytoplankton size 

structures. Instead, phytoplankton size diversity was better predicted by TP though the 

relationship was weak (significance level of only 0.08). This may be due to the prevailing 

influence of physical factors in the phytoplankton nutrient uptake. Our results agree 

with previous studies in marine systems where changes in resource supply alone have 

been demonstrated as sufficient to explain the variability of phytoplankton size 

structure (Marañón et al., 2015). In phytoplankton assemblages, smaller sizes are 

favored at low nutrient availability due to the higher surface:volume ratio or lower 

resource requirements, whereas large algae are often (but see Jensen et al., 1994) 

better competitors at high concentrations (Guidi et al., 2009; Litchman & Klausmeier, 

2008). This might explain the positive response of phytoplankton size diversity to TP. 

Our results partially contrast with the previous study on marine plankton (García-Comas 

et al., 2016) showing that nano-microplankton (prey) size diversity was negatively 

related to size diversity of mesozooplankton (predators), as well as to physical factors. 



CHAPTER 1 

 41 

In contrast, the phytoplankton size evenness in our Turkish study lakes was related to 

temperature, with higher size evenness in warm lakes located in lowlands than those 

high altitude lakes.  

We recognize that our study is based on correlational evidence, which does not 

necessarily imply causal relationships, and, thus, more investigations using, for example, 

size-based experiments will be needed to further elucidate the effect of size-based 

predator–prey interactions. Ideally, these experiments would need to compile data on 

stomach content and/or stable isotopes at the lowest level (i.e. species or life stages) 

and combine it with size-based metrics in order to provide better knowledge of the 

trophic link strengths that affect the size distributions (Boukal, 2014; Brose, 2010). 

Furthermore, we categorized phytoplankton, zooplankton, and fish as belonging to 

single trophic levels, but omnivory and intraguild predation may be relevant for shaping 

the patterns of size diversity. Nevertheless, when we ran the model for only non-

piscivorous fish, the size diversity of zooplankton remained the only variable predicting 

non-piscivorous fish size diversity, and no relationship was found between non-

piscivorous fish and the abundance of piscivorous fish (results no shown; p > 0.1), 

suggesting that piscivore predation had a weak impact on non-piscivorous fish size 

structure. This may be due to the low abundance of piscivorous species in these lakes or 

to the low predator–prey size ratios and the resulting size refuges for prey fish, as found 

for European lake fish communities (Mehner et al., 2016).  

We also acknowledge that our design is based on the classical three-level food 

web since our methodology did not allow to test for the effects of the microbial loop or 

the predation of copepods. Studies in marine systems show that copepod grazing may 

have different effects on phytoplankton cell size depending on the number of food chain 

links within the microbial food web and that these grazing effects also interact with 

temperature and nutrient supply (Sommer et al., 2017 and references therein). Thus, 

we advocate for including the microbial loop in future studies exploring the relationship 

between zooplankton and phytoplankton size diversity. 

In conclusion, our results suggest that, in Turkish lakes, size structure within a 

trophic group may be controlled by the size structure in other trophic groups, as well as 

by temperature, resource availability, and taxonomic diversity. The positive relationship 
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between the size diversity of fish and zooplankton suggests that higher diversity of prey 

may drive a higher size diversity of predators, as earlier suggested in studies of species 

diversity, or vice versa, and these effects are beyond those mediated by taxonomic 

diversity. In contrast, the size diversity and size evenness of phytoplankton are mainly 

influenced by physical factors. Additionally, our results suggest that it is important to 

take variation in temperature and resource availability into account when studying 

trophic interactions in size-structured predator–prey systems. 
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Abstract 
Trophic cascade studies have so far mostly focused on changes in the abundance, 

biomass or average size of prey and predators. In contrast, individual size-based 

interactions, playing a key role in the trophic structure and functioning of aquatic 

ecosystems, have been less explored. We conducted a 3-month in situ experiment in 

Lake Mývatn, Iceland, with two fish treatments (with and without fish, Gasterosteus 

aculeatus). After the first month of the experiment, Anabaena blooms appeared in the 

lake. We studied the effects of fish predation and occurrence of cyanobacteria blooms 

on the individual size structure (i.e. the distribution of the number of organisms over a 

size range) of zooplankton and phytoplankton. We also assessed the potential 

consequences for trophic transfer efficiency (TTE) (measured as the predator to prey 

biomass ratio) in the planktonic food web. Our results showed that fish predation and 

cyanobacteria bloom had a negative relationship with size diversity of zooplankton, 

which became dominated by small-sized individuals in both cases. The phytoplankton 

size diversity changed over time particularly due to the blooming of large-sized 

Anabaena, and its increase was apparently mainly driven by changes in resources. Low 

zooplankton size diversity related to fish predation reduced TTE, particularly in the 

enclosures with fish. This may be because low zooplankton size diversity represents a 

lower partition of resources among consumers, thereby decreasing the trophic energy 

transfer. With the occurrence of Anabaena bloom, high phytoplankton size diversity 

coincided with a lower energy transfer in all enclosures likely due to reduced 

zooplankton grazing when large-sized colony-forming Anabaena dominated. In 

conclusion, our results indicate that both top-down and bottom-up forces significantly 

influence the size structure of planktonic communities. The changes in size structure 

were related to shifts in the energy transfer efficiency of the Lake Mývatn food web. 

Thus, our study underpins the importance of taking into account size-based interactions 

in the study of trophic cascades, particularly in a warming climate where strong 

planktivorous fish predation and frequent cyanobacteria blooms may occur.  

Keywords: fish predation, phytoplankton, size structure, trophic interactions, 

zooplankton 
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Introduction 
Cascading trophic interactions have long been a field in aquatic ecosystem studies 

(Carpenter et al., 1985; Jeppesen et al., 2002; Polis et al., 2000). Most studies have 

focused on the abundance, biomass or average size of predators and prey (Knight, 

McCoy, Chase, McCoy, & Holt, 2005; Pace et al., 1999). Sized-based interactions 

between predators and prey at adjacent trophic levels in the food web have often not 

been considered, despite that they play a key role in the trophic structure and 

functioning of aquatic ecosystems (Brose, Jonsson, et al., 2006; Brown et al., 2004; 

Brucet et al., 2017; Emmerson & Raffaelli, 2004). 

Body size is a fundamental functional trait of organisms because it is linked with 

life- history patterns such as reproduction, growth and respiration (Brown et al., 2004; 

Calder, 1984; Robert Henry Peters, 1983). It also provides information about prey-

predator interactions, top-down and bottom-up control and the energy transfer through 

aquatic food webs (De Roos & Persson, 2002; Finlay et al., 2007; Woodward et al., 2005; 

Yvon-Durocher & Allen, 2012). Several studies have shown that both biotic interactions 

(e.g. predation, competition) and environmental factors (e.g. temperature, productivity) 

can affect the individual body size structure (i.e. the distribution of the number of 

organisms over a size range) of aquatic communities (Ye et al., 2013; Yvon-Durocher et 

al., 2011; Zhang et al., 2013).  

Many of these existing investigations have focused on variations in body size 

structure at a single trophic level, but the different trophic groups in a food web may 

respond differently to biotic and environmental factors (Brose, Jonsson, et al., 2006; 

Brucet et al., 2017; Quintana et al., 2015). Changes in resource availability are known to 

shape phytoplankton size structure in both freshwater (Brucet et al., 2017; Quintana et 

al., 2015) and marine ecosystems (Garzke et al., 2015; Marañón et al., 2012; Sommer et 

al., 2017). For example, high resource availability may promote growth of large-sized 

bloom-forming phytoplankton (Downing et al., 2001). Occurrence of blooms driven by 

bottom-up control is likely to alter size-based interactions in the food web, but so far, 

this has not been explored thoroughly. For example, blooms may cause toxicity and 

obstruct the feeding of zooplankton (Ger, Urrutia-Cordero, et al., 2016; Ger, Faassen, 
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Pennino, & Lürling, 2016; Jeppesen, Søndergaard, et al., 2005; Ye et al., 2013), which 

may lead to weaker size-based trophic cascades. Low resource availability can result in 

higher size diversity in zooplankton and fish due to sized-based competition (Arranz et 

al., 2016; Brucet et al., 2006; García-Comas et al., 2016; Quintana et al., 2015). Because 

predation is size dependent (Brooks & Dodson, 1965), top-down control may also alter 

the size structure of prey communities (Iglesias et al., 2008; Jeppesen et al., 2003; Rettig, 

2003). A high predation pressure has been shown to reduce size diversity at several 

trophic levels (e.g. zooplankton and phytoplankton) due to accumulation of individuals 

in the less predated size classes (Brucet et al., 2010; Quintana et al., 2015; Tavşanoğlu 

et al., 2015). However, how the size diversity of interacting trophic levels responds 

simultaneously to different environmental and biotic factors is less clear. The only study 

available (Brucet et al., 2017) showed that the size structure within a trophic group of 

the lake pelagic food web could be controlled by the size structure at adjacent trophic 

levels, as well as by temperature and resource availability.  

Analysis of body size distribution across several trophic levels provides 

understanding of prey-predator interactions and stability in food webs as interactions 

among species and trophic levels are based on metabolic and size-related networks 

(Brose et al., 2016; Trebilco et al., 2013; Woodward et al., 2005). Moreover, 

relationships between the size structure of predators and prey could affect the trophic 

energy transfer in food webs (Barnes et al., 2010; Jennings et al., 2002) which is 

described as the ecological efficiency in transferring energy at one trophic level to upper 

levels (Hairston, & Hairston, 1993). A recent study in a marine system (García-Comas et 

al., 2016) revealed that high prey size diversity of phytoplankton prevents efficient 

biomass transfer to upper trophic levels via predation defence or slow population 

turnover times. That is, blooms formed due to large-sized and colony-forming 

phytoplankton species that are less vulnerable to grazing by zooplankton may cause high 

phytoplankton size diversity, and this suppresses the energy flux through the food web 

(Steiner, 2003; Ye et al., 2013). Furthermore, a high standing biomass of primary 

producers due to the slower population turnover rates of larger than smaller organisms 

may inhibit the energy transfer (Yvon-Durocher et al., 2011). However, in ecosystems 

with high size diversity of predators (e.g. zooplankton), the differently sized predators 
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may benefit from being able to forage on prey items of several sizes, which consequently 

may facilitate biomass transfer because of diet niche partitioning (García-Comas et al., 

2016; Ye et al., 2013). 

We conducted a mesocosm experiment with two fish treatments (with and 

without fish) in Lake Mývatn in Iceland. Lake Mývatn is a naturally eutrophic sub-Arctic 

lake considered to be mainly driven by bottom-up forces (Einarsson, Gardarsson, 

Gíslason, & Ives, 2002; Einarsson, Hauptfleisch, Leavitt, & Ives, 2016). Zoobenthos 

mostly composed of chironomids, accounts for most of the secondary production of the 

lake (Lindegaard & Jónasson, 1979) and shows strong fluctuations depending on 

consumer-resource interactions with fish and algae/detritus (Ives, Einarsson, Jansen, & 

Gardarsson, 2008). However, some investigations have evidenced that top-down 

processes are also important in shaping the ecosystem processes in Lake Mývatn 

(Bartrons et al., 2015; Cañedo-Argüelles et al., 2017; Einarsson, 2010; Einarsson & Björk 

Örnólfsdóttir, 2004). Thus, three-spined stickleback (Gasterosteus aculeatus: 

Gasterosteidae), the most abundant fish species in the lake, demonstrates spatial and 

temporal variations that are affected by variations in the benthic community (Einarsson 

et al., 2004). At the same time, blooms of cyanobacteria (mostly Anabaena) occur 

frequently during summer. Although cyclic and semicyclic occurrences of Anabaena 

have been reported, occurrence is highly variable (Einarsson et al., 2004) and concurs 

with the cycles of zoobenthos. Blooms appear during years when the chironomid 

population collapses and trigger high internal loading of phosphorus from the sediment 

(Einarsson & Björk Örnólfsdóttir, 2004). Moreover, some studies have suggested that 

because Anabaena can grow under low N conditions, blooms are related to the naturally 

low N:P levels in the incoming spring water to the lake (Jónasson & Adalsteinsson, 1979). 

Anabaena blooms also appeared during our mesocosm experiment (Cañedo-Argüelles 

et al., 2017). 

The aim of this study was to assess how cascading top-down effects of fish 

predation and occurrence of cyanobacteria blooms affect the size structure of 

interacting trophic levels (zooplankton and phytoplankton). We also explored how such 

size structure changes in different trophic levels were reflected into the trophic transfer 

efficiency through the food web. We had two hypotheses:  
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1) Size diversity (based on individual body sizes) of zooplankton and phytoplankton 

would respond differently to top-down and bottom-up processes and the intensity of 

the response would differ before and after the cyanobacteria bloom. We expected that 

zooplankton size diversity would mainly be driven by top-down effects, at least before 

the bloom, and that diversity would decrease due to size-selective fish predation, 

resulting in dominance by smaller sized zooplankton individuals. We also expected that 

the top-down effects would weaken after the bloom. In contrast, as mentioned above, 

we expected that the size structure of phytoplankton would be less affected by trophic 

cascades and be driven rather by changes in resource availability (i.e. productivity) than 

by predation, particularly during the blooms of the large-sized and colony-forming 

Anabaena (Brucet et al., 2017).  

2) Trophic transfer efficiency would be lower in the fish enclosures due to lower 

zooplankton size diversity before the bloom (García-Comas et al., 2016). Moreover, the 

higher size diversity of phytoplankton during the Anabaena bloom would reduce energy 

transfer to higher trophic levels (Auer, Elzer, & Arndt, 2004) due to decreased edibility, 

low nutritional value and increased predation defenses of bloom-forming 

phytoplankton (Ger, Urrutia-Cordero, et al., 2016; Müller-Navarra, Brett, Liston, & 

Goldman, 2000; Steiner, 2003). 

  

Methods 
Study site 

Lake Mývatn (37 km2) is a shallow eutrophic crater lake, located in the north-

eastern part of Iceland (65°40ʹ N, 17°00ʹ W, 277 m a.s.l.). The lake is divided into two 

major basins – the North Basin (8.5 km2) and the South Basin (28.2 km2). Maximum 

depth is nearly 4 m in the South Basin and around 5.5 m in the North Basin due to 

dredging in connection with diatomite mining. The mean depths of the South and the 

North Basin are around 2.5-4 m and 1-2.5 m, respectively (Einarsson et al., 2004). The 

water column is vertically mixed during summer, and thermal stratification starts in mid-

winter when the thermocline develops under ice (Ólafsson, 1979a). Ice cover lasts about 

190 days (Rist, 1979). The lake is mostly fed by artesian springs through groundwater 
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supplies from its eastern shore. Springs from a nearby geothermal area feed the North 

Basin and their temperature may reach 30 °C. The springs entering the South Basin are 

colder (5 °C) (Ólafsson, 1979a). The estimated inputs of phosphorus, nitrogen and silica 

from the springs are 0.05 mol m-2 year -1, 0.14 mol m-2 year-1 and 12 mol m-2 year-1, 

respectively (Ólafsson, 1979b). The spring water is very rich in phosphate (1.62 µM). The 

reactive basaltic bedrock and the low vegetation in the catchment of the lake, together 

with the high temperature and constant flow, create high nutrient concentrations and 

high pH in the incoming springs (Einarsson et al., 2004; Thorbergsdóttir & Gíslason, 

2004). Internal nutrient loading and nitrogen fixation by cyanobacteria play a significant 

role in the nutrient dynamics of the lake (Einarsson et al., 2004; Ólafsson, 1979b). 

 

Experimental set-up 

The experiment included two fish treatments (with/without fish) and each 

treatment had four replicates. Eight circular enclosures (diameter: 1.2 m) were 

established in the western part of the South Basin of the lake. One of the fish enclosure 

replicates was omitted from the analyses because it was destabilised after a storm 

event, leading to entry of lake water and fish. The experiment lasted for 58 days, from 

23 June to 20 August 2014, with five biweekly samplings (Day 1, 16, 30, 44 and 58)  

The enclosures were made of a polyethylene tube folded around a metal cylinder, 

which was attached to a plastic hoop placed 30 cm above the surface and inserted 20 

cm into the sediment. The enclosures were located randomly in the same area to avoid 

significant differences among benthic parameters, such as hatching of zooplankton. 

They were filled with lake water using a net with 1 mm mesh size to prevent fish 

entrance. The initial water level in all enclosures was 0.8 m and this did not change 

significantly during the experiment. Before the experiment, macrophytes were 

harvested from the bottom of the enclosures to establish similar starting conditions. 

One week after the establishment of the set-up, a mixture of plankton was sampled near 

the experimental site using a vertical plankton net from a moving boat. Of the plankton 

mixture, 1 L was added to each enclosure to create a natural aquatic food web with 

similar communities. Three-spined stickleback, a common and the most abundant 
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planktivorous fish in the lake, was used in the fish treatment (Millet, Kristjánsson, 

Einarsson, & Räsänen, 2013). The species is an important top-down driver of the trophic 

cascade in Lake Mývatn (Adalsteinsson, 1979; Gislason, Gudmundsson, & Einarsson, 

1998). Two weeks after the addition of plankton inoculum, four similar-sized three-

spined sticklebacks (about 5.5 cm), caught with fyke nets close to the experimental set-

up, were added to the enclosures with fish. In previous studies conducted in the South 

Basin and the North Basin, stickleback densities ranged between 0.3 and 2.5, and 100 

and 200 individuals per m2, respectively (Gislason et al., 1998), which also covers the 

stickleback density used in our experiment.  

 

Sampling and laboratory analysis 

Three days after the fish addition, biweekly samples were taken from all 

enclosures from 23 June until 20 August. Physical variables such as temperature (°C), 

pH, conductivity (µS cm-1) and dissolved oxygen (mg L-1) were measured in situ using a 

Hanna multiparameter meter (Hanna Instruments, USA). Water transparency (cm) was 

measured with a Secchi disk. Water samples (10-12 L) were taken with a 1-m long 

Plexiglas cylinder (diameter: 6 cm) (Ramberg, 1979) along the water column from three 

different points in each mesocosm and subsequently mixed for analysis of chemical and 

biological variables. The samples were analysed for total phosphorus (TP, µg L-1), soluble 

reactive phosphorus (SRP, µg L-1), total nitrogen (TN, µg L-1), ammonium (NH₄⁺, µg L-1) 

and chlorophyll-a (chl-a, µg L-1). Detailed information about chemical analysis can be 

found in Cañedo-Argüelles et al. (2017). 

From the mixed water sample (10-12 L), 7 L were filtered through a filter with 50 

µm mesh size and stored in 4% acid Lugol’s solution for zooplankton identification and 

enumeration. Zooplankton samples were identified to species level except some 

Rotifera that were identified to genus level. All copepods were classified as adults, 

copepodites and nauplii. The size of at least 25 individuals (if possible) from each 

zooplankton taxon was measured. For copepods, size was measured independently for 

different life stages (adults, copepodites and nauplii) to represent ontogenetic shifts. 

For all zooplankton taxa, biomass dry weight was computed using allometric 

relationships between weight and body length in the literature (Bottrell et al., 1976; 
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Dumont et al., 1975; McCauley, 1984). For phytoplankton, unfiltered water samples 

were taken and stored in 4% acid Lugol’s solution. Phytoplankton were identified to 

genus level and 5-10 individuals from each genus were measured.  

Total length and width were measured for single cells, filaments and colonies. 

Phytoplankton biovolume was calculated from body measurements using 

geometric formulae (Sun & Liu, 2003) and converted to biomass by multiplying with a 

factor of 0.29 (Reynolds, 1984). For both zooplankton and phytoplankton, at least 100 

individuals of the most abundant taxa were counted. 

 

Size diversity and estimation of trophic transfer efficiency 

Size diversity was calculated from individual length measurements of zooplankton 

and phytoplankton taxa for each enclosure and each sampling date according to 

Quintana et al. (2008). It is a simple representation of the size structure of a community 

based on the Shannon diversity index, but for continuous variables (herein length) 

(Brucet et al., 2006; Quintana et al., 2008). The size diversity index (µ2) was computed 

following the formula: 

µ;(x) = −3 ρN
>

?

(x)log;	ρN(x)dx 

where px (x) is the probability density function of size x. Non-parametric kernel 

estimation approach was applied to find the probability density function, which gives 

reliable estimates of most size distributions. Dispersion of the function is regulated by a 

bandwidth parameter and the estimator is calculated as the sum of kernel functions 

centered at the sample points (Quintana et al., 2008). Size diversity is very useful and 

easy to interpret as it defines a single value that is comparable across studies and 

represents the size range and evenness of a size distribution. High size diversity indicates 

a broad size range with equal distribution of the different sizes within a size spectrum, 

whereas low size diversity specifies a narrow size range with high dominance of certain 

sizes (Emmrich et al., 2011; Hurlbert, 1971; Quintana et al., 2016). Since size diversity is 

calculated as the relative contribution of different sizes along the size distribution, the 
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relationship between size diversity and total biomass is not a result of spurious 

correlation but of the ecosystem processes (García-Comas et al., 2016; Ye et al., 2013).  

Although predator to prey biomass ratios have been used as a predictor of top-

down control in several studies (Cañedo-Argüelles et al., 2017; Jeppesen et al., 2003; Ye 

et al., 2013), in our study we used predator (zooplankton) to prey (phytoplankton) 

biomass ratio (PPBR) in log scale (log10 [PPBR]) as a proxy of the trophic transfer 

efficiency (TTE) to reflect the efficiency in energy transfer between adjacent trophic 

levels through the trophic cascade. TTE was originally described by Lindeman (1942) as 

the total production ratio between adjacent trophic levels. Low TTE indicates low 

transfer of production (i.e. biomass) from a low trophic level to upper trophic levels, and 

high standing production at lower trophic levels whereas high TTE implies the opposite. 

However, because it is difficult and time consuming to measure the production rate in 

natural ecosystems, we did not evaluate it. Moreover, it has been shown that in 

planktonic systems TTE varies mostly with biomass ratios rather than with production 

ratios (Huntley & Lopez, 1992). The use of log10 (PPBR) is straightforward and has been 

validated by many studies (Gaedke & Straile, 1994; García-Comas et al., 2016; Jennings 

et al., 2002; Yvon-Durocher et al., 2011). It also agrees with the postulates of Pawlowsky-

Glahn & Buccianti (2011) that the proxy prevents spurious correlations that may appear 

when proportions and ratios are used in statistical analysis.  

 

Data analysis 

All data were analysed using the “nlme” (Pinheiro, Bates, DebRoy, Sarkar, & Team, 

2017) and “car” (Fox & Weisberg, 2011) packages in R version 3.3.0 (R Core Team, 2018).  

Linear mixed models (LMMs) were run to test how fish predation and 

cyanobacteria blooms affected zooplankton and phytoplankton size diversity and TTE 

and, additionally, to assess the influence of other environmental and biotic factors (e.g. 

resource availability).  

In total, we ran 3 models with phytoplankton size diversity, zooplankton size 

diversity and TTE as response variables. The models tested the influence of fish 

treatment (factor), Anabaena occurrence (factor), fish × Anabaena occurrence 
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interaction and additional relevant biotic and environmental predictors on 

phytoplankton size diversity, zooplankton size diversity and TTE. As biotic and 

environmental predictors, in the model for zooplankton size diversity, we included 

phytoplankton size diversity (as a measure of resource availability). In the model for 

phytoplankton size diversity, we included TP (ln-transformed) (see Figure 18), 

zooplankton biomass (ln-transformed) and zooplankton size diversity as indicators of 

resource availability, predation pressure and size-structured predation, respectively. In 

the model for TTE, we included phytoplankton and zooplankton size diversity as 

predictor variables. We did not include sampling day as this was strongly correlated with 

the following predictors: phytoplankton size diversity, zooplankton size diversity and 

phytoplankton total biomass (Table 8). Thus, the general structure of the three models 

were: 

RESPONSE VARIABLE ~ fish (fish/no fish) + Anabaena occurrence (before/after) + 

(fish × Anabaena occurrence) + specific biotic and environmental predictors.  

Marginal R2 (variance explained by fixed factors) and conditional R2 (variance 

explained by fixed and random factors) values (Nakagawa & Schielzeth, 2013) of the 

LMMs were calculated by applying the r.squaredGLMM function in “MuMIn” package 

(Bartoń, 2016). All graphs were produced with the “ggplot2” package (Wickham, 2009).  

For all models, all predictor variables were scaled and centered prior to analysis in 

order to better compare and interpret predictors with different scales. Normality was 

checked by Shapiro-Wilk’s test before analysis (p>0.05) and variables were ln-

transformed, when necessary. The correlation structure of the predictor variables was 

checked, and highly correlated variables (r>0.6) (Emmrich et al., 2011) were removed 

before the analysis (see Table 8 in the appendix). As a random effect, the intercept was 

allowed to change with each enclosure to account for the temporal pseudo-replication. 

We then tested whether or not a random slope for sampling day (either correlated 

and/or independent) would improve the model and compared the models with different 

random effect structures using the maximum likelihood estimation method. Finally, we 

did not include sampling day as a random slope in the models because it did not improve 

the model parameters. The most parsimonious models were selected from the full 

models by automatic step-wise selection (function stepAIC from MASS package; 
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Venables & Ripley, 2002) based on Akaike information criteria (AIC) values. Residual 

plots of the most parsimonious models were checked for normality.  

 

Results 
The community composition and size structure of zooplankton and phytoplankton 

changed during the experiment and between treatments. Large and colony-forming 

cyanobacteria, Anabaena started to appear on day 30 and became dominant hereafter, 

and the biomass of Cladocera was lower in the enclosures with fish (see Figure 2 & 3 in 

Cañedo-Argüelles et al., 2017). Moreover, zooplankton size diversity started to 

decrease, while phytoplankton size diversity increased after the occurrence of 

Anabaena bloom on day 30 (Figure 9), causing a decline in TTE (Figure 10). Although the 

differences in zooplankton, phytoplankton size diversity and TTE between fish 

treatments were not significant in any sampling day (t-test, p> 0.05, Benjamini Hochberg 

correction), some differences were observed between fish treatments for zooplankton 

size diversity and TTE (Figure 10 & Figure 11).  

 

Figure 9. Zooplankton and phytoplankton size diversity for different treatments (fish, no fish) on 

each sampling day. Fish treatment and Anabaena occurrence were significant for zooplankton 

size diversity, while only Anabaena occurrence was significant for phytoplankton size diversity. 
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Figure 10. Log10 (PPBR) (=TTE) for different treatments (fish, no fish) on each sampling day. 

Zooplankton size diversity and Anabaena occurrence were significant for TTE. 

 

According to LMMs, zooplankton size diversity was negatively related to fish 

treatment and Anabaena occurrence (p<0.05 and p<0.01, respectively, Table 4). We did 

not include phytoplankton total biomass in the final model for zooplankton size diversity 

because it was correlated with phytoplankton size diversity (Table 8) and the most 

parsimonious model while using phytoplankton total biomass was the same as the one 

with phytoplankton size diversity (Table 4). 
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Table 4. Results of linear mixed models showing environmental and biotic factors affecting 

zooplankton size diversity, phytoplankton size diversity, and TTE. Here, we show only best 

models with a random effect of the enclosures on the intercept. Significant p values are 

highlighted in bold. The initial models were as: RESPONSE VARIABLE ~ fish treatment (factor: 

fish/no fish) + Anabaena occurrence (factor: before/after) + (fish × Anabaena occurrence) + 

biotic and environmental predictors). The factor levels “before” (Anabaena occurrence) and “no 

fish” (fish treatment) were baselines for the models. TTE, trophic transfer efficiency; AIC, Akaike 

information criteria; TP, total phosphorus. 

 

 

 

Figure 11. Effect of (a) predator (zooplankton) size diversity on biomass transfer efficiency (from 

phytoplankton to zooplankton) (log10 [PPBR]) (n=35, Marginal R2=0.69, Table 4). (b) Effect of 

Anabaena occurrence (before/after) on biomass transfer efficiency (log10 [PPBR]) (Table 4, 

p<0.01). Different colours represent before and after Anabaena across all sampling dates. 

Response 
variable Predictors AIC Estimate SE DF t-value p value Conditional 

R2 
Marginal 

R2 

Zooplankton 
size diversity 

Fish treatment 

(fish) 
89.24 -0.76 0.25 5 -3.07 0.03 0.47 0.47 

  
Anabaena 

(after) 
  -0.81 0.18 27 -4.55 <0.01     

Phytoplankton 
size diversity ln TP 54.83 0.19 0.10 26 1.89 0.07 0.78 0.78 

  
Anabaena 

(after) 
  0.91 0.15 26 6.24 <0.01     

TTE Zooplankton 

size diversity 
75.19 0.58 0.12 26 4.76 <0.001 0.69 0.69 

  

Anabaena 

(after) 
  -0.56 0.17 26 -3.25 <0.01     
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Phytoplankton size diversity was significantly higher after Anabaena bloom (factor 

Anabaena occurrence p<0.01, Table 4) and slightly positively (but not significantly) 

related to productivity (using ln TP as a proxy, see Figure 18) (p= 0.07, Table 4). In fact, 

productivity, Anabaena biomass and phytoplankton size diversity were highly correlated 

(r> 0.6, Table 8). TTE was significantly lower after Anabaena bloom (factor Anabaena 

occurrence p<0.001, Table 4) and related positively to zooplankton size diversity 

(p<0.01, Table 4 and Figure 11).  

 

Discussion 
Our results suggest that both predation and resource availability influence 

zooplankton and phytoplankton size structure, but in different ways. While the 

zooplankton size structure was mainly shaped by fish predation and the cyanobacteria 

bloom, phytoplankton size structure responded mainly to the bloom, which was 

apparently driven by productivity. The results also suggest that the cyanobacteria 

blooms altered the energy transfer in the trophic cascade of Lake Mývatn. Concordantly, 

Cañedo-Argüelles et al. (2017) found a higher abundance of smaller zooplankton taxa 

(e.g. Rotifera) in the enclosures with fish. Several other experimental and field studies 

(Brucet et al., 2010; Iglesias et al., 2011; Jeppesen et al., 2003) have shown that the 

zooplankton community had a narrower size range and was dominated by smaller 

individuals along the size distribution in the presence of fish.  

Occurrence of cyanobacteria blooms was related to low zooplankton size diversity. 

Comparable results were found in a spatial study of Lake Mývatn in which smaller 

zooplankton taxa were associated with Anabaena (Bartrons et al., 2015). Cyanobacteria 

are unpalatable to most zooplankton (particularly some of the large cladocerans), as the 

colonial and filamentous forms clog the feeding apparatus of the zooplankton, thereby 

reducing zooplankton grazing rates (DeMott, Gulati, & Van Donk, 2001; Paerl & Otten, 

2013; Webster & Peters, 1978; Wilson, Sarnelle, & Tillmanns, 2006). This may also 

explain the negative correlation between the size diversity of zooplankton and the size 

diversity of phytoplankton (the latter mainly reflecting Anabaena abundance).  
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Another explanation of the reduced size diversity of zooplankton with the 

occurrence of Anabaena might be that cyanobacteria toxins such as polypeptide 

microcystins alter the feeding behaviour of large zooplankton through feeding inhibiton 

(DeMott, Zhang, & Carmichael, 1991) and prey avoidance (Ger, Faassen, et al., 2016). 

Our results indicating negative consequences of blooms on zooplankton size diversity 

agree with those of previous studies where similar adverse effects of toxicity on 

zooplankton size structure have been observed (Ghadouani, Pinel-Alloul, & Prepas, 

2006; Zhang et al., 2013). In addition, they support the finding of Bell (2002) that the 

cascading effect of planktivorous fish did not extend from zooplankton to phytoplankton 

due to dominance of inedible phytoplankton.  

Phytoplankton size diversity was not affected by fish predation throughout the 

experiment. In contrast, we found a strong relationship of Anabaena biomass and 

phytoplankton size diversity with resource availability in both fish treatments (Table 8). 

In Lake Mývatn, internal loading of nutrients commonly occurs with wind-induced 

sediment resuspension (Einarsson et al., 2004). Because tube-forming chironomids 

prevent resuspension by binding the sediment, in years with low abundance of 

chironomid larvae (midges), high resuspension, high phosphorus loading and thus 

extensive Anabaena blooms occur (Ólafsson & Paterson, 2004; Webert et al., 2017). 

Naturally low N:P levels in inflows due to the high P loading from the volcanic region 

could additionally enhance cyanobacteria blooms (Jónasson & Adalsteinsson, 1979). 

Similarly, studies undertaken in freshwater and marine ecosystems have shown that the 

size structure of phytoplankton responds primarily to the availability of nutrients in the 

system (Brucet et al., 2017; Garzke et al., 2015; Quintana et al., 2015; Sommer et al., 

2017). While small-sized phytoplankton dominate under oligotrophic conditions due to 

a high surface area to volume ratio and higher growth rates, larger individuals are 

superior competitors under eutrophic conditions because they are better at nutrient 

storage (Litchman & Klausmeier, 2008; Robert H. Peters & Downing, 1984; Romo et al., 

2004).  

As expected, we found cascading effects of fish on TTE, TTE being lower when the 

zooplankton size diversity was controlled by fish. This supports earlier studies revealing 

a negative relationship between size-selective fish predation and the transfer of energy 
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from primary to secondary producers (de Bernardi, Giussani, & Manca, 1987; Jansson et 

al., 2007). Additionally, throughout the experiment, high phytoplankton (prey) size 

diversity induced by the cyanobacteria bloom reduced TTE, while high zooplankton 

(predator) size diversity stimulated biomass transfer through the trophic cascade. This 

is in agreement with a study conducted in a marine system (García-Comas et al., 2016).  

A possible explanation of the lower TTE with decreased predator size diversity is 

niche partitioning. Greater predator size diversity may create several different feeding 

niches as differently sized predators collectively can prey on a wider range of prey sizes 

(Brucet et al., 2008; García-Comas et al., 2016; Ye et al., 2013). When the predator 

community was dominated by zooplankton of less diverse sizes, as in the beginning of 

the experiment due to fish predation in some enclosures, predators occupied less 

feeding niches and the energy transfer in the trophic cascade was therefore lower. 

Similarly, after the bloom, zooplankton size diversity decreased in all enclosures in both 

the presence and absence of fish due to the high prey (phytoplankton) size diversity. 

This prevented effective transfer of energy across the trophic cascade, and Anabaena 

bloom drove the TTE. This may be due to decreased grazing of zooplankton on 

phytoplankton because of the inedibility of large-sized or colony-forming phytoplankton 

(Steiner, 2003) or decreased phytoplankton population turnover rates (Yvon-Durocher 

et al., 2011). A slower turnover rate of primary producers causes accumulation of 

biomass at lower trophic levels and decreases the energy transfer, thereby destabilising 

trophic cascades (Jones & Jeppesen, 2007).  

We acknowledge that our investigation has certain limitations. We analysed a 

simple trophic food web with three interacting trophic levels – planktivorous fish, 

zooplankton and phytoplankton. In more complex systems, omnivory and intraguild 

predation could be important factors for trophic relationships (Chang et al., 2014; Finke 

& Denno, 2005; Post & Takimoto, 2007). We also recognise that our experimental design 

did not allow tests of other trophic components such as the microbial loop. The 

microbial loop may increase the nutrient cycling and energy transfer in food webs 

(Blanchard, Heneghan, Everett, Trebilco, & Richardson, 2017). Although the role of 

microorganisms is valuable in food web studies to elucidate complex networks, 
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microbial loop interactions have not yet been thoroughly investigated in size-based 

ecosystem studies (Blanchard et al., 2017).  

In conclusion, our results suggest that size-based interactions across trophic levels 

could be important determinants of trophic cascade relationships and should be 

considered to properly manage freshwater ecosystems in the future.  

They also support the documented well-known negative effect of planktivorous 

fish predation on the size structure of zooplankton communities. However, the 

occurrence of large-sized cyanobacteria interfered with the cascading effect of fish 

predation on zooplankton size structure, reducing the energy transfer through the food 

web. In contrast, phytoplankton size diversity tended to be significantly controlled by 

resources and not by consumers. This indicates that productivity might overrule size-

based cascading interactions and prevent proper energy transfer in freshwater food 

webs. Understanding size-based interactions in a warming climate is crucial since 

stronger predation from smaller fish (Jeppesen et al., 2012) and increased occurrence 

of cyanobacteria blooms (Jöhnk et al., 2008) are to be expected. This will create 

disturbance of natural aquatic zooplankton communities with potential implications for 

ecological state and ecosystem functioning (Velthuis, De Senerpont Domis, et al., 2017; 

Zhang et al., 2013).  
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Short-term fish predation destroys resilience of zooplankton 

communities and prevents recovery of phytoplankton control 

by zooplankton grazing 

 

Ersoy, Z., Bartrons, M., Mehner, T., Brucet, S. Short-term fish predation destroys 

resilience of zooplankton communities and destroys recovery of phytoplankton control 

by zooplankton grazing. In review, PLoS ONE.   
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Abstract 
Planktivorous fish predation directly affects zooplankton biomass, community and 

size structure, and may indirectly induce a trophic cascade to phytoplankton. However, 

it is not clear how quickly the zooplankton community structure and the cascading 

effects on phytoplankton recover to the unaffected state (i.e. resilience) once short-

term predation by fish stops. The resilience has implications for the ecological quality 

and restoration measures in aquatic ecosystems. To assess the short-term zooplankton 

resilience against fish predation, we conducted a mesocosm experiment consisting of 

12 enclosures, 8 with fish and 4 without fish. Plankton communities from a natural lake 

were used to establish phytoplankton and zooplankton in the mesocosms. High 

biomasses (about 20 g wet mass m-3) of juvenile planktivorous fish (perch, Perca 

fluviatilis) were allowed to feed on zooplankton in fish enclosures for four days. 

Thereafter, we removed fish and observed the recovery of the zooplankton community 

and its cascading effect on trophic interactions in comparison with no fish enclosures for 

four weeks. Short-term fish predation impaired resilience in zooplankton community by 

modifying community composition, as large zooplankton, such as calanoids, decreased 

just after fish predation and did not re-appear afterwards, whereas small cladocerans 

and rotifers proliferated. Total zooplankton biomass increased quickly within two weeks 

after fish removal, and at the end even exceeded the biomass measured before fish 

addition. Despite high biomass, the dominance of small zooplankton released 

phytoplankton from grazer control in fish enclosures. In contrast, in no fish enclosures 

without predation disturbance, a high zooplankton:phytoplankton biomass ratio 

accompanied by low phytoplankton yield (Chlorophyll-a:Total phosphorus ratio) 

reflected phytoplankton control by zooplankton. Accordingly, the zooplankton 

community did not recover from the effect of fish predation, indicating low short-term 

resilience. Comprehensive views on short and long-term resilience of zooplankton 

communities are essential for restoration and management strategies of aquatic 

ecosystems to better predict responses to global warming, such as higher densities of 

planktivorous fish. 

Keywords: resilience, zooplankton, fish predation, trophic interactions 
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Introduction 
Predators play a crucial role in food webs, by shaping the structure of prey 

communities and affecting ecosystem functioning, for example through trophic 

cascades, modification of energy flow and altered biodiversity (Carpenter et al., 1985; 

Pace et al., 1999; Paine, 1966). In aquatic ecosystems, predation by planktivorous fish 

can strongly affect zooplankton biomass, community composition and size structure 

(Brooks & Dodson, 1965; Brucet et al., 2010; Jeppesen et al., 2003, 2004). Several 

enclosure experiments and field studies have demonstrated that planktivorous fish 

predation caused a decrease in abundance of big cladocerans (e.g Daphnia) while 

favoring small cladocerans (e.g Bosmina, Chydorus), copepods and rotifers (Beklioglu & 

Moss, 1996; Jakobsen, Hansen, Jeppesen, Grønkjær, & Søndergaard, 2003; Vanni, 1987). 

Fish predation can also have indirect effects on phytoplankton communities either 

through trophic cascades (Carpenter et al., 2001; Iglesias et al., 2011; Jeppesen et al., 

2014) or nutrient recycling (Attayde & Hansson, 2001; Schindler, 1992; Schindler, Knapp, 

& Leavitt, 2001). Phytoplankton could benefit from controlled zooplankton grazing by 

fish and/or extra nutrients enhanced by fish resuspension (Matsuzaki, Usio, Takamura, 

& Washitani, 2007) or excretion (Brabrand, Faafeng, & Nilssen, 1990). For this reason, 

lake restoration measures like biomanipulation mostly focus on reducing fish predation 

on zooplankton by planktivorous fish removal. This favors the recovery of large-sized 

zooplankton, which are the most efficient phytoplankton grazers, and leads to 

improvement of water quality (Mehner, Benndorf, Kasprzak, & Koschel, 2002; 

Søndergaard, Lauridsen, Johansson, & Jeppesen, 2017; Søndergaard, Liboriussen, 

Pedersen, & Jeppesen, 2008). 

With the increase of anthropogenic influences including climate change, habitat 

disturbance, overfishing and introduced species, the need to understand aquatic 

ecosystems’ resilience to disturbance has become more urgent. Resilience is defined as 

the ability of a system to recover after a disturbance and return to pre-disturbance state 

(Ives & Carpenter, 2007; Pimm, 1991). An example of disturbance for aquatic 

ecosystems could be higher densities of planktivorous fish, for example caused by 

climate warming or fish stocking, whose higher predation may induce trophic cascades 

and impair ecosystem functioning in terms of biodiversity and energy flow (Ersoy et al., 
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2017; Jeppesen et al., 2014; Zhang et al., 2013). In this sense, the capacity to identify the 

time for recovery and re-organisation of the zooplankton community structure after 

planktivorous fish removal is crucial for application of management strategies aimed to 

restore lake ecological status, as well as to understand failures in management (Hilt, 

Brothers, Jeppesen, Veraart, & Kosten, 2017; Knapp & Sarnelle, 2008; Verdonschot et 

al., 2013). 

Although there are many studies investigating the cascading effects of fish 

predation on zooplankton and phytoplankton communities (Bartrons et al., 2018; Brucet 

et al., 2017; Hansson et al., 2007; Nõges, Järvalt, Haberman, Zingel, & Nõges, 2016), 

there are only a few focusing on zooplankton communities’ resilience to predation 

(Donald, Vinebrooke, Anderson, Syrgiannis, & Graham, 2001; Knapp, Hawkins, Ladau, & 

McClory, 2005; Knapp et al., 2001; Knapp & Sarnelle, 2008; Mcnaught et al., 1999). These 

former studies investigated the zooplankton communities in several lakes in North 

America, which had a history of fish stocking but experienced gradual fish removal or 

disappearance due to unsuitable spawning grounds. Subsequently, the zooplankton 

community returned within a few years to their previous conditions characterized by 

large-sized taxa, indicating long-term resilience. However, it remains unanswered how 

fast a zooplankton community recovers, once fish predation is completely stopped, in 

the temporal dimension of days or weeks. Answering this question could potentially 

improve our understanding about short-term resilience and stability of zooplankton 

communities and may help develop better management and conservation measures 

after sudden changes in freshwater ecosystems.  

Here, we tested the short-term resilience of the zooplankton community to fish 

predation using a mesocosm experiment. We further assessed whether the potential 

recovery of zooplankton biomass after the stop of fish predation induced a comparably 

quick recovery of the top-down control by zooplankton on phytoplankton (expressed as 

zooplankton:phytoplankton biomass (zoo:phyto biomass) and chlorophyll-a:total 

phosphorus ratios (chla:TP)). We hypothesized that size-selective fish predation would 

affect the zooplankton biomass and community composition and would shift mean 

length towards smaller individuals (Brucet et al., 2010; Ersoy et al., 2017), hence 

reducing top-down control on phytoplankton and increasing phytoplankton yield 
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(chla:TP) (Ersoy et al., 2017; Lemmens, Declerck, Tuytens, Vanderstukken, & de Meester, 

2017). We further expected that the zooplankton community is highly resilient and 

hence would quickly return to the pre-disturbance attributes within a few days after 

stop of predation. However, cascading effects on phytoplankton were expected to show 

a time lag in the response because phytoplankton has short turnover rates and hence 

may profit from the temporally reduced zooplankton grazing. 

 

Methods 
Ethics statement 

The specific experiment was not seperately approved by an animal research ethics 

committe. However, there is an ethics approval for experimental work with perch, 

issued to TM (Ernährung / Verhaltenstypen / Fische – G 0115 / 14, Landesamt für 

Gesundheit und Soziales Berlin, Germany). Animal procedures were conducted 

following German Animal Welfare Laboratory Regulations (Tierschutzversuchstier-

verordnung, Anlage 2 TierSchVersV, https://www.gesetze-im-internet.de/tierschversv/ 

BJNR312600013.html). Fish is euthanized with 9:1 95% EtOH:clove-oil solution 

(CarlRoth, Karlsruhe, Germany) and a subsequent hit on the head. 

 

Experimental set-up 

We established 12 circular and closed enclosures (diameter: 1.2 m) inside a small 

channel connected to Lake Müggelsee at the IGB’s ground in Berlin (ca. 80-90 cm deep). 

The initial water level in all enclosures was 1 m (~1000 L) and this did not change 

substantially during the experiment. To avoid stratification and ensure homogeneity and 

mixing in the enclosures, small aquarium water pumps (Sera pond precision, pond pump 

SP 500, Heinsberg, Germany) were installed at the mid-bottom of each enclosure. Nets 

(5 x 5 cm) were placed above the enclosures to avoid impact from birds, falling leaves 

etc. Before the experiment started, plankton inoculum and nutrients were added on 

certain days (see day numbers with negative sign in Figure 12). The experiment lasted 

for 43 days, from 30 May to 11 July 2016 with five samplings (days 1, 8, 15, 29, 43).  
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Figure 12. Experimental schedule showing plankton inoculation, fish addition, removal and 

sampling days. Days enframed with black show the sampling days. 

 

Nutrient addition 

Both N and P were added before the experiment started to counteract the 

concentration decrease from denitrification and sedimentation and to enable 

appropriate plankton development throughout the experiment.  

Na2HPO4 (Sodium phosphate dibasic dehydrate) and Ca(NO3)2 (Calcium nitrate 

tetrahydrate) were used as a P and N-source, respectively. The target nutrient 

concentrations were 175 µg P L-1 and 1.5 mg N L-1 in each enclosure, and hence initially 

180 mg P and 1545 mg of N were added per enclosure. In response to declining nutrient 

concentrations as measured in the enclosures, nutrients were added at days -40 (i.e. 40 

days before the first sampling), -30, -19,-5 and 2 to facilitate phytoplankton growth 

(Figure 12). 

 

Plankton inoculum 

Zooplankton and phytoplankton inocula from Lake Müggelsee were used to 

establish plankton communities in the mesocosms. Before the experiment started, lake 

water (2000 L) was filtered through 30 µm mesh size and mixed to create a natural mix 

of phytoplankton and zooplankton (day -40). From the plankton mixture, 3.5 L was 

added to each enclosure. The water temperatures were low in spring 2016, and hence 

the zooplankton communities in Lake Müggelsee consisted of only a few larger 
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crustaceans. Therefore, a second inoculum of natural zooplankton was prepared at day 

-5 by filtering nearly 2300 L of water from the lake through 100 µm mesh and adding the 

content of two horizontal net hauls (mesh size: 100 µm, about 5 minutes duration). The 

zooplankton inoculum was gently mixed, and 1.5 L of the mixture was added to each 

mesocosm.  

 

Sampling and laboratory analysis 

Sampling started at day 1 (Figure 12), about one week after the addition of 

nutrients and the second plankton inoculum which were conducted on day -5. Three 

water samples (about 7 L each) were taken with a water sampler at the surface, from 

the middle and the bottom layer of each enclosure and mixed thoroughly for analysis of 

chemical and biological variables. One part of mixed samples (about 1.5 L) was analysed 

for total phosphorus (TP, µg L-1) and chlorophyll-a (chla, µg L-1). TP was determined using 

ascorbic acid-molybdate complex following persulfate digestion [38]. For chla analyses, 

water samples (100-200 ml) were filtered through 25 mm diameter Sartorius MGF Glass-

Microfiber Disc. The filters were placed into 2 ml reaction vessels, frozen at -80 ºC, 

freeze-dried and thereafter stored at -25 ºC in the dark until analysis. Chla was measured 

using high-performance liquid chromatography (HPLC) following the methodology from 

Shatwell, Nicklisch, & Köhler (2012). For calculating phytoplankton biomass, we 

converted chla to dry weight biomass (µg L-1) by multiplying with 66 (Reynolds, 1984).  

From the mixed water sample, another 5 L were filtered through a 30 µm mesh 

and stored in 4% formaldehyde solution for zooplankton quantification. Large 

zooplankton (cladocerans and copepods) were counted and their length measured 

under a stereomicroscope while rotifers and copepod nauplii were counted and 

measured under a light microscope. All organisms were identified to species level except 

some rotifers that were identified to genus level. We measured at least 20 individuals 

(if possible) from each taxon and counted at least 100 individuals of the most abundant 

taxa. We classified copepods as adults, copepodites and nauplii to account for differing 

abundances during ontogeny. For all zooplankton groups, we calculated biomass by 
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using available allometric relationships between weight and body length (Bottrell et al., 

1976; Dumont et al., 1975; McCauley, 1984). 

 

Fish addition and removal 

Juvenile European perch (Perca fluviatilis), which are typically planktivorous 

(Persson, 1990), were used as predators in the fish enclosures. Two to four weeks before 

the experiment, fish were caught by traps at the shoreline of Lake Müggelsee, held in 

aquaria and fed with red blood worms (Tubifex spp.) regularly. Fish were not fed during 

the two days before adding them to the enclosures to ensure that they were hungry 

enough to feed intensely on the zooplankton in the enclosures. Five perch of about 5 cm 

length and 4 g wet weight each were added to each fish enclosure (day 8). Fish were 

allowed to feed on zooplankton for four days. Average daily food consumption of a 

juvenile perch of 2-4 g is known to be around 4.5% of its biomass per day (Fiogbé & 

Kestemont, 2003). We estimated the daily food consumption by five perch (20 g) in one 

enclosure (~1000 L) to be about 900 µg L-1 day-1 (20 mg L-1 × 4.5 %). Therefore, the daily 

consumption of all fish was substantially higher than the initially available zooplankton 

biomass in fish enclosures (around 500 µg L-1 at day 1, Figure 13), indicating that strong 

predation effects were likely during four days of predation. Four days after fish stocking 

(day 12), we removed the fish by electrofishing, euthanized them with 9:1 95% 

EtOH:clove-oil solution (CarlRoth, Karlsruhe, Germany) and a subsequent hit on the 

head. We sampled the zooplankton and phytoplankton communities in both fish and no 

fish enclosures three times within the subsequent four weeks (days 15, 29, 43).  
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Figure 13. log10 (zooplankton total biomass) and log10 (zooplankton mean length) for different 

treatments (no fish, n=4; fish, n=6) on each sampling day. Fish image with arrows indicates 

addition and removal of fish. 

 

Data analysis 

We excluded two fish enclosures from the data analyses because throughout the 

experiment, there were dead fish in one enclosure because of pump malfunctioning, 

and one enclosure stocked with fish became an extreme outlier in terms of total 

zooplankton abundance because of a massive rotifer bloom (See E8 in Figure 20). Finally, 

we used four enclosures without fish and six enclosures stocked with fish in our data 

analyses. Moreover, we assumed that the chla:TP ratio measured on day 1 was similar 

to that on day 8 (both dates before fish stocking), because we did not measure chla and 

TP on day 8.  

We calculated linear mixed models (LMMs) to assess changes in predation 

pressure on zooplankton and cascading effects on phytoplankton communities between 

fish and no fish enclosures during the experiment, by testing the following variables of 

zooplankton community and size structure: 1) zooplankton total biomass, 2) 

zooplankton mean length, 3) zooplankton:phytoplankton biomass ratio as an indicator 

of top-down control on zooplankton (Brucet et al., 2017; Ersoy et al., 2017; Jeppesen et 
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al., 2003; Ye et al., 2013) and 4) chla:TP ratio as an indicator of phytoplankton yield 

(Beklioğlu et al., 2017; Jeppesen et al., 2003). Firstly, we checked for temporal 

correlation by adding first-order autocorrelation structure 

(correlation=corCAR1(form=~Sampling Day|Enclosure ID)) (Pinheiro & Bates, 2000) on 

the random-effects variance-covariance matrix of latent variables of the LMMs in 

“nlme” package (Pinheiro et al., 2017). Then, we compared the models (fitted with 

maximum likelihood estimation) with and without autocorrelation structure using 

likelihood ratio tests. There were no significant differences between these models 

(p>0.05), and hence we removed the temporal autocorrelation structure from the 

models. Accordingly, we used fish treatment and sampling day as fixed factors, and 

enclosure ID was modeled as a random factor. We checked the diagnostic plots of 

residuals of the models for the homogeneity of variance and tested the normality of 

residuals by Shapiro–Wilk’s test (p > 0.05). Variables were log transformed to achieve 

normal distributions and match the requirements of the statistical test. A significant 

interaction between treatment (fish, no fish) and sampling day would indicate that 

stocking and removal of fish in the fish enclosures modified zooplankton community and 

strength of trophic interactions over time differently in the fish than in the no fish 

enclosures. 

Additionally, we tested for the resilience of the plankton communities by 

comparing zooplankton biomass, zooplankton mean size, zooplankton:phytoplankton 

biomass and chla:TP ratios between the sampling day immediately before fish stocking 

(day 8) and at the end of the experiment (day 43), separately for fish and no fish 

enclosures. The plankton communities would be considered resilient if there were no 

differences in these variables between the two sampling days, indicating that the 

plankton communities have returned to their pre-disturbance state within five weeks. 

These planned contrasts were estimated by paired Student’s and Welch’s t-tests 

according to checks for normality with Shapiro–Wilk’s test (p > 0.05) and the 

homogeneity of variances with F-tests. We corrected for multiple comparisons for each 

response variable for fish and no fish enclosures using Bonferroni method to avoid Type 

1 error (adjusted p-value = a / number of tests). Then, the results of planned contrasts 

were considered significant for p<0.025 (a=0.05).  
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All analyses were performed using “nlme” package (Pinheiro et al., 2017) and all 

graphs were plotted using “ggplot2” package (Wickham, 2009) in R version 3.4.3 (R Core 

Team, 2018). 

 

Results 
The interaction between fish treatment and sampling day in the LMMs was 

significant for zooplankton biomass, zooplankton mean length, 

zooplankton:phytoplankton ratio and chla:TP ratio (Table 5). These results suggest 

differing successions of the zooplankton and phytoplankton communities between fish 

and no fish enclosures. Because of the significant interactions between the main effects, 

we do not focus further on the main effects in isolation. 

 

Table 5. Results of linear mixed models to test for differences in zooplankton total biomass, 

zooplankton mean length, zooplankton:phytoplankton biomass ratio and chla:TP ratio. 

Response variable Predictors df F value p-value 

log10(zooplankton total biomass) Fish 1 12.5 0.0077 

 
Sampling day 4 7 0.0004 

 
Fish × Sampling day 4 5.11 0.0027 

log10(zooplankton mean length) Fish 1 3.46 0.1 

 
Sampling day 4 2.68 0.0494 

 
Fish × Sampling day 4 4.49 0.0054 

log10 (zoo:phyto biomass) Fish 1 3.55 0.0961 

 
Sampling day 4 6.89 0.0004 

 
Fish × Sampling day 4 2.71 0.0473 

log10 (chla:TP) Fish 1 13.64 0.0061 

 
Sampling day 4 2.65 0.0509 

 
Fish × Sampling day 4 2.69 0.0486 

Significant p-values are highlighted in bold. 
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To evaluate the resilience of the plankton communities, planned contrasts 

between day 8 (before fish stocking) and day 43 (end of experiment) revealed that 

zooplankton biomass was significantly higher in fish enclosures at day 43 than at day 8. 

The median of total zooplankton biomass across the six enclosures increased from 73 to 

232 µg L-1. The median of zooplankton mean length across the six fish enclosures 

declined from 0.23 µm (day 8) to 0.18 µm (day 43) (Figure 13). However, zooplankton 

mean length was not significantly different between these days (Table 6), certainly 

caused by one strongly deviating enclosure in which the zooplankton length was high at 

day 43 (Figure 13). In the no fish enclosures, there were no differences in zooplankton 

biomass and mean length between days 8 and 43. In contrast, the 

zooplankton:phytoplankton biomass ratio was significantly higher at the end of the 

experiment compared to the sampling at day 8, whereas the chla:TP ratio was lower in 

the no fish enclosures (Figure 14). Both ratios did not differ between days 8 and 43 in 

the fish enclosures (Table 6).  

 

Table 6. Results for contrasts between day 8 and day 43 for each response variable. 

Response variable Treatment t value p-value 

log10 (zooplankton total biomass) Fish -3.50 0.017 

 
No fish 0.50 0.65 

log10 (zooplankton mean length) Fish 0.34 0.75 

 
No fish 2.16 0.12 

log10 (zoo:phyto biomass) Fish -1.62 0.17 

 
No fish -5.71 0.01 

log10 (chla:TP) Fish 0.55 0.60 

 
No fish 4.91 0.016 

Significant p-values are highlighted in bold. 
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Figure 14. log10(zooplankton:phytoplankton biomass) and log10(chla:TP) and ratio for different 

treatments (no fish, n=4; fish, n=6) on each sampling day. Fish image with arrows indicates 

addition and removal of fish. 

 

The zooplankton community composition was modified in response to fish 

predation. Relative biomasses of nauplii and Calanoida adults declined immediately 

after fish predation in fish enclosures. Calanoida adults did not re-appear afterwards. 

Before the fish addition, Daphnia had higher biomass relative to other Cladocera taxa. 

However, after fish removal, Cladocera consisted mostly of small-sized taxa (Bosmina 

and Chydorus) and their relative contributions increased strongly during the last four 

weeks of the experiment in the fish enclosures compared to the period before fish 

addition (Figure 21). In contrast, the community composition in the no fish enclosures 

remained relatively stable (Figure 21). 
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Discussion 
Our results suggest that the predation on zooplankton by planktivorous fish in the 

few days between stocking and removal (i.e. short-term disturbance) caused significant 

changes of the zooplankton community in the fish relative to the no fish enclosures. 

Zooplankton biomass was higher at the end of the experiment than before fish 

predation in fish enclosures, whereas it did not change substantially in the no fish 

enclosures without disturbance. The indicators of trophic interactions 

(zooplankton:phytoplankton biomass and chla:TP ratios) reflected control of 

phytoplankton by grazing zooplankton only in the no fish enclosures, where high grazing 

pressure (i.e. high zoo:phyto biomass) decreased phytoplankton yield (i.e. low chla:TP). 

In contrast, phytoplankton was not under effective grazer control in the fish enclosures 

even after the stop of fish predation. Presumably, the shift in zooplankton community 

and size structure in response to fish predation prevented a trophic cascade down to 

phytoplankton, and hence phytoplankton proliferated despite high zooplankton 

biomasses in the fish enclosures. These effects were not transient, but persisted until 

the end of the experiment, indicating that the zooplankton communities were not 

resilient to strong, albeit short, fish predation effects. 

Zooplankton biomass increased after stop of fish predation in fish enclosures, even 

reaching higher biomasses at the end than before fish addition. Furthermore, there was 

a slight trend that zooplankton mean length declined during this period in the fish 

enclosures. These results partly contrast with the results of other studies where fish 

predation caused a decline in biomass and mean length of the zooplankton community, 

because large-sized individuals decreased and small-sized ones dominated (Brucet et al., 

2010; Christoffersen, Riemann, Klysner, & Sondergaard, 1993; Iglesias et al., 2011; 

Tavşanoğlu et al., 2015). However, the earlier studies reflect the effect of permanent 

fish predation. In contrast, we evaluated the changes in the zooplankton community 

immediately after the stop of fish predation. In this sense, we focus on the effect of a 

short-term disturbance on zooplankton-phytoplankton interactions, in comparison with 

otherwise similar, but non-disturbed systems. 
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Obviously, fish predation, which lasted four days only, has changed the 

zooplankton community composition more than the zooplankton biomass in the fish 

enclosures, as shown by the development of different zooplankton taxa after fish 

removal. The biomass of large-sized taxa such as calanoids declined after fish stocking 

and did not increase again during the experiment, even when fish were removed. This 

result is consistent with previous similar studies (Mcnaught et al., 1999; Sarnelle & 

Knapp, 2004), where the large calanoid copepod Hesperodiaptomus did not re-appear 

for several years even after fish disappearance. Together with their relatively low 

abundance, this delay of recovery may be attributed to the low metabolic rates and 

complex reproduction strategies of calanoid copepods (Sommer & Stibor, 2002). 

Because copepods are obligate dioecious, mate limitation could decrease biomass and 

delay improvement in sexually reproducing populations (Courchamp, Clutton-Brock, & 

Grenfell, 1999; Kramer, Sarnelle, & Knapp, 2008). Surprisingly, the biomass of similarly 

sized big Cladocera like Daphnia was less affected by predation, but the contribution of 

Daphnia to total zooplankton biomass was minor at the end of the experiment because 

the number of relatively small Cladocera taxa (e.g Chydorus, Bosmina) increased rapidly. 

These small taxa may have profited from the warm temperatures (between 20°C and 

22°C from end of May until mid-July) and a quick maturation from their juvenile stages 

(Mcfeeters & Frost, 2011; Velthuis, van Deelen, van Donk, Zhang, & Bakker, 2017). 

Accordingly, the disturbance by fish predation provided a ‘window of opportunity’ for 

the small cladocerans, and hence the zooplankton community composition did not 

recover to the original state from before the disturbance. The changes in community 

composition in the fish enclosures observed between days 8 and 43 of our experiment 

cannot be attributed to seasonal effects, since zooplankton biomass and mean length 

were relatively constant in the no fish enclosures without disturbance.  

Interestingly, the shifts in zooplankton community composition as induced by fish 

predation prevented an effective phytoplankton control even after the fish predation 

has stopped. It has been shown several times that small zooplankton taxa are less 

efficient than large species to suppress phytoplankton biomass, even if they occur in 

high biomasses (Bartrons et al., 2015; Carpenter et al., 2001; DeLong et al., 2015). 

Accordingly, we observed both a high zooplankton:phytoplankton biomass ratio and a 
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high chla:TP ratio in the fish enclosures, indicating high phytoplankton biomasses and 

yield at high zooplankton biomasses. In contrast, the zooplankton community in the no 

fish enclosures remained relatively stable, but the control of phytoplankton by 

zooplankton grazers became stronger towards the end of the experiment, indicated by 

a high zooplankton:phytoplankton biomass ratio, but a low phytoplankton yield. 

Therefore, it is surprising to see that the enclosures strongly differed at the end of the 

experiment with respect to the strength of the zooplankton-phytoplankton interaction, 

although all enclosures had no fish at this time, and zooplankton was exposed to fish 

predation only for four out of 43 days in the fish enclosures. Therefore, the legacy of 

short-term predation and disturbance had long-lasting effects on trophic interactions, 

reflecting weak short-term resilience of zooplankton to fish predation. Monitoring 

studies in lakes suggest, however, that larger zooplankton species may recover after 

stop of fish predation in the long-term, suggesting that only short-term resilience of 

zooplankton may be impaired by massive disturbance (Balayla, Lauridsen, Søndergaard, 

& Jeppesen, 2010; Jeppesen, Jensen, Søndergaard, & Lauridsen, 2005). Seasonality and 

other environmental factors can also influence these resilience mechanisms by 

modifying population dynamics (Adrian, Wilhelm, & Gerten, 2006). 

We recognize that our experimental design had certain limitations. Although 

mesocosms are helpful for mechanistic studies, their use has limitations when complex 

interactions and long-term responses have to be explored (Altermatt et al., 2015; 

Stewart et al., 2013). Moreover, in our experimental set-up we considered a simple 

three trophic level cascade and ignored the effects of omnivory, intraguild predation, 

ontogenetic changes, the contribution of the microbial loop to food web interactions 

(Blanchard et al., 2017; Chang et al., 2014; Polis & Strong, 1996) and the role of resting 

stage banks in natural communities (Donald et al., 2001). Subsequent studies may verify, 

for example, whether the resilience of zooplankton communities and the response of 

top-down control and phytoplankton yield depend on species or sizes of planktivorous 

fish feeding upon the zooplankton.  

A recent study investigating multiple dimensions of stability of freshwater 

ecosystems to single perturbations has found that the recovery in the ecosystem 

functioning was highly related to the recovery in the community composition of 
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plankton in mesocosms (Hillebrand et al., 2018). Within this context, our findings could 

be relevant for better restoration and management strategies in a rapidly changing 

world. Increased climate warming and invasive species could exacerbate resilience in 

large-sized zooplankton, which could have severe consequences for restoration 

measures (Florian, Lopez-Luque, Ospina-Alvarez, Hufnagel, & Green, 2016; Gutierrez et 

al., 2016). Understanding and identifying the mechanisms of short-term and long-term 

resilience of natural communities will be essential for conserving the ecosystem 

functions and predict community dynamics in response to future disturbances 

(Woodward et al., 2016).  
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Abstract 
Intraspecific trait variation is very common in communities and mostly arise from 

differences in size and ontogenetic stage of individuals. While several studies in aquatic 

ecosystems investigated the role of intraspecific variation in different types of organisms 

on cascading trophic interactions, the effect of predation from different developmental 

stages on their prey size structure is not examined thoroughly. Our aim was to assess 

the effects of intraspecific variation in predation on the prey size structure. We 

conducted a microcosm experiment using zooplankton as a model organism. The 

experiment consisted of three different developmental stage (i.e. nauplii, copepodite 

and adult) of a calanoid copepod Calanipeda aquaedulcis grazing on their prey for 24 

hours (i.e. bacterioplankton and phytoplankton) and controls, replicated 5 times (n=20). 

Our findings from prey size structure demonstrated that adult stages (i.e. largest sized 

stage) had the strongest effects on phytoplankton size spectrum, shifting prey 

assemblage towards smaller individuals. They also altered energy transfer and 

productivity potential of the food web. In contrast, we did not observe differences 

between prey spectrum of nauplii vs. copepodite and copepotide vs. adult stages 

possibly because of diverse prey choice of copepodites. Our results indicated the 

importance of intraspecific variation of predators and their possible implications while 

studying ecosystem functioning. Changes in the developmental patterns of organisms 

with human-induced disturbances and climate warming could influence underlying 

predator-prey mechanisms profoundly and modify trophic interactions.  

Keywords: developmental stage, ontogeny, predation, zooplankton, phytoplankton, 

size spectrum 
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Introduction 
It was first Darwin and Wallace who were fascinated by the differences among 

individuals within populations (Darwin & Wallace, 1858). Later, many studies have 

provided evidence that trait variation among individuals (i.e intraspecific variation) 

could affect strength of prey-predator interactions, and thus ecosystem functioning and 

processes (Litchman & Klausmeier, 2008; McGill, Enquist, Weiher, & Westoby, 2006; 

Post, Palkovacs, Schielke, & Dodson, 2008). However, still these variations have been 

overlooked in community ecology studies (Bolnick et al., 2011; Violle et al., 2012). 

Most of the intraspecific variation among individuals arise from variance in size 

and ontogenetic stage of individuals in populations (Persson, 1999; Polis, 1984). Recent 

field and experimental research in aquatic ecosystems showed that seasonal changes in 

the body size structure and ontogeny of predators ranging from dragonflies to 

salamanders have high potential to alter predation and competition patterns in food 

webs, and ecosystem processes such as respiration and productivity (Krenek & Rudolf, 

2014; Rudolf, 2012; Rudolf & Rasmussen, 2013; Rudolf & Van Allen, 2017). There are 

several studies investigating effects of intraspecific variation in life history 

characteristics of fish on trophic cascades (Fryxell & Palkovacs, 2017; Howeth, Weis, 

Brodersen, Hatton, & Post, 2013; Palkovacs & Post, 2009; Post et al., 2008). They 

explored changes in consumer-resource relationships depending on different foraging 

traits in same species of fish. Studies on intraspecific variation in zooplankton included 

differences in resource use between seasons (Berggren et al., 2015), stoichometric and 

isotopic variability (Carrillo, Reche, & Cruz-Pizarro, 1996; Main, Dobberfuhl, & Elser, 

1997; Matthews & Mazumder, 2007), amino acid composition (Brucet, Boix, López-

Flores, Badosa, & Quintana, 2005) and feeding (Brucet et al., 2008; Poulet, 1977). 

Nonetheless, the effects of intraspecific variation in zooplankton predation on their prey 

community and size structure are less clear (Calbet, Garrido, Saiz, Alcaraz, & Duarte, 

2001). 

Zooplankton are diverse group of organisms with different feeding strategies and 

have the potential to modify the relative abundances of phytoplankton and microbial 

species and their size structure. Thereby, they affect the trophic interactions between 
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them, as well food web structure (e.g. Franks, 2001; He, Zhu, Song, Jeppesen, & Liu, 

2015; López-Flores, Boix, Badosa, Brucet, & Quintana, 2006; Muylaert et al., 2003; 

Zöllner, Santer, Boersma, Hoppe, & Jürgens, 2003). Certain groups of zooplankton 

change their diet along ontogeny. For example, calanoid copepods may be predators or 

selective feeders (Allan, 1976; Kleppel, 1993) and they often display ontogenetic diet 

shifts to meet their energetic requirements of respiration, reproduction and growth 

(Schellekens, De Roos, & Persson, 2010). This includes changes in the type and size of 

the preys they consume as they grow (Bonnet & Carlotti, 2001; Brucet et al., 2008; 

Fernández, 1979). As a result, resource partitioning could decrease intraspecific 

competition between different stages (Brucet, Boix, López-Flores, Badosa, & Quintana, 

2005; Meyer, Irigoien, Graeve, Head, & Harris, 2002).  

There is evidence that grazing of the different developmental stages within a 

single zooplankton species could alter trophic interactions in distinct ways. High 

abundance of small copepods (e.g. copepodites or nauplii) may have a greater impact 

on phytoplankton community structure than the larger copepods (e.g. adults) (Calbet et 

al., 2001). Moreover, previous research demonstrated that different stages had varying 

grazing effect on their preys (Merrell & Stoecker, 1998; Meyer et al., 2002; Miller & 

Rudolf, 2011; Poulet, 1977). However, none of them focused on the effect on the prey 

size structure, which could give key information about ecosystem stability and trophic 

interactions (Brose, Jonsson, et al., 2006; Emmerson & Raffaelli, 2004; Woodward et al., 

2005). Because body size is a very important trait of organisms that is related to life 

history features and biological rates (Brown et al., 2004), focusing on body size 

distributions of preys could inform about the possible alterations in the community. 

These changes in the community and size structure of phytoplankton communities can 

lead to shifts in the ecosystem processes and functioning (Trebilco et al., 2013). For 

example, a high size diversity in preys could decrease grazing efficiency due to predation 

avoidance strategies and weaken energy transfer in the food web (Ersoy et al., 2017; 

García-Comas et al., 2016). Furthermore, the small-sized phytoplankton are considered 

to compete more efficiently under nutrient-limiting conditions and have higher 

metabolism and reproduction rate (Litchman et al., 2010; Litchman & Klausmeier, 2008). 
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On the other hand, large-sized phytoplankton are better at storing nutrients, predation 

avoidance but have low metabolic activity (Finkel et al., 2010).  

Understanding the interactions between different trophic levels and prey-

predator relationships is crucial in a changing world where there may be strong shifts in 

trophic cascades. Smaller sized plankton are anticipated to increase with warmer 

climate (Daufresne et al., 2009; Morán et al., 2010; Yvon-Durocher et al., 2011). At the 

same time, small zooplankton individuals may increase due to higher fish predation at 

warmer temperatures (González-Bergonzoni et al., 2014; Jeppesen et al., 2010). 

Therefore, it is highly essential to understand how intraspecific variation in a predator 

affects the size structure of its prey in order to get more insight into the strength of 

biotic interactions in trophic cascades.  

In this study, we use zooplankton as a model predator organism to assess the 

effect of intraspecific variation in grazing on its prey size structure. Thus, we conducted 

a field experiment in Mediterranean coastal lagoons by adding different developmental 

stages of the calanoid copepod Calanipeda aquaedulcis (Kritschagin, 1873) into small 

bottles and observed the grazing effect on bacterioplankton and phytoplankton size 

structure after 24h. In a previous study, Brucet et al. (2008) showed that the diet of the 

calanoid copepod Calanipeda aquaedulcis changed along ontogeny, with nauplii, 

copepodites and adults grazing on different prey types. Here, we hypothesized that the 

intraspecific variation among different developmental stages of predators would cause 

variations in the phytoplankton community size structure. Since the size of the selected 

prey increased with increasing size of the copepod stage (Brucet et al., 2008; Hansen, 

Bjornsen, & Hansen, 1994; Merrell & Stoecker, 1998), we expected that this would be 

reflected in a decrease in the slope of the prey size spectrum (i.e. size structure), as a 

result of the decrease of the relative abundance of large preys from smallest (i.e. nauplii) 

to largest developmental stage (i.e. adults). Thereafter, we discussed the potential 

consequences of the changes in phytoplankton size structure produced by the 

intraspecific differences in zooplankton predation on the phytoplankton community and 

the food web.  
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Methods 
Experimental set-up  

The experiment was conducted in May in the Empordà Wetlands Natural Park (NE 

Spain). These wetlands are made up of several Mediterranean shallow lagoons that are 

not subject to tidal effects, but prone to several disturbances such as floods, sea storms 

during autumn and winter, and desiccation in summer (Brucet et al., 2006; Brucet, Boix, 

López-Flores, Badosa, & Quintana, 2005). The zooplankton communities of these 

wetlands are often dominated by few species. Therefore, intraspecific variation in 

predation could play an important role in determining trophic interactions (Brucet, 

2003). For the experimental microcosms, we took samples from lagoons in the La Pletera 

salt marshes, which are scarce in inorganic nutrients and dominated by heterotrophic 

nano- and microplankton due to their long confinement periods (López-Flores et al., 

2006). 

 

 Zooplankton sampling and selection of developmental stages 

Before the experiment, we collected copepods from the lagoons using a plankton 

net with a mesh size of 50 µm. 20 Winker-bottles of 250 ml were filled with filtered 

(through 50 µm) surface water from these lagoons. We added different stages of 

Calanipeda aquaedulcis selected under a stereomicroscope. The experimental set-up 

was composed of four treatments (3 for each developmental stage + control), each 

replicated five times (n=20). The treatments were nauplii (from NI to NVI – hereafter 

called Stage 1), copepodites (from CI to CV - Stage 2) and adults (Stage 3). After identified 

and selected under stereomicroscope, nauplii (30), copepodites (6) and adults (2) were 

pipetted into each bottle, in proportions similar to their natural densities at the time of 

the sampling. We did not add any zooplankton in controls, which only contained filtered 

pond water. All bottles were incubated in situ for 24 hours in depth of 10-15 cm (Brucet 

et al., 2008). At the end of the experiment, the samples were collected, fixed with Lugol’s 

iodine solution for microscopic identification and enumeration. Although each 

developmental stage had different clearance rates for the different prey types, we 
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observed a significant grazing of all stages (i.e. an average of 167, 166 and 176 ml d-1 in 

nauplii, copepodites and adult treatments, respectively; Brucet et al 2008).  

 

Prey composition 

We focused on different preys of zoooplankton including micro, nano, pico and 

bacterioplankton. While microplankton consisted of auto- (AD) and heterotrophic 

dinoflagellates (HD) and ciliates, autotrophic picoflagellates (APF) and haptophytes were 

included in nanoplankton. Picoplankton was composed of auto- (APF) and heterotrophic 

picoflagellates (HPF). Bacterioplankton and APF were the most abundant prey. APF and 

HPF were the highest in terms of biomass (Brucet et al., 2008). 

 

Sample processing 

Prey samples were counted and identified to genus level under inverted 

microscope for microplankton. We counted at least 100 individuals of the most 

abundant taxa and measured 5–10 individuals from each genus. 

For bacterioplankton and autotrophic pico- and nanoplankton, samples were 

analyzed with FACSCalibur Flow Cytometer (BD Biosciences) using laser emitting at 488 

nm. We filtered samples through 50 µm mesh and fixed with 1% paraformaldehyde and 

0.05% glutaraldehyde (final concentration) and froze in liquid nitrogen and stored frozen 

at –20°C. More details of the procedure can be found in López-Flores et al. (2006).  

For heterotrophic pico- and nanoplankton taxonomic identification and counting, 

we mixed 1 ml of the sample by inversion, stained for 10 minutes with fluorochrome 4’-

6-diamidino-2- phenylindole (DAPI; final concentration of 0.5 µg ml–1) and filtered 

through a 0.2 µm polycarbonate filter (Millipore, Isopore membrane filters). Then, we 

mounted the filters on a glass slide and check by epifluorescence microscopy with a UV 

excitation filter block and 1000X oil immersion. We counted at least 300 individuals. This 

method enabled us to distinguish the heterotrophic from the autotrophic pico- and 

nanoplankton by visualizing the DAPI-stained nuclei (blue) and the chlorophyll a 

autofluorescence (red) (Porter & Feig, 1980). 
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We calculated individual biovolumes of microplankton, nano- and picoplankton 

(µm3) from body measurements from the microscope and cytometry following the 

geometric formulae by Hillebrand et al. (1999). 

 

Prey size spectrum  

Linear size spectrum of bacterioplankton and phytoplankton was constructed for 

each sample (controls and developmental stage treatments with replicates) to assess 

the effect of different developmental stages (i.e. different sized-grazing) on their prey 

size structure. 

We followed the approach from Sheldon, Prakash, & Sutcliffe (1972) which is 

based on the linear log-log relationship between abundance (total number of individuals 

per ml per size class) and individual biovolumes (i.e. negative relationship between 

abundance and size). For size spectrum, we calculated nine size classes in log2 scale 

ranging from (1st class: < 8 µm3, 2nd class: 8-16 µm3 etc.). We combined few large size 

classes together because of their low abundance (Arranz et al., 2016; Benejam et al., 

2018) and filled empty size classes with zeros. Although there is some discussion about 

this approach of zero filling (Gómez-Canchong, Blanco, & Quiñones, 2013; Loder, 

Blackburn, & Gaston, 1997), several studies followed the same methodology (Arranz et 

al., 2016; Benejam, Teixeira-de Mello, et al., 2016). The abundance per each size class 

was then divided by the linear distance between each size class to account for the 

differences in the width of the size classes (i.e. normalized abundance spectrum) 

(Sprules & Barth, 2016; White et al., 2007). We applied ordinary least -squares linear 

regression for log2 biovolume classes and log2 normalized abundance (normalized total 

number of individuals per ml per size class) to calculate the slope, intercept and 

coefficienct of determination (R2) for each stage and replicate (n=20). For normalized 

abundance size spectrum consisting several trophic levels, slope is predicted to be nearly 

-2 (Sprules & Barth, 2016). The slope indicates the relative contribution of small- and 

large-sized individuals. For instance, steeper slopes reflect a high accumulation of small-

sized individuals in the body size distribution, whereas flatter slopes indicate greater 

relative contribution of large-sized individuals (Emmrich et al., 2011). It has been also 
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confirmed empirically that the slope is highly related to trophic transfer efficiency 

(Mehner et al., 2018). Another parameter that can be obtained from the size spectrum 

is the intercept which indicates food-web capacity or productivity potential (Gaedke, 

1993). Thus, higher intercepts are expected with higher nutrients levels in the systems. 

The degree of linearity of size spectrum (e.g. coefficient of determination of the 

regression) may refer to what extent the observed values are far from the fitted model 

during steady state conditions (Chang et al., 2014) and also inform about prey-predator 

interactions (Arranz et al., 2018). These deviations from the linearity may be reflected 

by the appearance of secondary structures in the size spectrum (i.e. nonlinear dome 

shapes structures corresponding to certain size classes systematically deviating from 

slope of the linear spectrum) (Arranz et al., 2018; Chang et al., 2014; Mehner et al., 

2018). 

 

Data analysis 

We used one-way analysis of variance (ANOVA) to compare the grazing effect of 

different developmental stages on their prey size spectrum metrics: slope, intercept and 

R2. Before the analysis, we checked normality of the response variables by Shapiro Wilk’s 

test (p> 0.05) and homogeneity of variance by Levene’s test (p> 0.05). At first, we 

observed the boxplots, fitted vs residual values for each variable using Q-Q plots. In 

order to improve the normality of the residuals for slope and intercept, we removed 

three outliers for each of the 3 response variables (which corresponded to the same 

replicates). Subsequently, we ran TukeyHSD posthoc tests with p value adjustment for 

multiple comparisons. For R2, we conducted non-parametric Kruskal-Wallis test.  

We performed all statistical analyses in R version 3.4.3 (R Core Team, 2018) and 

all graphs were plotted using “ggplot2” package (Wickham, 2009). 
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Results 
In total, 20 linear models were fitted for normalized abundance size spectra of 

control and each developmental stage with 5 replicates. Slopes ranged between -1.95 

and -2.61, while intercepts ranged between 14.89 and 17.1. R2 for ordinary least -squares 

linear regression between log2 size classes and log2 normalized abundance ranged 

between 0.51 and 0.67 and p-value was always significant (i.e. lower than 0.05). Average 

size spectra for control and each stage are shown in Figure 15. 

Slope and intercept of the normalized abundance size spectra of preys significantly 

differed according to the predator ontogenetic stage (ANOVA: F=6.06, p<0.01 and 

F=3.44, p=0.05, respectively, Figure 16). According to posthoc tests, there was a 

significant difference between control and adults (Stage 3) (TukeyHSD, p=0.01), and 

nauplii (Stage 1) and adults (Stage 3) (TukeyHSD, p=0.02) for the slope of the size spectra 

(Figure 16). For intercept, significant differences appeared between nauplii (Stage 1) and 

adults (Stage 3) (TukeyHSD, p=0.05). However, we did not find any differences between 

stages for the coefficient of determination (R2) (Figure 16). 

Abundance of different prey groups revealed differences between treatments 

(Figure 17). While microplankton abundance was lowest in adult stage treatment, 

nanoplankton and picoplankton abundance were the highest in that treatment. 

Bacterioplankton abundance was highest in the controls. Copepotides (Stage 2) and 

adults (Stage 3) did not show substantial differences in terms of different prey 

abundances. 
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Figure 15. Normalized abundance size spectra of phytoplankton for each developmental stage 

and control treatments. The size classes range from bacterioplankton (<8 mm3) to 

microplankton (> 1024 mm3). Treatment 0: control, Treatment 1: Nauplii (Stage 1), Treatment 

2: Copepodites (Stage 2), Treatment 3 (Stage 3),: Adults. Equations for Control: ! = 15.4 +
	−2.04,, .; = 0.54; Treatment 1: ! = 15.3 +	−2.03,, .; = 0.53; Treatment 2: ! = 15.6 +
	−2.1,, .; = 0.55; Treatment 3: ! = 15.8 +	−2.15,, .; = 0.54. Regression lines represent 

the average size spectrum for each treatment. geom_jitter function from ggplot2 package was 

applied to remove the overplotting of the points. Different sized and colored points represent 

these overplotted values of different developmental stages. The regression lines were separated 

slightly using image editing tools (Adobe Illustrator CC) for better visibility. 
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Figure 16. Slope, intercept and R2 obtained from normalized abundance size spectra of 

phytoplankton for each developmental stage and control treatments. Treatment 0: control, 

Treatment 1: Nauplii (Stage 1), Treatment 2: Copepodites (Stage 2), Treatment 3: Adults (Stage 

3). 
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Figure 17. Total abundance of different groups of prey in each developmental stage and control 

treatments. Treatment 0: Control, Treatment 1: Nauplii (Stage 1), Treatment 2: Copepodites 

(Stage 2), Treatment 3: Adults (Stage 3). Error bars represent standard deviation. 

 

Discussion 
Ontogenetic shifts are very common in natural communities (Rudolf & Lafferty, 

2011) with possible effects on ecosystem functioning (Rudolf & Van Allen, 2017). Our 

findings suggest that intraspecific variation in different developmental stages of a 

zooplankton predator leads to variations in the prey (i.e. phytoplankton and 

bacterioplankton) size structure. In line with the changes in diet along ontogeny found 

by Brucet et al. (2008), we observed differences in the resulting prey size spectrum 
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slopes and intercepts, with steeper slopes and higher intercepts in phytoplankton size 

spectra of adults’ experimental bottles. However, our results suggest that nauplii and 

copepodites stages had similar effects on phytoplankton size structure.  

Although previous research has shown that adult stages of calanoids prefer larger 

sized preys than nauplii do (e.g microplankton, nanoplankton) (Berggreen, Hansen, & 

Kiørboe, 1988; Poulet, 1977), they did not analyze the possible effects on the resulting 

prey size structure. Our experimental study demonstrated the strongest changes in prey 

size spectra as a result of grazing by adult stage of the copepods when compared to 

nauplii stage. In the adult stage treatment, the resulting prey size spectra had steeper 

slopes and higher intercepts compared to nauplii stages, indicating higher relative 

abundance of smaller preys and higher productivity, respectively. As Woodward & 

Hildrew (2002a) suggested, niche overlap between nauplii and adult stages decreased 

as size differences between stages increased. This explanation is in accordance with our 

findings where abundance of microplankton was lowest in adult stage treatment, while 

pico- and nanoplankton had the highest abundance observed in that treatment. This is 

probably as a result of adults’ higher ingestion rates (and selection) for larger preys 

(mostly ciliates) and also lower ingestion rates on smaller preys (e.g. picoplankton) 

(Brucet et al. 2008). Moreover, higher productivity as a result of dominance of smaller 

individuals could be explained by faster growing rate of small pytoplankton (Litchman et 

al., 2010). 

Higher ingestion of ciliates is beneficial for copepods (Bonnet & Carlotti, 2001) and 

may have resulted in a trophic cascade in adult stage treatment in our experiment. 

Similar results were observed in a recent microcosm study, where top-down control of 

copepods on ciliates caused increase in picoplankton and modified phytoplankton 

community composition and thus size structure (Armengol, Franchy, Ojeda, Santana-del 

Pino, & Hernández-León, 2017). Nevertheless, we did not observe significant differences 

in the coefficient of determination of the size spectrum among stages (i.e. certain size 

classes systematically deviating from the linear spectrum). This could be related to 

variations in trophic cascades among different stages. 

Theoretical models and empirical research indicate that the slope of the 

abundance size spectrum reflects energy transfer efficiency across the different trophic 
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levels (Kerr & Dickie, 2001; Mehner et al., 2018). Ciliates, as mixotrophs (i.e acting both 

autotrophic and heterotrophic) could facilitate energy transfer in planktonic food webs 

(Ward & Follows, 2016). The steeper slopes and thus lower efficiency in trophic energy 

transfer (Dossena et al., 2012) in adult stage treatment may be due to high ingestion 

rates of ciliates and thus their low abundance. Accordingly, by altering slope and 

intercept of their prey size spectra, different developmental stages could change not 

only community size composition, but also trophic energy transfer and productivity 

potential of their prey communities.  

Despite the divergence between nauplii and adult stages, there were similarities 

in phytoplankton size structure between control and nauplii treatment. In our 

experiment, nauplii consumed predominantly heterotrophic picoflagellates (HPF) (i.e. 

small picoplankton). Its niche also overlapped with the other stages, because all stages 

grazed on AD and HD (Brucet et al., 2008) and there was no substantial difference in 

abundance of different groups between nauplii and copepodite stages (Figure 17). 

However, nauplii did not graze on ciliates. There is evidence that nauplii stages are less 

selective than other stages (Allan, 1976; Swadling & Marcus, 1994). One possible reason 

for observing similar prey spectra in control and nauplii treatments could be that nauplii 

stages had narrow prey size range (Brucet et al., 2018; Woodward & Hildrew, 2002a), 

therefore this did not affect phytoplankton size structure notably. Earlier studies found 

that nauplii could not graze efficiently because they do not have required appendages 

during the early period of their growth (Mullin & Brooks, 1967; Paffenhöfer & Lewis, 

1989). Hence, their grazing was constrained by physical limitations. This could explain 

the similarities on prey spectra in controls and nauplii stage treatment. Furthermore, we 

did not detect any difference between copepodite and adult stages on phytoplankton 

size spectra. Similar effects of adults and copepodites are possibly due to the highly 

diverse prey choice of the copepodites. They consume wide range of preys varying from 

HPF to ciliates (Brucet et al., 2008).  

Our results should be interpreted cautiously because the populations in nature 

normally do not consist of only one of these developmental stages, but multiple stages 

coexist with each other. Additionally, since we collected zooplankton from natural 

communities, we could not account for other possible intraspecific variation (e.g. 
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foraging strategy, behaviour etc.) already present in these communities. Considering 

only one trait could not cover the other functional variation existing in the communities 

(Albert et al., 2010). However, still we can not disregard that body size incorporates 

many aspects of different trait variations in phytoplankton (Litchman, Ohman, & 

Kiørboe, 2013). 

In conclusion, our results showed a significant role of the intraspecific variation in 

developmental stages of zooplankton on prey size spectra. Climate change scenarios 

predict temperature increase and alterations in phenology of aquatic microorganisms 

(Edwards & Richardson, 2004; Gerten & Adrian, 2000). These disturbances could affect 

the relative abundance or emergence of different developmental stages and cause 

mismatches within grazing interactions (Yang & Rudolf, 2010). For example, Sommer et 

al. (2006) have shown that the nauplii stages appeared earlier with water temperature 

increase, which affected feeding of fish larvae that are highly dependent on them as 

resource. Recent meta-analysis has shown that the indirect effects of intraspecific 

variation in traits ranging from foraging, life history and personality are more powerful 

to modify community composition than the species effects (Des Roches et al., 2018). 

Thus, understanding how intraspecific variation in predators could cascade down to the 

food web is critical for freshwater ecosystems.  
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GENERAL DISCUSSION 
This PhD thesis focused on the different links of the interacting trophic levels in 

the tri-trophic planktonic food webs (from fish to phytoplankton in Chapter 1, 2 and 3; 

from zooplankton to phytoplankton in Chapter 4). In general, our results clearly showed 

that body size and community structure of interacting trophic levels are important 

determinants of predator-prey interactions and energy transfer in planktonic food webs. 

Environmental factors such as temperature, resource availability and other disturbances 

such as fish stocking also influenced single trophic levels and therefore have profound 

cascading effects on the food webs and community resilience. Intraspecific variation in 

different developmental stages of predators also reinforced variations in trophic 

interactions by shaping prey size structure, due to the changes in resource use along the 

ontogeny. 

 

Predator-prey size structure across interacting trophic 

levels 
Earlier studies of trophic interactions focused mostly on effects of top-down and 

bottom-up controls on single trophic levels. However, identifying size-based interactions 

across interacting trophic levels is rare, but can give more insight into ecosystem 

functions and energy transfer (Brose, Jonsson, et al., 2006; García-Comas et al., 2016). 

This kind of approach is usually difficult to conduct, because it is challenging to find 

equally well resolved individual size data of several trophic levels. This PhD thesis is one 

of the first studies analyzing simultaneous evaluation of interacting trophic levels in 

different freshwater systems: Turkish Mediterranean shallow lakes (Chapter 1) and Lake 

Mývatn in Iceland (Chapter 2). Our results from Turkish lakes suggested positive 

correlations between size diversity of fish and zooplankton. Different sizes of fish with 

similar abundance led to highly size diverse zooplankton communities. At the same time, 

the opposite was also true: similar proportions of different sizes of zooplankton resulted 

in communities with high fish size diversity. However, we did not observe similar effects 

from zooplankton to phytoplankton, which contrasts with the previous findings in 
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marine systems of García-Comas et al. (2016), where they revealed negative relationship 

between prey (nano-microplankton) and predator (mesozooplankton) size diversity. 

These variations could be caused by different predator-prey mechanisms or behavioral 

adaptation in these systems and in various climatic regions. Phytoplankton size structure 

was strongly driven by temperature and productivity, that is their size distribution was 

more diverse and even with high nutrient availability and warmer temperatures, 

respectively. Our findings support similar patterns observed in other freshwater and 

marine systems (Quintana et al., 2015; Sommer et al., 2017), where physical factors such 

as temperature and nutrients were the major drivers of phytoplankton size structure.  

We showed positive influence of high fish size diversity on zooplankton as higher 

diversity of consumers enhanced diversification of resources by resource partitioning in 

30 Turkish shallow lakes. In addition, in the mesocosm experiment in Lake Mývatn with 

presence and absence of similar-sized fish species, we showed that fish presence had 

negative effects on zooplankton size diversity and resulted in communities dominated 

by smaller individuals. Therefore, we can argue that although high diversity in fish has 

positive effects on zooplankton size structure in Turkish lakes, presence of similar-sized 

fish influences zooplankton negatively because of size selective fish predation. In the 

same experiment, zooplankton size diversity was also negatively affected by high 

phytoplankton size diversity caused by cyanobacteria blooms. Our results agree with 

previous studies where blooms interfered with zooplankton grazing and thus adversely 

affected zooplankton size structure (Ger, Urrutia-Cordero, et al., 2016; Ghadouani et al., 

2006). These studies suggest that the major changes in zooplankton composition were 

related to feeding inhibition in zooplankton caused by filamentous and colonial large 

phytoplankton. Similarly in our experiment, this increase in phytoplankton size diversity 

hindered the efficient transfer of energy production to the upper trophic levels (from 

phytoplankton to zooplankton) in the food web, probably due to high standing biomass 

of large primary producers caused by inedibility and low nutritional value (García-Comas 

et al., 2016). In contrast, low zooplankton size diversity decreased energy transfer from 

phytoplankton to zooplankton due to reduced niche partitioning. Because less diverse 

sizes of zooplankton having less feeding niches were not able to take advantage of a 

variety of differently sized phytoplankton (Ye et al., 2013), energy is not transferred 
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efficiently to the upper trophic (e.g. zooplankton) levels. Our results from this 

experiment are in accordance with observed patterns in marine systems, where trophic 

energy transfer decreases with high prey (phytoplankton) size diversity and increases 

with high predator (zooplankton) size diversity (García-Comas et al., 2016). Thus, we can 

propose general mechanisms for relationship between trophic transfer and predator-

prey size structure both in marine and freshwater systems. 

Overall, our results highlight the importance of using size-based metrics such as 

size diversity and size evenness in predicting communities’ responses to environmental 

and biotic changes. We further suggest that inclusion of enviromental factors such as 

temperature and resource availability is essential while studying size-structured 

communities and making inferences about potential changes with global climate 

warming. In this thesis, we show that size-based approaches can help us grasp the prey-

predator interactions and the whole ecosystem functioning in a better way.  

 

Resilience in size-based interactions of planktonic food 

webs 
Understanding resilience of size-based interactions is quite crucial regarding 

ecosystem restoration and management. With current rates of climate change and 

human related disturbances, studies focusing on resilience of communities to 

perturbations are increasing (Spears et al., 2017). However, not many studies investigate 

recovery and resilience in size-based interactions of communities, while studying effects 

of top-down control. Only few studies focused on the resilience in zooplankton 

communities to gradual fish removal or disappearance in North American mountain 

lakes and the cascading changes in trophic interactions, focusing on long-term period 

(Donald et al., 2001; Knapp et al., 2001; Knapp & Sarnelle, 2008). However, it is still not 

clear how resilient communities are to complete fish removal in short-term period. 

Deeper understanding of short-term resilience of communities would bring more insight 

when taking decisions for restoration and management measures. In this thesis, we 

explored beyond only instant effects of fish predation and tested for the first-time short-

term resilience in zooplankton community and size structure after fish removal in an 
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experimental set-up and explored the resulting outcomes in phytoplankton 

communities.  

Even though they did not assess the ability of communities and related trophic 

interactions recover after fish predation, previous studies and part of this thesis have 

shown the negative effects of fish predation on zooplankton (Brucet et al., 2010; 

Cañedo-Argüelles et al., 2017). They revealed that fish predation alters zooplankton 

community composition and decreases zooplankton mean size, having cascading 

consequences in phytoplankton. Our results from the resilience experiment similarly 

showed adverse effects of fish predation. Our results indicated low resilience of 

zooplankton biomass and size to fish predation in short-term, that is the zooplankton 

community structure did not return back to its previous state (before fish addition) after 

4 weeks. We found a shift in zooplankton species composition and size structure as a 

result of fish predation disturbance, causing small sized taxa (i.e small Cladocera, 

Rotifera) to take over some large-sized taxa. This cascading effect caused release of 

phytoplankton from control by zooplankton, increasing phytoplankton yield. In contrast, 

non-disturbed systems (i.e.controls) stayed relatively stable and had greater grazing 

control on phytoplankton. Related experimental studies investigating permanent fish 

predation (Iglesias et al., 2011; Tavşanoğlu et al., 2015) found similar results, which 

indicates negative relationship between fish and zooplankton size structure. Overall, our 

findings extend the knowledge in terms of short-term resilience. These results are novel 

and relevant for restoration ecology of shallow lakes and ponds. We show that the 

communities’ resilience do not depend only on the removal of predators. Their 

recruitment after the perturbation could be affected by other factors such as 

seasonality, different reproduction strategies and reproduction rates of certain taxa. 

Resilience patterns in aquatic communities are expected to change with global climate 

change, thus predicting their responses to future disturbances are crucial. We suggest 

that these factors should be considered in restoration plans such as biomanipulation 

and for other perturbations.  
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Effect of intraspecific variation of predation in trophic 

interactions 
Classical approach in community ecology regards different individuals of the same 

species as identical. Nonetheless, organisms change their characteristics such as feeding 

niche, foraging behaviour and life-history traits as they grow. One of the most obvious 

intraspecific variation appears from differences in body size and ontogenetic stage of 

individuals (Polis, 1984). However, this variability is disregarded in most food web 

studies where species mean effect is assumed to indicate underlying trophic interactions 

(Carpenter, 1987; Pace et al., 1999). Recently Rudolf & Van Allen (2017) studied the 

succession in developmental stages of predatory salamander and revealed the 

variations in ecosystem functions such as ecosystem rates and primary production of 

different stages. Nonetheless, as many other studies they did not evaluate the changes 

in prey size structure which could inform better about ecosystem stability and energy 

transfer (Trebilco et al., 2013). In this thesis, we focused on intraspecific variation in 

predators using zooplankton as a model organism and assessed effects of distinct 

developmental stages of zooplankton on their prey size spectra in a microcosm 

experiment. Our results revealed that the adults (largest sized stage) had the strongest 

effect on the prey size spectra. As in previous studies (Rudolf & Rasmussen, 2013), we 

observed the strongest functional effect on largest sizes on the trophic interactions. This 

could be explained by the highest trophic position of larger predators and wider prey 

selections of larger stages than the smaller ones (Woodward et al., 2005). Steeper slope 

and higher intercept of the prey size spectra in large stages of the predators indicated 

dominance of small sized preys (e.g. bacterioplankton) and higher productivity, 

respectively. In contrast, we did not observe differences between nauplii and 

copepodite stages, possibly because of diverse prey preference of copepodites, which 

could have coincided highly with diet of nauplii (Brucet et al., 2008). Thus, the change in 

the prey size spectra was consitent with the changes in the diet of the different 

developmental stages (Brucet et al., 2008).  

When disturbances affect populations with human activities and climate change, 

understanding the stage specific responses will be essential. Our study underlines the 
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significance of intraspecific variability in predators while determining the prey size 

structure and the possible consequences on community structure and functioning. We 

also extend the knowledge in intraspecific variation in predation by assessing changes 

in size spectra, which is a very powerful method to reveal also community dynamics.  

 

Future work 
In this thesis, we have used different research approaches in the study of 

freshwater trophic interactions from different regions so that each could complement 

the other’s weaknesses. However, still each approach had their own caveats. In the 

majority of this thesis, we considered size-based trophic interactions in a simple way 

consisting of three trophic levels, without links of microbial loop or intraguild predation, 

because it was difficult to integrate equally resolved data for each trophic link. Inclusion 

of microbial loop is very limited in size-based studies, but would provide more clear 

understanding of the underlying complex networks if included (Blanchard et al., 2017). 

Due to similar reasons, temporal resolution was rather weak both in our observational 

and experimental studies. Exploration of the trophic interactions in longer time scales 

would allow more clear understanding of transitions between states before and after 

perturbations and stability in the communities. With recent advances in automated 

estimation of population abundance and size structure (Bruijning, Visser, Hallmann, & 

Jongejans, 2018), it is possible to have higher temporal and spatial scales in food web 

studies due to the fast and more efficient ways to analyze more samples.  

For future studies, size based metrics could be complemented with other methods 

such as stomach content, stable isotope analysis and modelling, which could improve 

the conclusions drawn from sized-based approaches alone. Stable isotope analysis are 

effective for identifying trophic links and diet composition (Boecklen, Yarnes, Cook, & 

James, 2011) as well as energy flow. For example, they can be used to define trophic 

levels of different size and stage of organisms and create well defined size-based 

networks. Additionally, individual based models for predator-prey interactions could 

incorporate individual size-abundance relationships together with stage specific 

responses of different species. This way, it could be possible to make inferences about 
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population and community responses to global climate change and extreme events. 

Thus, for future work we encourage inclusion of all trophic links in food web studies, 

exploration in wider temporal resolution and combination of modelling to make better 

predictons to environmental changes in dynamic systems. 

Our research focused on freshwater ecosystems. How to extrapolate the size-

based interactions to terrestrial ecosystems has not been well defined. Historically, size 

based metrics became more approved among aquatic scientists than among terrestrial 

ones. Terrestrial ecologists adopted more species niche concept and used rank-

abundance relationships rather than the size spectrum as aquatic ecologists did. These 

variations in study approach could have arisen from the variations among the study 

organisms in these different ecosystems. Aquatic organisms mostly have indeterminate 

growth (i.e. body size changes as they grow), and their functions and diet in the 

ecosystem change (e.g ontogenetic niche shift) during their developmental process 

(Kerr & Dickie, 2001, Trebilco et al., 2013). Individual body size often determines 

predator- prey interactions in these ecosystems (Brooks & Dodson, 1965). Furthermore, 

in plankton food webs aquatic herbivores (i.e. zooplankton) are constrained by their 

gape. Gape-limitation often has an impact on size range of preys that they can ingest. 

However, for example terrestrial herbivores can ingest parts of plants, without affecting 

the whole individual (Shurin, Gruner, & Hillebrand, 2006). Hence, size-based approaches 

are more relevant in aquatic ecosystems (including marine systems) as body size and 

trophic level of organisms are highly linked. It is, therefore, crucial to assess study 

organisms and their niche and trophic levels before generalizing our results from this 

thesis into other ecosystems such as terrestrial systems.  

This thesis assessed the size-based interactions and possible implications for 

ecosystem functioning in the aquatic planktonic food webs, using size-based metrics. 

Here, we show that use of size metrics could help to characterise the environmental and 

biotic disturbances that the aquatic communities and ecosystems are facing. We reveal 

that size-based approaches are as good as taxonomic approaches to determine 

biodiversity and ecosystem functioning. Furthermore, we argue that they can be used 

to help better monitor and restore aquatic ecosystems. For example, size diversity and 

slope of the size spectrum can provide valuable information about the recovery of the 
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communities after the environmental perturbation is removed such as during invasive 

fish removal or biomanipulation in terms of removal of planktivorus fish. Beyond those 

uses, it is possible to integrate size measurements into normal monitoring schedule by 

complementing with other taxonomic metrics. Moreover, they can even contribute to 

the European Water Framework Directive implementation, in order to make clear 

inferences about the good ecological status of the freshwater ecosystems, as it has 

already been proposed (Reyjol et al., 2014). 
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GENERAL CONCLUSIONS 
1. There is a positive correspondence between size structures of interacting trophic 

levels in 30 Turkish shallow lakes. Fish size diversity is related with zooplankton 

size diversity, suggesting that higher diversity in resources support higher 

diversity in consumers or vice versa. 

 

2. Changes in fish size evenness in Turkish lakes are explained by the differences in 

temperature. In warmer lakes, fish tend to have irregular size distributions where 

small-sized fish dominate.  

 

3. Phytoplankton size structure (i.e diversity and evenness) is more driven by 

temperature and resource availability, than by predation in Turkish lakes. This 

could be attributed to the significance of physical factors affecting nutrient 

uptake of phytoplankton. 

 

4. It is essential to consider environmental factors such as temperature and 

resource availability while studying size-based trophic interactions. 

 

5. Fish predation and cyanobacteria blooms are key factors modifying cascading 

trophic interactions in planktonic food webs of the naturally eutrophic Lake 

Mývatn. 

  

6. While zooplankton size diversity is controlled by fish predation and the 

cyanobacteria blooms, phytoplankton size diversity is mainly driven by resources 

in Lake Mývatn as in Turkish shallow lakes.  

 

7. Zooplankton experience negative changes in their grazing and foraging behavior 

after the bloom, due to increase in phytoplankton size diversity in Lake Mývatn. 

Because bloom forming cyanobacteria interfere with zooplankton grazing, 

effective energy transfer through the food web is lowered. 
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8. Zooplankton community are not resilient to short-term fish predation as shown 

in fish removal mesocosm experiment in close to Lake Müggelsee, Berlin. 

 

9. Fish predation in enclosures with fish (in experiments close to Lake Müggelsee) 

alters zooplankton community composition and size structure. Some of the large 

sized zooplankton taxa disappear, as small sized taxa of Cladocera strongly 

increase as a result of fish predation. 

 

10. A shift in the zooplankton community composition and size structure disturb the 

trophic cascade of the system (in experiments close to Lake Müggelsee). The 

resulting zooplankton community after fish predation are not able to graze 

efficiently on (and control) phytoplankton and thus increase phytoplankton 

yield. 

 

11. Different taxa of zooplankton respond differently to fish predation (in 

experiments close to Lake Müggelsee). These differences could be related to 

other environmental factors such as seasonality and variations in reproduction 

and growth of different zooplankton groups.  

 

12. Together with effects of fish predation on size-based trophic interactions, 

understanding resilience of zooplankton community structure can provide 

information for ecosystem functioning and freshwater management strategies 

to follow in the future where there will be many disturbances. 

 

13. Although overlooked in many studies, size related intraspecific variability in 

different developmental stages of organisms is an important factor to be 

considered in food web studies. Grazing by different developmental stages of 

predators cause variations in prey size spectra, where larger sized predator (i.e 

adults) have stronger effects on their preys. 

 

14. Our findings also reveal the importance of mixotrophy in shaping consumer-

resource interactions. Large ciliates feeding from Mediterranean ponds on small 

phytoplankton cause variations in prey composition and thus size structure.  
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CONCLUSIONS GENERALS (in Catalan) 
1. Hi ha una correspondència positiva entre les estructures de mides de nivells 

tròfics adjacents en 30 llacs poc profunds turcs. La diversitat de mides de peixos 

es relaciona amb la diversitat de mides de zooplàncton, fet que suggereix que 

una major diversitat de recursos pot suportar una major diversitat de 

consumidors, o viceversa. 

 

2. Els canvis en la uniformitat de mides dels peixos de llacs turcs es poden explicar 

per les diferències de temperatura entre llacs. En els llacs més càlids, els peixos 

tendeixen a tenir distribucions de mida irregular on dominen els peixos de mida 

petita. 

 

3. L'estructura de mides del fitoplàncton (en concret, la diversitat i la uniformitat) 

de llacs turcs està més influenciada per la temperatura i la disponibilitat de 

recursos que per la depredació. Aquest fet pot ser degut a la importància dels 

factors físics que afecten l'absorció de nutrients del fitoplàncton. 

 

4. És fonamental considerar factors ambientals com la temperatura i la 

disponibilitat de recursos quan s’estudien les interaccions tròfiques basades en 

la mida dels individus. 

 

5. La depredació de peixos i els blooms de cianofícies modifiquen les interaccions 

tròfiques en cascada de xarxes tròfiques planctòniques del Llac Mývatn. 

  

6. Mentre que la diversitat de mides del zooplàncton està controlada per la 

depredació de peixos i els blooms de cianofícies en el Llac Mývatn , la diversitat 

de fitoplàncton és impulsada principalment pels recursos, tant al Llac Mývatn 

com als llacs turcs (tots poc profunds). 

 

7. El zooplàncton experimenta canvis negatius en el seu comportament 

d’alimentació després del bloom, a causa de l'augment en la diversitat de mides 

del fitoplàncton en Llac Mývatn. Els blooms de cianofícies interfereixen en 
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l’alimentació del zooplàncton i, per tant, redueixen la transferència d'energia 

efectiva a través de la xarxa tròfica. 

 

8. La comunitat de zooplàncton no és resilient a la depredació dels peixos a curt 

termini, segons l’experiment al costat del Llac Müggelsee. 

 

9. La composició de la comunitat de zooplàncton i la seva estructura de mides es 

poden veure alterats per la depredació de peixos (experiments al costat del Llac 

Müggelsee). Alguns dels tàxons de zooplàncton de grans dimensions poden 

desaparèixer quan els tàxons de mida petita Cladocera (per exemple, Bosmina i 

Chydorus) augmenten significativament per la depredació dels peixos. 

 

10. Un canvi en la comunitat de zooplàncton i en la seva estructura de mides provoca 

una alteració de la cascada tròfica del sistema (experiments al costat del Llac 

Müggelsee). El zooplàncton resultant després de la depredació de peixos no és 

prou eficient per controlar el fitoplàncton i la biomassa de fitoplàncton 

augmenta significativament. 

 

11. Diferents tàxons de zooplàncton responen de manera diferent a la depredació 

dels peixos (experiments al costat del Llac Müggelsee). Aquestes diferències es 

podrien relacionar amb factors ambientals com l'estacionalitat, i les variacions 

en la reproducció i el creixement de diferents grups de zooplàncton.  

 

12. Juntament amb els efectes de la depredació dels peixos en les interaccions 

tròfiques dependents de la mida dels individus, entendre la resiliència de 

l'estructura de la comunitat de zooplàncton pot proporcionar informació sobre 

el funcionament dels ecosistemes i sobre les estratègies de gestió de l'aigua 

dolça a seguir en un futur que es preveu amb moltes alteracions. 

 

13. Encara que es passa per alt en molts estudis, la variabilitat intraespecífica de 

mides entre diferents etapes del desenvolupament dels organismes és un factor 

important a considerar en els estudis de xarxes tròfiques. Alimentació de les 

diferents etapes de desenvolupament dels depredadors causa variacions en els 
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espectres de mida de les preses, on un depredador de major tamany (és a dir, 

els adults) té efectes més forts en les preses. 

 

14. La mixotròfia és important a l’hora de configurar les interaccions entre els 

consumidors i els recursos. Els ciliats que s'alimenten de fitoplàncton petit fan 

variar la composició de les preses de llacunes mediterrànies i, per tant, la seva 

estructura de mides.  
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APPENDICES 

Chapter 1 
Table 7. Additional general linear models (GLMs) including temperature, TP, altitude, net 

evaporation, conductivity, lake area, and depth as predictor variables for the size structure of 

phytoplankton, zooplankton, and fish assemblages (only the best model is shown). The 

taxonomic diversity of each organism group was also included as predictor variable. 

Temperature and altitude were highly correlated (correlation coefficient higher than 0.6), so 

altitude was removed as a predictor variable. For zooplankton size diversity, we ran two models, 

one including fish size diversity and another including non-piscivorous fish size diversity as 

predictors, and both models were significant. We only present the model explaining the highest 

percentage of variability. Coefficients (estimates and standard error, SE), beta (standardised) 

coefficients (Beta coeff.), t-value, significance (P value) and variability explained by each model 

(%). n.s., non-significant. 

 

  

Response 
variable Predictor Estimate SE 

Beta 
coeff. 

t-
value p value % 

Fish (all fish)        

Size diversity Zooplankton size diversity 0.868 0.187 0.598 4,63 <0.01 56.7 

 Fish species diversity 1.107 0,308 0,464 3,59 <0.01  

        

Size evenness Log temperature -0.624 0.231 -0.448 -2.70 <0.05 20.1 

Non-piscivorous fish       

Size diversity Zooplankton size diversity 0.649 0.207 0.474 3.14 <0.01 40.5 

 Non-piscivorous fish 

species diversity 

0.966 0.340 0.430 2.84 <0.01  

        

Size evenness n.s       

Zooplankton        

Size diversity  Fish size diversity 0.316 0.097 0.459 3.27 <0.01 53.2 

 Zooplankton species 

diversity 

0.530 0.167 0.445 3.17 <0.01  

        

Size evenness n.s.       

Phytoplankton        

Size diversity Log TP 0.615 0.339 0.325 1.82 <0.1 10.5 

        

Size evenness Log temperature 0.480 0.214 0.385 2.25 <0.05 14.8 
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Chapter 2 
Table 8. Pearson correlation coefficients of predictor variables. *p≤ 0.05, **p≤ 0.01. 
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1 0.70** 0.39* 
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Figure 18. Ln TP (µg/L) for different treatments (Fish, No fish) on each sampling day. 
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Figure 19. log10(TP) and log10(chla) for different treatments (no fish, n=4; fish, n=6) on each 

sampling day. Fish image with arrows indicates addition and removal of fish. 
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Figure 20. Total abundance of zooplankton in each enclosure. E1-8 are fish enclosures and E9-

12 are no fish enclosures. Enclosures E5 and E8 were excluded because there was dead fish in 

one enclosure because of pump malfunctioning, and one enclosure stocked with fish became an 

extreme outlier in terms of total zooplankton abundance because of a massive rotifer bloom. 

 

Figure 21. Relative average biomass of different zooplankton taxa for different treatments (no 

fish, n=4; fish, n=6) on each sampling day. Fish image with arrows indicates addition and removal 

of fish. 
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