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Abstract 
 

Lewy body diseases (LBDs) are a group of neurodegenerative diseases that consists of Parkinson’s 

disease, Parkinson’s disease with dementia (PD), and dementia with Lewy bodies. LBDs are 

characterized by the aggregation of 𝛼-synuclein in specific brain regions, which leads to the formation 

of Lewy bodies and Lewy neuritis, usually accompanied by neurodegeneration. Identification of early 

stages in LBDs is crucial since the neurodegeneration may be possibly stopped or treated before the 

pathological cascades start. 

This study aims to identify people at high risk of developing LBDs i.e. in prodromal stages of these 

diseases, based on an acoustic analysis of speech and voice. Eighteen acoustic features were evaluated 

from 36 Czech native, clinically diagnosed PD patients, 29 healthy controls (HC) and 37 subjects at risk 

of developing LBDs. Statistical analysis of acoustic features and multiple modelling techniques were 

explored in order to find the best discriminative model, including multivariate logistic regression and 

the state-of-the-art algorithm XGBoost.  

We finally propose an XGBoost model that identifies subjects in high risk of developing LBDs achieving 

76 % specificity and 71 % sensitivity on test dataset (including PD and HC). Prosodic and articulatory 

features were found to be the most discriminant. Thirteen subjects were confirmed to be in high risk 

of LBDs with our model. Accuracy of these results will be further evaluated in future following a 

longitudinally monitoring and clinical examination of participants. 
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Resumen 
 

Las enfermedades de cuerpos de Lewy son un grupo de enfermedades neurodegenerativas, que 

incluye la enfermedad de Parkinson, la enfermedad de Parkinson con demencia y demencia con 

cuerpos de Lewy. Este grupo de enfermedades se caracteriza por la agregación de 𝛼-sinucleina en 

regiones específicas del cerebro, lo cual da lugar a la formación de cuerpos de Lewy y neuritas de 

Lewy, normalmente acompañado de neurodegeneración. La identificación de los estados iniciales de 

estas enfermedades es crucial, ya que la neurodegeneración puede ser potencialmente parada o 

tratada antes de que las cascadas patológicas comiencen. 

Este estudio tiene como objetivo identificar sujetos en alto riesgo de desarrollar enfermedades de 

cuerpos de Lewy mediante un análisis acústico de voz y habla. Dieciocho características acústicas han 

sido evaluadas de 36 pacientes de nacionalidad checa clínicamente diagnosticados con Parkinson, 29 

controles sanos y 37 individuos en riesgo de desarrollar enfermedades de cuerpos de Lewy. Se han 

explorado diferentes análisis estadísticos y múltiples técnicas de modelaje para identificar el mejor 

modelo discriminativo, incluyendo regresiones logísticas multivariables y el algoritmo state-of-the-art 

XGBoost. 

Finalmente, se ha propuesto un modelo XGBoost que identifica a sujetos en riesgo de desarrollar 

enfermedades de cuerpos de Lewy con 76 % de especificidad y 71 % de sensibilidad en el conjunto de 

datos test (incluyendo pacientes de Parkinson y controles sanos). Las características más 

discriminativas halladas han sido prosódicas y articulatorias. Trece sujetos han sido confirmados de 

estar en alto riesgo de desarrollar este tipo de enfermedades con nuestro modelo. La precisión de 

estos resultados será evaluada en el futuro siguiendo un monitoreo longitudinal y examinaciones 

clínicas de los pacientes. 
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Introduction 
 

Lewy body diseases (LBDs) are a group of neurodegenerative diseases that consists of Parkinson’s 

disease (PD), Parkinson’s disease with Dementia (PDD) and Dementia with Lewy Bodies (DLB). LBDs 

are characterized by the presence of proteinaceous intracellular entities containing aggregates of 𝛼-

synuclein. The aggregation of these entities in specific brain regions leads to the formation of Lewy 

bodies and Lewy neuritis, usually accompanied by neurodegeneration in the affected areas (Beyer et 

al., 2009; Postuma et al., 2019). 

α-synuclein is abundantly expressed throughout the human brain, with high levels in the neocortex, 

hippocampus, substantia nigra, thalamus and cerebellum (Kim et al., 2014). Although the exact 

function of α-synuclein is unknown, it has been suggested that they may regulate the release of 

dopamine in controlling voluntary and involuntary movements or influence memory and cognitive 

function (Kim et al., 2014). 

LBDs have a long prodromal interval, i.e. a period during which neurodegenerative symptoms are 

present, but full clinical disease has not yet developed (Berg et al., 2015). Identification of early stages 

in LBDs is crucial for the development of disease-modifying treatment, since the neurodegeneration 

may be possibly stopped or treated before the pathological cascades start.  

Prodromal markers of LBDs are diverse and usually non-specific, with few exceptions such as 

idiopathic REM sleep behaviour disorder (Postuma et al., 2019). Nevertheless, recent research has 

focused on the state of mild cognitive impairment (MCI) in LBDs and it has been suggested that 

speech/voice disorders such as dysfluency, aperiodicity or irregular alternating motion rate can be 

identified in early stages of PD or DLB (Ash et al., 2012; Brabenec et al., 2017; Rusz et al., 2016).  

Exploiting nowadays fashion of using voice assistants, which are implemented by almost all ICT 

companies in smartphones, computers and TVs, the use of voice and speech for research seems to 

have a promising future since access to databases of voice of millions of individuals, from all ages and 

genders, are expected to be available in the following years. 

  

  



8 
 

Motivation 
 

The motivation of this project is based on the fact that LBDs are a worldwide problem nowadays, 

affecting millions of individuals every year. Only in the U.S., it has been estimated that Lewy Body 

dementias affect more than 1.4 million individuals (National Institute of Aging, 2018) and the 

prevalence of Parkinson’s disease was estimated to be 6.2 million people worldwide in 2015 

(European Brain Council, n.d.; GBD 2015 Neurological Disorders Collaborator Group et al., 2017). 

There is an essential necessity to improve current diagnosis methodology in order to identify 

prodromal stages in LBDs and new biomarkers and techniques must be explored so as to gain insight 

about the state of LBDs in a non-invasive, fast and affordable way. 

Having worked with patients with tremor diseases during previous internships and with a special 

interest on Data Sciences, this project combines both fields and aims to offer a real-life solution for 

future research in diagnosis.  

 

Objectives 
 

The main objective of this Final Bachelor Degree Project is to try to identify people at risk of developing 

LBDs based on an acoustic analysis of speech and voice. 

The project aims to offer a real-life solution to a problem that affects millions of people worldwide 

and is expected to increase in prevalence in the following years. 

In order to carry out this project in an organized, efficient way, individual objectives have been 

specified as follows: 

1. Make a “state of the art” study to gain insight knowledge on LBDs, current methodology and 

techniques for diagnosis and recent research for diagnosis of LBDs. 

 

2. Process and analyze acoustic data. 

 

3. Explore different Machine Learning algorithms to identify acoustic features that discriminate 

between healthy controls and PD patients. 

 

4. Propose a model, based on acoustic features, to identify people at risk of LBDs. 

 

The long-term objective of this Project would be the incorporation of an acoustic test of speech and 

voice in current diagnostic criteria in hospitals and health-care points to improve present-day 

diagnosis outcomes.  
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State of the art 
 

Lewy Bodies Diseases 
 

As stated before, LBDs is a group of neurodegenerative diseases that include PD, PDD and DLB. These 

diseases, characterized by the aggregation of Lewy bodies and Lewy neurites in specific brain regions, 

differ in clinical features, symptomatology and diagnostic evaluation criteria. In this section, an in-

depth research study will be presented in order to show the main characteristics of PD, PDD and DLB 

and their current clinical evaluation criteria. 

 

Parkinson’s disease  
 

Parkinson’s disease is a multifactorial neurodegenerative disease characterized by the progressive 

impairment of voluntary motor controls.  

The major pathological feature that correlates with PD is the progressive degeneration of 

dopaminergic neurons in the substantia nigra pars compacta, one of the nuclei constituting the basal 

ganglia. These neurons are involved in transmitting dopamine and their degeneration leads to 

dysfunction of the neuronal circuits that include motor cortical areas and the basal ganglia (Lotankar 

et al., 2017). 

The disorder involves multiple motor and non-motor symptoms. The impairment of voluntary motor 

control might result in akinesia (failure of willed movement), bradykinesia (slowness of movement), 

hypokinesia (decreased bodily movement), postural instability, rigidity, stooped posture, and tremor 

at rest (Lotankar et al., 2017). These signs and symptoms are commonly present along with gait 

impairment, stiffness of the arms, legs, and trunk, poor balance and coordination, and bilateral vocal 

cord paralysis at the extreme and worsening level (Lotankar et al., 2017). These main motor 

symptoms, characteristic of PD, are collectively called “Parkinsonism”. 

Most common non-motor symptoms include Rapid Eye Movement (REM) Sleep Behavior Disorder 

(RBD), olfactory and autonomic dysfunction and mood disorders. These symptoms are often 

neglected, but might be of great benefit for early diagnosis as some of them, as in the case of RBD, 

have proven to be robust biomarkers of prodromal PD and other synucleinopathies (Le et al., 2017). 

Currently, diagnosis of PD is based on clinical features from history and examination, and over time 

response to dopaminergic medication and development of motor symptoms (Rizek et al., 2016). 

Advancements in neuroimaging studies, such as Magnetic Resonance Imaging (RMI), are used to 

exclude other causes that might provoke Parkinsonism (Rizek et al., 2016). In addition, radionuclide 

imaging modalities like PET and SPECT, based on dopamine transporter ligands, have become the best 

approach to assess dopamine metabolism and deficiency, reaching up to 98% sensitivity and 

specificity to detect dopaminergic neuronal loss (Le et al., 2017). Other biomarkers for PD diagnosis 

include biochemical measurements of body fluids, such as α-synuclein and DJ-1, and genetic 

biomarkers (Lotankar et al., 2017). These techniques are usually time-consuming and expensive, and 

thus clinical criteria almost always relies on clinical history and motor symptomatology. For these 
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reasons, there is an essential need to find new, fast, accurate and inexpensive biomarkers and 

methods that could improve and complement current diagnostic methodologies. 

The Unified Parkinson’s Disease Rating Scale (UPDRS) is the most commonly used rating tool to 

diagnose and evaluate PD progression. The UPDRS is composed of four main subscales, which includes 

(I) Mentation, Behavior and Mood, (II) Activities of Daily Living, (III) Motor Examination and (IV) 

Complications of Therapy. The effect of speech shows up only in two components by means of the 

patient’s vocal output: in the second subscale for assessing whether it is apprehensible and in the third 

subscale for evaluating whether it is expressive during a conversation (Erdogdu Sakar et al., 2017).  

 

The evaluation of speech in the UPDRS III is very general and non-specific. Hypokinetic Dysarthria (HD), 

a common speech disorder present in PD patients that will be further explained in this project, is a 

complex, multidimensional disorder that requires of a more specific, detailed analysis not covered in 

the current UPDRS III rating scale. In this project, an acoustic analysis will be carried out to perform a 

more accurate examination of speech and voice. 

 

Lewy Bodies dementias: Parkinson’s disease with Dementia and 
Dementia with Lewy Bodies 
 

Dementia with Lewy Bodies and Parkinson’s disease dementia, also called Lewy Body dementias, are 

the second most common type of degenerative dementia in patients older than 65 years after 

Alzheimer’s Disease (Gratwicke et al., 2015).   

The main difference between PDD and LBD strikes in the relative timing of appearance of dementia 

and Parkinsonism. As such, PDD is considered a late complication of a well-established PD and has a 

cumulative prevalence of 75–90% of those with a disease duration of 10 years or more (Gratwicke et 

al., 2015). In contrast, DLB often occurs before or concurrently with parkinsonism or within 1 year of 

onset of motor symptoms (Walker et al., 2015). 

The clinical features of DLB and PDD are similar and include hallucinations, cognitive fluctuations, and 

dementia in the setting of Parkinsonism. In addition, the cognitive domains that are impacted in DLB 

and PDD overlap substantially, with evident executive dysfunction and visual-spatial abnormalities, as 

well as variable impairment in memory capacities (Walker et al., 2015).  

DLB and PDD exhibit multiple challenges for correct diagnosis. The biggest challenge in the diagnosis 

of DLBs is early diagnosis and differentiation from Alzheimer’s disease (AD). In PDD, the main challenge 

is prediction and early identification of cognitive impairment in patients with established PD 

(Gomperts, 2016).  

Imaging techniques such as CT or MRI scan are often part of the basic clinical examination in patients 

with suspected LBD or PDD. Regarding these techniques, the presence of occipital hypometabolism 

by means of FP-CIT SPECT has shown to be the most distinct finding in LBD (and PDD) compared with 

AD (Walker et al., 2015). Biological biomarkers, including plasma and cerebrospinal fluid α-synuclein, 

have also shown promising results (Walker et al., 2015). 

Diagnostic criteria for clinical diagnosis of PDD and DLB is based on clinical features and the timing of 

appearance of Parkinsonism. The central feature for diagnosis of possible or probable DLB is the 
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presence of dementia with progressive cognitive decline, accompanied by fluctuating cognition, 

recurrent visual hallucinations and/or spontaneous motor manifestations of Parkinsonism (Gomperts, 

2016). Regarding PDD, the core features for diagnosis are a previous diagnosis of idiopathic 

Parkinson’s disease and a dementia syndrome with insidious onset and slow progression, 

accompanied by one or more associated clinical features related with the cognitive and behavioral 

state (Gomperts, 2016).  

 

Current research in Lewy Bodies Diseases 
 

Recent advances in the understanding and comprehension of PD and DLB are expected to impact 

future diagnosis and management of these diseases. These advances include the study of preclinical 

features, research in the concept of Mild Cognitive Impairment, and disease-modifying treatments 

(Gomperts, 2016). 

Disease-modifying treatments of LBDs are more likely to succeed when started as early as possible; 

therefore, early diagnosis is a priority. Biomarkers such as constipation and loss of sense of smell might 

be present before cognitive and/or motor symptoms become evident, but they are non-specific. Only 

a few clinical features, like REM sleep behavior disorder and dopaminergic imaging abnormalities, 

have proved to be prodromal biomarkers of LBDs (Galasko, 2017).  

Motor speech disorders have been long known to be present in patients with Parkinson’s disease. 

Dysarthria is defined as “a group of related speech disorders that are due to disturbances in muscular 

control of the speech mechanism resulting from impairment of any of the basic motor processes 

involved in the execution of speech" (Godino-Llorente et al., 2017) and it is a common disorder in PD 

patients, with a prevalence up to 90% in the case of Hypokinetic Dysarthria (HD) (Godino-Llorente et 

al., 2017). 

Hypokinetic dysarthria is mainly associated with dysfunctions of the basal ganglia control circuits, 

which are the loops that mediate between cognitive and motoric processes at the hippocampus 

(Godino-Llorente et al., 2017). More specifically, the basal ganglia regulates muscle tone, providing 

support for voluntary motor movements, controlling postural stability, and assisting in motor learning, 

among others (Godino-Llorente et al., 2017). 

Phonation, articulation and prosody are the three main dimensions of speech affected in HD. 

Phonation refers to the physical process by which vocal folds produce sounds; articulation is the 

process by which sounds are created by the speech organs (lips, jaw, teeth, etc.); and prosody is 

concerned with properties of speech such as intonation, tone, stress and rhythm. 

A variety of parameterization methods, using conventional and non-conventional speech features, 

have been developed for HD analysis. Thus far, conventional speech features have been used to 

describe the impairment of phonatory aspects of speech, speech quality deterioration, impairment of 

speech prosody, speech rate disturbances and impaired consonant articulation and tongue movement 

(Brabenec et al., 2017). 

Non-conventional speech features, such as features based on Empirical Mode Decomposition, provide 

more precise HD identification; however, these are generally less clinically interpretable (Brabenec et 

al., 2017). 
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Brabenec et al., (2017), carried out a review of previous studies about HD in PD patients. Regarding 

the speech tasks used for early diagnosis of PD, most of the researchers used sustained phonation of 

vowels /a/, /e/, /i/, /o/, and /u/ (1 work analyzed the whole set of vowels, 1 work analyzed only vowel 

/i/ and another work analyzed a subset of vowels) and monologue and reading tasks. Furthermore, 

DDK evaluation and sentence repetition were also explored. Articulation and prosody dimensions of 

speech were found to be the most discriminative for early diagnosis of PD. 

In addition to direct diagnosis of PD in its early stage, Rusz et al., (2016), published a study based on 

acoustic analysis of speech in a set of 16 patients with idiopathic RBD, who are generally at potential 

risk of developing Parkinson’s disease, and 16 age- and sex- matched HC. They found that speech 

dysfunction was present in 88% of patients with RBD and articulatory impairment was the most 

prominent deficit. 

 

Theoretical Fundamentals 
 

Introduction to Machine Learning 
 

Artificial Intelligence (AI) can be described as the attempt to develop human intelligence processes on 

computer systems. Machine Learning (ML) is an application of AI that provides computer systems the 

capacity to automatically learn from experience (data) without being specifically programmed. These 

algorithms are generally categorized as supervised or unsupervised. 

Supervised ML algorithms require known input and output data in order to learn and predict future 

outputs. In this type of algorithms, the input data must belong to one or multiple classes so that the 

algorithm infers a mapping function for the prediction of future data. These algorithms are mainly 

used for classification and regression purposes. 

In contrast, unsupervised ML algorithms are employed to find hidden patterns and/or structures from 

input data without the requirement of known labels or classes. Unsupervised algorithms are used for 

data clustering and association, among others. 

In the framework of this project, different supervised ML algorithms will be employed. As stated 

before, this type of ML algorithms might be used for classification or regression aims. Regression 

models attempt to estimate numerical or continuous outputs from input data, while classification 

algorithms aim to infer discrete or categorical outputs. The former will be employed throughout the 

development of the project. 

 

Evaluation of the performance of ML algorithms 
 

Evaluation of ML classification algorithms, and statistical classification tests in general, is a key step to 

assess the performance of the algorithms employed. The metrics assessed in this project, including 

classification accuracy, confusion matrix, Matthews correlation coefficient and area under ROC curve, 

will be further explained in this section.  
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Classification accuracy is defined as the ratio of correct predictions to the total number of predictions. 

This metric is very sensitive to the number of samples belonging to each class and, therefore, it is not 

useful when data is highly unbalanced.  

A Confusion Matrix, as its name suggests, is a matrix that represents four different combinations 

between predicted and actual values within a dataset. Figure 1 illustrates a common Confusion Matrix. 

 

Figure 1. Structure of a Confusion Matrix 

To further explain the basic concepts of the Confusion Matrix, a classification ML model with binary 

data i.e. data belongs to class 0, known as “negative”, or class 1, known as “positive”, will be assumed. 

There are 4 important terms that can be inferred from a Confusion Matrix: 

 True Positives (TP): It represents the number of correct positive predictions i.e. the number of 

samples whose value was 1 and the model has properly classified as 1. 

 

 True Negatives (TN): It represents the number of correct negative predictions i.e. the number 

of samples whose value was 0 and the model properly classified as 0. 

 

 False positive (FP): It represents the number of samples that were classified as positive (class 

1) but were actually negative (class 0). 

 

 False negative (FN): It represents the number of samples that were classified as negative (class 

0) but were actually positive (class 1). 

Accuracy can also be calculated from the Confusion matrix as described in Equation 1: 

𝐴𝑐𝑢𝑟𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 Equation 1 

The Sensitivity or True Positive Rate corresponds to the proportion of positive samples classified as 

positive (TP) with respect to all actual positive samples (TP+FN), explained in Equation 2. This metric 

can be interpreted as how well the model identifies people with the positive condition (1 or “True”).  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
    Equation 2 
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On the other hand, Specificity or False Positive Rate is defined as the proportion of negative samples 

classified as positive (FP) with respect to all actual negative samples (TN+FP), displayed in Equation 3. 

This value is interpreted as the ability of the algorithm to properly identify healthy controls (0 or 

“False”). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 
Equation 3 

The Matthews correlation coefficient (MCC) is used as a measure of the quality of an algorithm for 

binary classification. This metric is especially useful as it can be used even when data is highly 

unbalanced. The values of MCC are between -1 and +1; a coefficient of +1 represents perfect 

prediction, 0 no better than random and -1 indicates total disagreement between prediction and 

observations. The formulation of this coefficient is shown in Equation 4. 

𝑀𝐶𝐶 =  
𝑇𝑃 ∙  𝑇𝑁 − 𝐹𝑃 ∙  𝐹𝑁

(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 Equation 4 

The last metric evaluated in this project is the area under the ROC curve (AUC), one of the most widely 

used metrics for evaluation of ML models mainly employed in binary classification problems. The curve 

is represented by plotting the True Positive Rate vs. 1 - True Negative Rate (also called Recall) at 

different points between [0, 1]. 

The ROC curve can be interpreted as a probability curve and the AUC indicates the model overall 

performance in classifying samples among classes. The closer the AUC is to 1, the better the model 

performs, and an AUC of 0.5 represents a model which classifies no better than random.  

 

Data analysis and Machine Learning algorithms 
 

In this section, the different methods and algorithms used throughout the project will be described. 

First, the concept of confidence intervals and their determination will be introduced. Later on, a brief 

introduction to linear regression will be made, followed by the description of the feature selection 

techniques and main classification algorithms employed in the project, which includes logistic 

regression and XGBoost. 

 

Confidence intervals  
 

Diagnostic tests, as well as all modelling techniques, require of cutoff values for classifying cases as 

positive or negative. The determination of these values might be automatically performed by 

algorithms or manually calculated following a specific statistical method. 

A simple and commonly used technique for calculating cutoff scores is the application of 95% 

confidence intervals (CI) of mean. In this method, mean and standard deviation (SD) of a known 

dataset are calculated to consequently determine an interval by subtracting and adding 2 x SD from 

and to the mean (also written as 𝜇 ± 2𝜎) (Singh, 2006). Using this approach, the possibility of finding 

a value outside the interval is less than 5%. 
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Depending on the requirements of the modelling technique or test that is being performed, a different 

threshold might be established. Our project was made in collaboration with neurologists from the First 

Department of Neurology, Faculty of Medicine and St. Anne’s University Hospital, Masaryk University, 

and their requirement was to obtain a model with 80% of specificity. Therefore, throughout this study, 

specificity will be prioritized over sensitivity i.e. the correct identification of healthy controls will be 

prioritized over the correct identification of patients since neurologists consider of greater importance 

the detection of patients who are not in risk of developing LBDs.  

The dataset of positive cases (PD patients) will be considered for the calculation of the 95% CI in order 

not to lower specificity (in this way, sensitivity might be lowered due to the declaration of false 

positives cases). Considering the distribution of the PD and HC cohorts, the upper or lower limit of the 

interval (mean ±  2SD) will be established as the cutoff point depending on the specific feature 

distribution. This adaptation is required since distributions may vary from one feature to another. 

 

Feature selection approaches 

In many pattern recognition applications, identifying the most characterizing features of the observed 

data is critical to minimize the classification error (Peng et al., 2005). Statistical analysis, generally 

classified as parametric or non-parametric, are widely used in research as they provide meaning to 

data and allow to draw conclusions from uncertain events, e.g. which subset of features characterizes 

a classification variable. 

Parametric approaches can be more informational and interpretable, but should be used only under 

specific circumstances. On the other hand, non-parametric methods have the advantages that results 

are not affected by assumptions about the distribution nor by outliers (only signs and ranks are 

employed) and they can be used in small datasets, but might be less informative. In this project, the 

former will be employed to analyze the relevance of features. 

 

Mann Whitney U test 

The Mann Whitney U test is a statistical, non-parametric method widely used for the comparison of 

two independent samples. In general terms, this test compares all samples from two independent 

populations to evaluate the null hypothesis, which assumes that the distribution of both populations 

is identical. It is usually compared with the t-test, but in this case the distribution does not have to be 

normal. In this project, due to the small dataset available, distribution assumptions will preferably not 

be made, thus the Mann Whitney U test will be used instead of the most common t-test. 

Regarding this project, the fact that the distribution of two populations (PD and HC, for each feature) 

is different (p-value < 0.05) is interpreted as that feature having high discriminant power for the 

classification of these populations. 

 

Maximum Relevance Minimum Redundancy Feature Selection  

Most complex approaches that aim to identify a subset of features to characterize the target 

classification variable require the maximal statistical dependency (Max-Dependency) of the target 

class on the data distribution (Peng et al., 2005). 
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Due to the difficulties to compute Max-Dependency, multiple approaches are used, one of the most 

popular being the maximal relevance (Max-Relevance) feature selection. Relevance is usually 

characterized in terms of correlation or mutual information, of which the latter is used in the approach 

employed in this study. 

Under the criteria of maximum-relevance minimum-redundancy, the selected features are required, 

individually, to have the largest mutual information (highest dependency) with the target class while 

being not redundant. The minimal redundancy condition is essential since features selected according 

to the max-relevance condition are usually mutually exclusive as the dependency between them is 

often large (Peng et al., 2005). 

Thus, the result of this algorithm is a subspace of features, whose size can be defined, where features 

are sorted based on the Maximum Relevance - Minimum Redundancy criteria. 

 

Logistic Regression 
 

Logistic Regression is a statistical model widely used in Machine Learning for binary classification 

problems. The model is based on the logistic function, also called sigmoid function, which is used to 

examine the relationship between a dichotomous (binary) dependent variable and one or more 

independent variables, which could be categorical or continuous.  

The standard Logistic or Sigmoid function, described in Equation 5, is described within the real domain 

i.e. it can take any real input variable. The output or predicted value from a logistic function is always 

within the range [0, 1] and is interpreted as the probability that the given input sample belongs to a 

specific class.  

𝜎 =
1

1 + 𝑒𝑡
 Equation 5 

Most often, a specific threshold is established for classification purposes so that all predicted outputs 

above the threshold are classified as 1 or “True” and outputs below the threshold are to be considered 

0 or “False”. As stated before, in this project 80% specificity is desired and thus predicted outputs will 

be compared with the specific threshold that yields 80% specificity from the ROC curve.  

 

XGBoost 
 

The last algorithm explored in this project is XGBoost. XGBoost or Extreme Gradient Boosting is a state-

of-the-art algorithm based on tree boosting. More specifically, XGBoost implements a gradient 

boosting tree algorithm (Chen et al., 2016). 

The mathematical comprehension of XGBoost goes beyond the scope of this project, but the main 

concepts of the algorithm will be presented in this section. 

First, a short discussion about Decision Tree algorithms will be made, followed by a brief explanation 

of the concept of bagging and random forests, and a final introduction to Gradient Boosting and its 

relation with XGBoost. 
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Decision tree is a type of supervised Machine Learning algorithm used for classification and regression 

problems. A Decision Tree algorithm might be interpreted as a tree where each node represents a 

feature, each link (branch) represents a decision and each leaf represents an outcome, that can be 

categorical or continuous (Sanjeevi, 2017).  

The main idea behind Decision Trees can be described in three steps (Navlani, 2018): 

 First, the most discriminative attribute or feature is selected based on a specific metric, such 

as Gini Index or Information Gain. 
 

 Then, a Decision Node is created with the selected feature to split the data. 

 

 In the third step, the process is recursively performed until a stop condition from the criteria 

occurs, such as the overpass of the maximum number of permitted iterations or no features 

availability. 

The flowchart-like structure of Decision Trees mimics human-thinking processes, what makes them 

easy to understand and interpret. 

Ensemble learning is based on the idea that combination of multiple weak Decision Trees classifiers 

can create a strong new classifier, while also reducing variance and increasing the robustness of the 

model. There are two main ensemble methods: bagging and boosting. 

Bagging or Bootstrap Aggregation is a technique that combines predictions from multiple, parallel 

classifiers through a majority voting mechanism. This idea is the basis of Random Forest algorithms, 

where a subset of features are randomly chosen to build a collection of Decision Trees known as 

Forest, hence the name of the algorithm (Rocca, 2019).   

Boosting is another ensemble technique for improving model predictions by sequentially training 

models that correct the errors of previous models. Models are sequentially added until no further 

improvements can be made (Dabbura, 2017). 

Gradient Boosting is a special case of boosting where errors are minimized from one model to another 

using a Gradient Descent (GD) algorithm. In a GD algorithm, the parameters of the model are updated 

at each iteration following the opposite direction of the gradient of the function at a specific learning 

rate (Dabbura, 2017). GD is a first-order optimization algorithm since it only considers the first 

derivative of the function. 

XGBoost, as stated at the beginning of this section, is an implementation of a Gradient Boosted 

Decision Tree especially focused on computational speed and performance. The improvements and 

advancements of this algorithm rely on its parallelized implementation and hardware optimization by 

means of distributed computing, out-of-core computing and cache optimization (Chen et al., 2016). 
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Methodology 
 

Participants 
 

In the framework of this project, 36 Czech native PD patients with age of (mean ± std) 76.64 ± 16.51 

years (11 females 79.09 ± 13.57 years, 25 males 77.15 ± 17.29 years), 29 healthy controls HC with 

age of 68.56 ± 6.11 years (20 females 69.00 ± 6.32 years, 9 males 67.6 ± 5.50 years), and 37 subjects 

who were at risk of developing LBDs with age of 65.19 ± 4.97 years (24 females 66.09 ± 4.67 years, 

13 males 63.62 ±  5.09 years) were enrolled at the First Department of Neurology, St. Anne’s 

University Hospital in Brno, Czech Republic. For demographic and clinical data of PD patients, see Table 

1. 

Table 1. Clinical characteristics of PD patients 

 Mean Std Min 1Q Median 3Q Max 

PD dur (y.) 5.56 5.08 0.5 1.5 4 8.5 20 

UPDRS III 14.47 6.38 6 9.75 14 17.5 29 

LED (mg/day) 854.24 482.53 80 500 750 1251.75 1850 

Age (y) 76.64 16.51 55 66.5 73 80 114 

UPDRS III – Unified Parkinson’s disease rating scale, part III (motor examination), LED – Levodopa equivalent dose. 

The participants at risk of LBDs were identified based on a screening questionnaire containing several 

risk factors, e.g. the REM sleep behaviour disorder. None of the PD patients had a disease affecting 

the central nervous system other than PD. These patients were examined on their regular 

dopaminergic medication approximately 1 hour after the L-dopa dose. All participants signed an 

informed consent form that has been approved by the local ethics committee. 

 

Acoustic analysis 
 

Speech/voice of the enrolled participants was recorded by a large capsule cardioid microphone M-

AUDIO Nova and sampled at fs = 16 kHz.  

All participants followed the same protocol, which included the speech tasks described in Table 2. The 

speech/voice disorders quantified by acoustic features are explained in Table 3. 

Clinicians were asked to explain carefully every task to the patient before performing the test and to 

not interrupt them during the performance. The acquisition of the recording was done in a quiet room 

with low echo and with no background noise such as sound of street, air condition, computer fan, 

clock, telephone, medical devices, etc. In addition, the text of TSK2 was printed on a card/board so as 

it would not make any noise when being held.  
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Table 2. Speech Tasks. 

Label Speech task Description 

TSK1 Monologue 
Monolog, at least 90 s long without interruption of a clinician. The participants will be instructed to speak about 

their hobbies, family, job, actual date activity, etc. 

TSK2 Reading Reading a short text. The patient can read the text for her-/himself in advance. 

TSK3 Sustained phonation 
Approximately 3-s (not longer than 5 s) sustained vowel of /a/ at a comfortable pitch and loudness. Performed on 

one breath. 

TSK4 Sustained phonation 
Approximately 3-s (not longer than 5 s) sustained vowel of /i/ at a comfortable pitch and loudness. Performed on 

one breath. 

TSK5 Sustained phonation 
Approximately 3-s (not longer than 5 s) sustained vowel of /u/ at a comfortable pitch and loudness. Performed on 

one breath. 

TSK6 Sustained phonation 
Sustained phonation of /a/ at a comfortable pitch and loudness as constant and long as possible, at least 5 s. 

Performed on one breath. 

TSK7 Diadochokinetic task 
Rapid steady /pa/-/ta/-/ka/ syllables repetition as constant and long as possible, repeated at least 5 times. 

Performed on one breath. 
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Table 3. Feature Set 

HD/AOS dimension and 
specific disorder 

Speech tasks 
Acoustic 
feature 

Feature definition 

Phonation 

Airflow insufficiency 
Sustained 
phonation 

(TSK6) 
MPT 

Maximum phonation time, aerodynamic efficiency of the vocal tract measured 
as the maximum duration of the prolonged vowel. 

Irregular pitch fluctuations 
Sustained 
phonation 
(TSK3–6) 

relF0SD 
Standard deviation of fundamental frequency relative to its mean, variation in 

frequency of vocal fold vibration. 

Microperturbations in 
frequency 

Sustained 
phonation 
(TSK3–6) 

Jitter (PPQ) 
Frequency perturbation, extent of variation of the voice range. Jitter is defined 

as the variability of the F0 of speech from one cycle to the next. 

Microperturbations in 
amplitude 

Sustained 
phonation 
(TSK3–6) 

Shimmer (APQ) 
Amplitude perturbation, representing rough speech. Shimmer is defined as the 
sequence of maximum extent of the signal amplitude within each vocal cycle. 

Increased noise 
Sustained 
phonation 
(TSK3–6) 

HNR 
Harmonics-to-noise ratio, the amount of noise in the speech signal, mainly due 

to incomplete vocal fold closure. HNR is defined as the amplitude of noise 
relative to tonal components in speech. 

Aperiodicity 
Sustained 
phonation 
(TSK3–6) 

DUV 
Degree of unvoiced segments, the fraction of pitch frames marked as 

unvoiced. 

Tremor of jaw 
Sustained 
phonation 
(TSK3–6) 

relF1SD, relF2SD 
Standard deviation of first (F1) and second (F2) formant relative to its mean. 
Formants are related to resonances of the oro-naso-pharyngeal tract and are 

modified by position of tongue and jaw. 

Articulation 

Decreased tongue movement 
(imprecise vowels) 

Monologue, 
reading 

(TSK1–5) 
VAI 

Vowel articulation index, based on formant centralization, defined as VAI = 
(F1a + F2i)/(F1i + F1u + F2a + F2u). 
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Rigidity of tongue and jaw 
Monologue, 

reading 
(TSK1–2) 

relF1SD, relF2SD Standard deviation of first (F1) and second (F2) formant relative to its mean. 

Slow alternating motion rate 
Diadochokinetic 

task 
(TSK7) 

DDK rate 
Diadochokinetic rate, representing the number of syllable vocalizations per 

second. 

Irregular alternating motion 
rate 

Diadochokinetic 
task 

(TSK7) 
DDK reg 

Diadochokinetic regularity, defined as the standard deviation of distances 
between following syllables nuclei. 

Prosody 

Monoloudness 
Monologue, 

reading 
(TSK1–2) 

relSEOSD 
Speech loudness variation, defined as a standard deviation of intensity contour 

relative to its mean after removing silences exceeding 50 ms. 

Monopitch 
Monologue, 

reading 
(TSK1–2) 

relF0SD 
Pitch variation, defined as a standard deviation of F0 contour relative to its 

mean. 

Inappropriate silences 
Reading 
(TSK2) 

SPIR 
Number of pauses relative to total speech time after removing periods of 

silence lasting less than 50 ms. 

Higher proportion of silence 
time 

Reading 
(TSK2) 

PPR 
Percentual pause ratio, defined as total duration of silences (longer than 50 

ms)/total duration of speech. 

Longer duration of silences 
Reading 
(TSK2) 

DurMED Median duration of silences longer than 50 ms. 

Higher variability of silence 
duration 

Reading 
(TSK2) 

DurMAD Median absolute deviation of silence duration (silences longer than 50 ms). 

Unnatural speech rate 
Reading 
(TSK2) 

AR 
Number of speech sounds produced per second after pauses longer than 50 ms 

were removed. 
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Statistical Analysis 
 

Univariate analysis 
 

Mean and standard deviation values were calculated for each individual feature using the complete 

set of participants (PD + HC) and for the PD and HC cohorts separately to analyze data distribution. In 

addition, boxplots were employed to visualize distribution per feature in the PD and HC cohorts. 

In the first approach, in order to identify discriminative features with at least 80% of specificity, cut-

off scores were determined based on the population distribution of particular features. On this basis, 

cut-off scores were calculated by means of 95% confidence intervals. 

In a second stage, we fitted individual features in univariate logistic regression models in order to 

evaluate their discriminant power to differentiate between HC and PD subjects. The performance of 

these models was assessed according to their MCC, AUC, sensitivity and specificity. 

To complete the univariate analysis, two approaches were implement in order to evaluate the 

importance or relevance of each feature. The first approach consisted of a filtering feature selection 

algorithm that was employed to sort features based on the maximum relevance, minimum 

redundancy criteria. The algorithm required of a preprocessing step since data had to be previously 

discretized. The second approach comprise a Mann-Whitney U test, which was performed in the 

whole dataset to identify potential discriminant features (p-value < 0.05).   

 

Multivariate analysis 
 

Multivariate logistic regression model 
 

In accordance with the results from the univariate analysis and feature selection algorithms, features 

identified as most discriminant were selected. Different multivariate regression models were fitted 

with all possible three-feature combinations among all features selected to identify the optimal 

combinations of features. As previously, these models were evaluated according to their MCC, AUC, 

sensitivity, and specificity. 

 

XGBoost 
 

In the last section, a second ML algorithm approach was employed for data classification. An XGBoost 

model was explored for this purpose, with the aim of compare and improve our previous results.  

First, a random search with a cross-validation approach was used to find the best hyperparameters of 

the XGBoost classifier for our dataset. The hyperparameters considered included the following 

parameters and distributions: learning rate: [0.001, 0.01, 0.1, 0.2, 0.3]; gamma: [0, 0.25 0.50, 1.0]; 

max_depth: [4, 6, 8, 10, 20]; subsample: [0.5, 0.6, 0.7, 0.8, 0.9, 1.0], colsample_bylevel and 

colsample_bytree: [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]; and min_child_weight: [0.5, 1.0, 3.0, 5.0, 7.0, 10.0]. 
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In addition, multiple scoring methods (roc_auc, F1 score and balanced accuracy) were explored, and 

100 number of iterations and all processors were employed.  

A second implementation using XGBoost was performed, in which an XGBoost classifier with the best 

hyperparameters found for our data was fitted with all possible combinations of our data avoiding 0, 

1, and 2 samples. This procedure was performed in order to dismiss possible outliers that could disrupt 

the performance of the algorithm. The final model was employed for the identification of subjects at 

high risk of LBDs. 

 

Results 
 

Results of the univariate regression analysis are summarized in Table 4. No feature was found to 

provide 80% specificity by means of 95% CI. However, according to the p-value obtained from the 

Mann-Whitney U test, relF0SD (TSK4), shimmer (APQ) (TSK5), shimmer (APQ) (TSK3), median HNR 

(TSK5), mean HNR (TSK5), SPIR (TSK2), jitter (PPQ) (TSK4), median HNR (TSK4) and relF1SD (TSK4) have 

significant distributional differences (p-value < 0.05) and, thereafter, might be considered as 

potentially discriminative features. In addition, phonation was found to be the speech dimension with 

most discriminant power. 

Regarding distributional differences, the features jitter (PPQ) (TSK4), SPIR (TSK2), shimmer (APQ) 

(TSK3), shimmer (APQ) (TSK5), relF0SD (TSK4) and relF1SD (TSK4) exhibited lower median values in the 

PD cohort than HC. On the other hand, PD subjects generally had higher median values in median HNR 

(TSK4), mean HNR (TSK5) and median HNR (TSK5) with respect to HC (see Figure 2). 
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Table 4. Results of the univariate regression analysis. 

STD – standard deviation, HC – healthy controls, PD – Parkinson’s disease patients, AUC – area under curve, MCC – Matthews correlation coefficient, relF0SD – relative standard of the 

fundamental frequency, shimmer (APQ) – amplitude perturbation, HNR – harmonic-to-noise ratio, SPIR – speech index of rhythmicity , jitter (PPQ) – frequency perturbation, relF1SD and relF2SD 

– relative standard of the 1st and 2nd formant.

Task 
Speech 

Dimension 
Acoustic Feature Mean + STD (PD) Mean + STD (HC) 

AUC  
[%] 

MCC 
Sensitivity 

[%] 
Specificity 

[%] 
Accuracy 

[%] 
MRMR 

Importance 
p-value 

TSK4 Phonation relF0SD 0.00 ± 0.08 0.00 ± 0.01 41.76 0.00 100.00 0.00 55.38 16 0.0096 

TSK5 Phonation shimmer (APQ) -0.79 ± 9.26 0.98 ± 7.93 62.26 -0.01 88.89 10.34 53.85 21 0.0096 

TSK3 Phonation shimmer (APQ) -0.53 ± 2.86 0.66 ± 3.95 64.75 0.05 86.11 17.24 55.38 49 0.0182 

TSK5 Phonation median HNR 1.33 ± 7.72 -1.65 ± 6.32 64.27 0.21 77.78 41.38 61.54 7 0.0243 

TSK5 Phonation mean HNR 1.25 ± 7.61 -1.55 ± 6.39 62.74 0.21 77.78 0.00 61.54 39 0.0338 

TSK2 Articulation SPIR 0.00 ± 0.01 0.00 ± 0.01 53.45 0.00 100.00 0.00 55.38 41 0.0348 

TSK4 Phonation jitter (PPQ) 0.01 ± 0.45 -0.01 ± 0.16 47.22 -0.11 97.22 24.14 53.85 26 0.0402 

TSK4 Phonation median HNR 0.68 ± 4.05 -0.84 ± 4.49 59.58 -0.01 75.00 0.00 52.31 12 0.0437 

TSK4 Phonation relF1SD 0.00 ± 0.02 0.01 ± 0.03 56.13 0.00 100.00 0.00 55.38 2 0.0488 

TSK6 Phonation RelF2SD -0.02 ±  0.11 0.02 ± 0.13 54.79 0.00 100.00 0.00 55.38 1 0.0544 
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Figure 2. Boxplots of the PD and HC cohorts per feature. 

 

With respect to the multivariate regression analysis, multiple logistic regression models provided 

adequate results satisfying the initial requirements; more specifically, models combining the features 

shimmer (APQ) (TSK3), median HNR (TSK5) and either mean HNR (TSK5), relF0SD (TSK4), relF1SD 

(TSK4), SPIR (TSK2) or jitter (PPQ) (TSK4) (see Table 5). 

For the purposes of this project, the models combining shimmer (APQ) (TSK3), median HNR (TSK5) and 

either relF0SD (TSK4), relF1SD (TSK4), SPIR (TSK2) or jitter (PPQ) (TSK4) were found to be optimal, 

achieving 79.32% specificity and 58.33% sensitivity (see ROC curves in Figure 3). 
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Table 5. Results of the multivariate analysis 

Model 
AUC  
[%] 

MCC 
Sensitivity 

[%] 
Specificity 

[%] 
Accuracy  

[%] 

['shimmer (APQ) (TSK3)', 'median HNR 
(TSK5)', 'mean HNR (TSK5)'] 

70.11 0.17 75.00 41.38 53.85 

['relF0SD (TSK4)', 'shimmer (APQ) 
(TSK3)', 'median HNR (TSK5)'] 

68.30 0.10 75.00 34.48 53.85 

['shimmer (APQ) (TSK3)', 'median HNR 
(TSK5)', 'relF1SD (TSK4)'] 

68.30 0.10 75.00 34.48 53.85 

['shimmer (APQ) (TSK3)', 'median HNR 
(TSK5)', 'SPIR (TSK2)'] 

68.20 0.10 75.00 34.48 53.85 

['shimmer (APQ) (TSK3)', 'median HNR 
(TSK5)', 'jitter (PPQ) (TSK4)'] 

67.91 0.07 75.00 31.03 53.85 

['relF0SD (TSK4)', 'shimmer (APQ) 
(TSK3)', 'mean HNR (TSK5)'] 

67.82 0.17 77.78 37.93 53.85 

['shimmer (APQ) (TSK3)', 'mean HNR 
(TSK5)', 'SPIR (TSK2)'] 

67.72 0.17 77.78 37.93 53.85 

['shimmer (APQ) (TSK3)', 'mean HNR 
(TSK5)', 'relF1SD (TSK4)'] 

67.72 0.17 77.78 37.93 53.85 

['shimmer (APQ) (TSK3)', 'mean HNR 
(TSK5)', 'jitter (PPQ) (TSK4)'] 

67.05 0.10 77.78 31.03 53.85 

['median HNR (TSK5)', 'mean HNR 
(TSK5)', 'relF1SD (TSK4)'] 

66.67 0.14 75.00 37.93 53.85 

AUC – area under curve, MCC – Matthews’s correlation coefficient, relF0SD – relative standard of the fundamental frequency, 
shimmer (APQ) – amplitude perturbation, HNR – harmonic-to-noise ratio, SPIR – speech index of rhythmicity, jitter (PPQ) – 
frequency perturbation, relF1SD – relative standard of the 1st formant. 
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Figure 3. ROC curves from the multivariate analysis. Models consisting of shimmer (APQ) (TSK3), median HNR 
(TSK5) and: top-left, relF1SD (TSK4) and relF1SD (TSK4); top-right, SPIR (TSK2); bottom-left, jitter (PPQ) (TSK4); 

and bottom-right, relFOSD (TSK4). 

 

The ROC curve of the last model employed, using an XGBoost classifier, is displayed in Figure 4. The 

hyperparameters found to fit better our data include a scorer based on the roc curve; learning rate: 

0.3; gamma: 0; maximum depth: 20; minimum child weight: 3; colsample by level: 0.7; and colsample 

by tree: 0.5. The average values that described the performance of this model are shown in Table 6. 

  

Table 6. Results of the XGBoost Classifier 

Model AUC [%] MCC Sensitivity [%] Specificity [%] Accuracy [%] 

XGBoost 69.70 0.32 67.00 66.00 66.00 

AUC – area under curve, MCC – Matthews correlation coefficient 
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Figure 4. ROC curve of the XGBoost classifier. 

 

Lastly, a process denominated “surgery” was applied to our data in order to dismiss potential samples 

that could disrupt the model performance (see outliers in Figure 2). Three samples were dismissed, all 

of them belonging to the PD cohort. Figure 5 displays the new ROC curve obtained and Table 7 

summarizes the metrics of the performance of the model. 

 

Table 7. Results of the XGBoost classifier with surgery 

Model AUC [%] MCC Sensitivity [%] Specificity [%] Accuracy [%] 

XGBoost & surgery 69.70 0.46 71.00 76.00 73.00 

AUC – area under curve, MCC – Matthews’s correlation coefficient 

 

The first ten features found to be the most discriminative in the XGBoost (with surgery) classifier are 

shown in Figure 6. Using this former model, which provide the best trade-off between specificity and 

sensitivity (with 76% specificity and 71% sensitivity, see Table 7), only thirteen participants were 

confirmed to be at risk of LBDs. 
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Figure 5. ROC curve of the XGBoost classifier with surgery. 

 

  

Figure 6. Top most discriminant features of the XBGoost (with surgery) classifier. 
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Discussion 
 

The most discriminative features, according to the results from the univariate analysis, are based on 

the fundamental frequency extracted from the sustained phonation of vocal /i/, the 

microperturbations in amplitude within each vocal cycle extracted from the sustained phonation of 

vocals /a/ and /u/, and the harmonics-to-noise ratio measuring increased noise extracted from the 

sustained phonation of vocal /i/ and /u/. 

Generally, the fundamental frequency is related to the variation of frequency in vocal fold vibration, 

what results in abnormal increases in pitch voice. Irregular pitch fluctuations have been previously 

identified in Parkinson’s disease patients as a result of the stiffness in the vocal folds (Zhang et al., 

2005) and the fundamental frequency has been proved to have high discriminant power during the 

sustained phonation of vocal /i/ by other studies (Bocklet et al., 2011). In our findings, this feature was 

found to be discriminant, but the HC cohort showed slightly higher median values than PD patients, 

contrary to expected.  

Microperturbations in amplitude was also found to be a discriminant feature between PD and HC 

cohorts during the sustained phonation of vocal s/a/ and /u/, finding supported by other studies as 

well (Rusz et al., 2011).  

Features related with the Harmonics-to-Noise (HNR) ratio, which measures increased noise due to the 

incomplete closure of vocal folds, were also identified to be discriminant during the sustained 

phonation of vocals /i/ and /u/. These types of features are widely used for their high discriminant 

power and clinical interpretability (Orozco-Arroyave et al., 2016; Rusz et al., 2011; Sakar et al., 2013). 

The median values within the PD cohort were generally higher than the HC, contrary to what was 

expected. 

In addition, contrarily to literature, the monologue and reading tasks did not provide relevant 

information for the identification of PD patients and healthy controls. Indeed, the speech index of 

rhythmicity (SPIR) extracted from the reading task was the only feature found to be discriminant.  

The important role of SPIR in the acoustic analysis of hypokinetic dysarthria was identified by 

Rektorova et al., who used this feature to predict mild cognitive impairment or dementia in PD 

patients (Rektorova et al., 2016). In view of the study, it can be assumed that this prosodic feature 

quantifying inappropriate silences is somehow associated with cognitive decline in the PD patients. 

The results from the data distribution among the PD and HC cohorts showed lower median values in 

the PD cohort with respect to the HC individuals, as expected according to existing literature. 

The optimal combination of features using a multivariate logistic regression approach consisted of 

shimmer (APQ) (TSK3), median HNR (TSK5) and either relF0SD (TSK4), relF1SD (TSK4), jitter (PPQ) 

(TSK4) or SPIR (TSK2), achieving 79.00 % specificity and 58.00 % sensitivity. 

The XGBoost classifier, after the hyper-parameterization fitting, improved the performance of 

previous models achieving 79% specificity and 64% sensitivity. Due to outliers in our data, a post-

processing step to dismiss samples that could drastically disrupt the model performance was carried 

out. Three samples from the PD cohort were dismissed in this procedure.  
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The new XGBoost classifier improve its performance by reaching the best trade-off between sensitivity 

and specificity (76% specificity and 71% sensitivity); MCC: 0.46, accuracy: 73%. Based on this former 

model, 13 subjects were confirmed to be at risk of developing LBDs. 

In accordance with the results from the univariate analysis, features measuring microperturbations in 

amplitude (shimmer (APQ) (TSK3)) and frequency (jitter (PPQ) (TSK4)), increased noise (mean HNR 

(TSK5)), inappropriate silences (SPIR (TSK2)), and tremor of jaw (relF2SD (TSK6)) were identified to be 

among the most discriminant features for the identification of PD patients and HC subjects.  

As it was expected, the quantification of irregular alternating motion rate during the diadochokinetic 

task (DDK reg (TSK7)) was identified as a relevant, discriminant measure for classification purposes. 

Diadochokinetic regularity can be defined as the standard deviation of distances between following 

syllables nuclei and is related with the capacity to do the correct occlusion of the oral cavity.  

Recent studies have shown promising results proving DDK evaluation as a robust, accurate method 

for discriminating between PD and HC speakers, achieving AUC values above 95.00 % in multi-

language studies (Orozco-Arroyave et al., 2016). 

Both the univariate analysis and the XGBoost found the most discriminative features measuring 

phonation through the sustained phonation of vocal /a/, /i/, and /u/ (TSK3-6). Only SPIR (TSK2), which 

is directly related to articulation, was found to be discriminant, accompanied by DDK reg (TSK7) in the 

analysis performed by the XGBoost algorithm. 

 

Conclusion 
 

In this study, we identified acoustic features that discriminate between PD patients and HC and used 

these parameters to train different models (multivariate logistic regression and XGBoost models) that 

identified subjects at high risk of developing LBDs (achieving 76 % specificity and 71 % sensitivity). 

These subjects, in comparison to HC, were found to be associated mainly with phonetic and 

articulatory disorders. 

The accuracy of the identification of subjects at high risk of developing LBDs will be evaluated in future, 

as the thirteen participants identified will be longitudinally monitored and clinically examined. 

This work has several limitations, including a small cohort of participants and different severity of PD 

patients (the severity of PD patients was not included during the development of the different 

models). Therefore, we cannot generalize the results, but rather consider them as pilot ones.  

On the other hand, to the best of our knowledge, it is the first work dealing with the identification of 

prodromal state of LBDs based on the acoustic analysis of speech/voice, and we hope that our findings 

will help in further research in this field of science. 
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