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Colorectal cancer is a leading cause of cancer death worldwide, its late detection 

contributes for become one of the deadliest. Research team of Lipids in Human 

Pathology has proven a relationship among membrane lipids and tumorigenic 

processes in CRC. Thus, the importance of studying the impact of colorectal 

cancer in the lipid composition during the differentiation process of colonocytes. 

Given that lipidome of colonocytes is sensible to changes occurring during 

differentiation from stem cell to mature colonocyte, EphB2 is used to as a marker 

to separate stem cells from fully differentiated colonocytes.  

Main objectives of this project are to get more knowledge on the regulatory 

mechanisms involving lipid composition throughout bioinformatics and organoid 

culture. Methodology followed consists of several approaches such as 

transcriptomics, lipidomics and as already said, organoid culture.  

Weighted gene co-expression network analysis (WGCNA) was performed from 

microarray data of CRC patients to explore complex relationships between genes 

and phenotypes in this case lipid traits by transforming gene expression data into 

co-expression modules. Specially focusing on the relationship with sphingolipid 

SM d34:1. Results indicated higher presence of SM in the bottom of the crypt 

containing stem cells. Whilst through the differentiation into mature colonocytes 

levels of SM where lower. This observation was similar in both healthy and tumor 

condition. Furthermore, results suggested that the transcriptomic profile (ie. 

expression profile) between healthy and tumor condition is different. 

Consequently, regulation mechanisms of SM d34:1 among the two conditions are 

also different.  

On the other hand, to evaluate the incorporation of deuterated fatty acids in 

healthy colon and tumor organoids particularly between differentiated and non-

differentiated regions of the crypt, organoid culture experiment was performed. 

Unfortunately given the fact that organoid culture is a 6-8 weeklong process, it 

wasn’t possible to extract lipidomic results. 
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1. Introduction   
 

This final degree project has been carried out at the Lipids in Human Pathology 

Laboratory located at the Health Research Institute of the Balearic Islands 

(IdISBa, Institut d’Investigació Sanitària Illes Balears) situated at the University 

Hospital of Son Espases. Research group led by Dr. Gwendolyn Barceló-Coblijin 

focuses its interests on the role of membrane lipids in cell pathophysiology to 

apply this knowledge to develop new early diagnosis and treatment tools for 

conditions such as inflammatory bowel disease and colorectal cancer.  

1.1 Colorectal cancer 

1.1.1 Demographics 

Colorectal cancer (CRC) is the fourth leading cause of cancer death and 

the third most diagnosed malignancy worldwide (Bray et al., 2018). This 

type of cancer is preventable although its late detection contributes to 

become one of the deadliest. Even though, implementation of screening 

procedures and early detection programs in the population over fifty years 

old has reduced the CRC incidence in high income countries, there is 

evidence suggesting an increase of incidence on the population under 

fifty years old (Araghi et al., 2019). For this reason, it is necessary to 

develop proper diagnosis and classification methods gathering 

phenotypic and genetic traits of the tumor. I will discuss them after 

introducing some of the most important pathology concepts needed for a 

proper understanding. 

1.1.2 Risk and preventive factors 

Several studies from the American Institute for Cancer Research, suggest 

diet to be one of the most significant exogenous factors in colorectal 

cancer. Hence, processed and red meat combined with excessive alcohol 

consumption increases chances of developing CRC (Labianca et al., 

2010).   

In addition, the importance of proper physical activity plays a key role for 

colorectal cancer prevention even though evidence is stronger for colon 

than for rectum cancer (Wiseman, 2008). Thus, body and abdominal 

fatness along with overweight are also causes of CRC cancer.  

Furthermore, there are non-dietary risk factors like age, smoking tobacco 

(Giovannucci, 2001), chronic consumption of non-steroidal anti-

inflammatory drugs (Asano & McLeod, 2004), combination with other 

colorectal diseases (i.e Chron’s) (von Roon et al., 2007) and ulcerative 

colitis (Eaden et al., 2001), genetic predispositions, and metabolic 

syndrome (Ahmed et al., 2006).  
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Most cases of CRC are developed sporadically although in around 5% of 

the cases it can be hereditary (Kwak & Chung, 2007). Genetic factors 

related to CRC propensity are polyposis or non-polyposis syndromes. 

Most common polyposis syndrome is familial adenomatous polyposis 

(FAP) (Waller et al., 2016), associated with mutations or losses of APC 

gene called adenomatous polyposis coli. It is an autosomal dominant 

inherited disorder causing early appearances of thousands of 

adenomatous polyps around the colon. Without treatment this contributes 

to colon cancer appearance by the age of 35-40 years. The other 

syndrome, hereditary non-polyposis colorectal cancer (HNPCC) or Lynch 

syndrome is an autosomal dominant condition. It is associated with six 

DNA mismatch repair genes, most common of which are MLH1 and MSH2 

(Lynch & Lynch, 2000). 

1.1.3 Pathology 

The colon and rectum are part of the large intestine, being colon a major 

part of the large bowel. Its functions are absorption of water, electrolytes, 

and vitamins (Azzouz & Sharma, 2021). Besides, forming, and propelling 

stool in direction to the rectum for posterior elimination. In some literature, 

the word colon is used to designate the large intestine creating a 

confusion. As well as the terms colon and colorectal cancer where both 

affect the large intestine but start in different places, first one located in the 

colon and the second either in the colon or rectum. Colon and rectal cancer 

are grouped together because of similar features like incidence, 

symptoms, risk factors and genetic conditions.  

Colon and rectum contain four layers which are mucosa, submucosa, 

muscularis propia and serosa. Starting from the exterior part, serosa is the 

outer surface and contains sheets of connective tissue. The main function 

of serosa is protection from the spread of any inflammatory or malignant 

process. Next layer is muscularis propia including the inner circular layer, 

the intermuscular space and outer longitudinal layer. The major function of 

muscularis propia is propelling food through the gut. Adjacently, there is 

the submucosa layer with diversity of inflammatory cells, lymphatics, 

nerves and ganglion cells. Here is where the arteries and venous channels 

are found. Its function is to allow the junction of mucosa and muscular 

layer. Finally, the mucosa, which is the inner layer with structural and 

functional complexity. It is the most important layer of the gastrointestinal 

tract because of its absorptive function. Mucosa divides into three layers: 

epithelium, lamina propia and muscular muscosae. Epithelium is in direct 

contact with the intestinal lumen, it is composed of a single monolayer of 

colonocytes invaginating towards the stroma creating the crypts. This 

project is focused on the colon crypts at the epithelium (Jaladanki & Wang, 

2011).  

Colon and intestine crypts contain stem cells (SCs) at the bottom, transit-

amplifying cells (TAs) in the middle and fully differentiated cells (FDs) at 
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the top of the crypt. SCs divide and differentiate while ascending the crypt 

to form mature colonocytes (figure 1). Moreover, in this case, they are 

responsible for tissue regeneration of the intestine. There are two types of 

SCs: central stem cells (CeSCs) located at the very bottom and border 

stem cells (BSCs) located between CeSCs and TA with high differential 

potential (Mahdipour-Shirayeh & Shahriyari, 2018). Transit-amplifying 

cells give place to three differentiated cell types which are enterocytes, 

goblet and enteroendocrine cells (Barker et al., 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

The most used stem cell marker in crypts is leucine-rich-repeat containing 

G-protein-coupled receptor 5 (Lgr5 or Gpr49). It is a Wnt target gene that 

allows to mark stem cells in various tissues and cancers. Thus, when there 

is expression of Lgr5+ it means that there are stem cells present (Barker 

et al., 2007). Another possible marker for intestinal SCs is Eph receptor 

B2, a tyrosine kinase transmembrane molecule (EphB2). It is also a Wnt 

target gene as the activation of Wnt pathway that it will be explained later 

contributes to expansion of the crypt (Merlos-Suárez & Batlle, 2008). 

Intestinal stem cells have high expression of Lgr5 and EphB2 and this 

expression decreases to become inexistent as the cells differentiate.  

The purpose of using stem cell markers is to isolate the intestinal epithelial 

stem cells using fluorescence-activated cell sorting (FACS) and to 

visualize their gradient of expression.   

 

Molecular pathogenesis of CRC is heterogeneous and contains multiple-

step processes, usually develops after 10 years. Most common type of 

colorectal cancer are adenocarcinomas, whereas the others can be 

carcinoid tumors, gastrointestinal stromal tumors, lymphomas, Turcot 

Figure 1: Types of cells forming the 

crypts. Stem cells at the bottom, central 

and border SCs. Following a significant 

part of transient amplifying cells. Finally, 

the fully differentiated cells at the top of 

the crypt. (Barker et al., 2007). 
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syndrome, Peutz-Jeghers syndrome and familiar CRC.  Hence, this project 

is about adenocarcinomas. 

As said, high percentage of colorectal cancers occur after mutations at the 

abnormal cells of the mucosa layer that keep dividing forming a polyp 

usually benign, slowly growing, encapsulated and non-invasive. There are 

different types of polyps, classified histologically into two categories 

neoplastic and non-neoplastic, being adenomas or adenomatous polyps 

the most common (Colucci et al., 2003; Mansoor et al., 2013) (table 1). 

 

Histological 
classification 

Polyp type Malignant 
potential 

 
Neoplastic 

Tubular adenomas 
Tubulovillous adenomas 

Villous adenomas 
Serrated adenomas 

 
Yes 

 
Non-neoplastic 

Hyperplastic 
Hamartomatous 

Lymphoid aggregates 
Inflammatory polyps 

 
No 

Table 1:Classification of colorectal polyps. This table contains a classification of the different type 

of polyps with information about histological classification and potential malignancy. 

 

Since the last decade, researchers have identified four pathways of 

colorectal carcinogenesis. These are chromosomal instability (CIN), 

microsatellite instability (MSI), CpG island methylator phenotype (CIMP) 

and serrated pathway (SP) (figure 2).  

Chromosomal instability is the most common path adenoma-carcinoma by 

84% of sporadic CRC. It is an alteration of the structure and number of 

chromosomes including translocations, deletions, gains, and similar 

chromosomal changes. Resulting in high number of somatic copy number 

alterations (SCNA), mutations in oncogenes and tumor suppressor genes 

such as APC, TP53, KRAS and BRAF. In addition, mutations on APC 

genes that are negative regulators for WNT signaling pathway cause 

hyperactivation of WNT pathway. And this event creates uncontrolled 

proliferation and differentiation of crypts (Müller et al., 2016).  

Microsatellite instability is accounting for 16% of CRC and it’s based on 

mismatch repair gene inactivation, as a result produces high frequency of 

replication errors. Three-quarters of MSI tumors are sporadic and present 

hypermethylation of mismatch repair gene MLH1 triggered by CpG island 

methylation phenotype, thus silencing the MMR gene. Furthermore, 

sporadic hypermutated cancers have BRAFV600E or similar mutations that 

are used to distinguish sporadic MSI from hereditary MSI tumors. The 

remaining one-quarter corresponds to hereditary MSI tumors such as 

Lynch syndrome and FAP, containing somatic mutations on mismatch 
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repair genes (MMR) like MSH2, MSH6, MLH1 and PMS2 (Harada & 

Morlote, 2020).  

CIMP pathway is responsible for the hypermethylation of promoters CpG 

island loci causing the inactivation of tumor suppressor genes. CIMP is not 

exclusive like CIN and MSI, it overlaps with MSI in the cases of sporadic 

MSI tumors that present CIMP methylation of MLH1 gene (Harada & 

Morlote, 2020). 

A small minority of CRC can develop throughout the serrated pathway. 

Even though most serrated polyps are benign, there are some that can 

progress into carcinoma. The two premalignant precursors in SP are 

traditional serrated adenomas (TSA) and sessile serrated adenomas or 

polyps (SSA/P). In this case, characterization is not made by mutations, 

but by morphological changes because SP pathway overlaps with CIN and 

MSI. TSAs are microsatellite stable present KRAS mutations and 

sometimes BRAF. Morphologically cytoplasm is eosinophilic and central 

elongated hyperchromatic nuclei. On the other hand, SSA/P present BRAF 

mutations and CIMP as an early feature with MLH1 promoter 

hypermethylation. Morphologically crypts have abnormal form of inverted-

anchor and horizontal growth (O’Brien et al., 2015). 

Hence, there are two molecular pathological classification systems that 

use these four principles. First the Cancer Genome Atlas project (TCGA) 

and then the CRC Subtyping Consortium (CRCSC). TCGA project is found 

on genomic and transcriptomic analysis for CRC characterization using 

sequencing technologies and arrays (Müller et al., 2016). And CRCSC, is 

based on gene expression profiling into four Consensus Molecular 

Subtypes (CMS) (Guinney et al., 2015).  
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Figure 2: Molecular classification systems of CRC. TCGA classification on the left side and CMS 

on the right side. TCGA classification is divided into two major groups according to the mutation 

rate: (1) 84% CIN, non-hypermutated (low mutation rate) with high frequency of somatic copy 

number alterations (SCNA), microsatellite stability (MSS) and deregulation of WNT pathway most 

of the times by APC mutation. (2) 13% Hypermutated tumors with microsatellite instability (MSI) 

due to defective mismatch repair (dMMR) majority of cases triggered by MLH1 silencing via CpG 

island methylation phenotype (CIMP). Approximately 80-90% of sporadic hypermutated cancers 

present BRAF mutations. (3) 3% Ultramutated tumors with proofreading mutations leading to 

defective mismatch repair and MSI, this group corresponds to hereditary CRC as Lynch syndrome 

(LS) and Familial adenomatous polyposis (FAP). On the right side, CMS classification based on 

the expression signatures, four CMS groups: (1) 14% MSI-Immune, (2) 37% Canonical, (3) 13% 

Metabolic, (4) 23% Mesenchymal and a residual unclassified group with mixed traits. The molecular 

features of each subtype are indicated above. Author’s figure.  

 

1.1.4 Diagnosis methods 

Diagnosis of CRC is made histologically by extracted biopsy sample during 

endoscopic tests like colonoscopy. Nowadays, the most common 

histological tool used worldwide by clinicians to stage and classify CRC is 

the Tumor-Node-Metastasis system (TNM). Created by Pierre Denoix in 

1940 it has evolved to this day incorporating the latest updates through the 

American Joint Committee on Cancer (AJCC). This system name stands 

for primary tumor aspects (T) like size, local growth, and bordering 

structures. Followed by the extent of the lymphatic node metastasis (N) 

like number and location of the nodes involved and the distant metastasis 

(M). Additionally, each letter of the TNM system can be combined with 

another letter or number from zero to four allowing a more accurate staging 

of the cancer and facilitating a proper treatment plan (Telloni, 2017).  
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Another approach for diagnosis is using molecular markers such as key 

mutations happening during CRC. Since the knowledge on colorectal 

molecular pathogenesis is properly described, it can be used as a 

reference on diagnosis. Hence, as explained before, each group of CRC 

has its characteristic mutations and traits that can be used for the purpose 

of an accurate diagnosis. Likewise, there are types of screening like fecal 

test (guaiaic fecal occult blood test, gFOBT; fecal immune-chemical test, 

FIT and fecal DNA test), radiologic test (computed tomographic 

colonography) and blood test (Septin9 gene test)(Maida et al., 2017).  

 

1.2 Lipids 

In the past, shortage of techniques allowing massive lipid analysis has made 
it difficult to progress research on these topics. Lipidomics is a discipline that 
studies cellular lipids structures, functions, pathways, networks, and 
interaction with other cellular components on a large scale based on analytical 
chemistry principles and technological tools (Yang & Han, 2016). To control 
the abundance as well as the distribution of the molecular variants of lipids 
regarding different lipid species, the cells spend significant amount of energy 
in terms of enzymes to accomplish it. Thus, changes in the lipid composition 
at the level of affecting the pathophysiological state of cells increases the 
interest in the field of lipidomics allowing a desire to improve and dedicate 
more attention to identify novel lipid functions and interactions. That is why 
there is a growing interest on lipids in biomedical research combining multi-
omics approaches (Kopczynski et al., 2017).  

Techniques like mass spectrometry (MS), an analytical tool that identifies 
chemical species based on their mass-to-charge ratio (m/z) made a significant 
positive impact allowing to untangle lipid heterogeneity as well as roles of lipid 
metabolism in biological processes. Likewise, imaging mass spectrometry 
(IMS) improves the knowledge on lipids, proving a regulation of their 
distribution and presenting the visualization of hundreds of spatially organized 
lipid phenotypes in their context. In addition, it demonstrates that cell lipidome 
is dependent on cell type and changes like differentiation and tumorigenesis. 
In IMS the ionization source can be an ion beam, a laser on a solvent of 
charged droplets. In this case, the ionization source is a laser called MALDI 
(Matrix Assisted Laser Desorption/Ionization) where the lipid identification is 
based on comparing the m/z ratio values and the lipids in the software lipid 
database. The result is the capability of visualizing pixel by pixel the changes 
that happen in the lipidome through the crypt following a mathematical 
equation of a first-degree equation (Barceló-Coblijn & Fernández, 2015) 
(figure 3).  
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Figure 3: Analysis of human colon section by MALDI-IMS. Showing that a subset of lipids: 

phosphatidylinositol and phosphatidylethanolamine plasmogens change their signal intensity through 

the crypt and differentiation process. On the right, the diagram of the crypt indicating the direction of the 

differentiation. There is an increasing gradient of lipids containing mono-unsaturated fatty-acids from 

bottom to top (following a first-degree equation (in green colors), while a decreasing gradient of lipids 

containing arachidonic acid (in pink colors) (Bestard-Escalas et al., 2019). 

Lipids are relatively small compared to other biological macromolecules and 

changes in their composition most of cases are due to the reposition of a single 
or double bond. Moreover, lipids are key components of cellular membranes 
and lipid particles for instance lipoproteins. Even though they are complex 
regarding species, they have essential roles in cellular barriers, membrane 
matrices, signaling pathways and energy storage. In addition, lipids are very 
dynamic, continuously changing because of physiological, pathological, and 
environmental conditions (Yang & Han, 2016). Furthermore, several studies 
validate that membrane lipids are very good candidates for biomarkers 
because of the high specificity of the lipidome used to categorize cells in line 
with its origin and pathophysiological state (Bestard-Escalas et al., 2019). 

The classification of mammalian lipid categories according to the Lipid Maps 
Structure Database includes eight categories: fatty acids, 
glycerophospholipids (or phospholipids), sterols, sphingolipids, glycerolipids, 
prenol lipids, saccharolipids and polyketides. Acetyl-coA is their common 
precursor and the major lipid components in mammalian membranes are 
phospholipids and sphingolipids. There is a challenge regarding lipid analysis 
due to lipid complexity, many membrane lipid species are similar as to 
chemical structure. Specially, phospholipids and sphingolipids that contain 
numerous different molecules depending on the fatty acids they have present 
in each case, some cases with differences only in a double bound but 
advances in mass spectrometry methods for lipid analysis has improved over 
the last years (Bestard-Escalas et al., 2019).  

Cell membrane, also known as plasma membrane, is a phospholipid bilayer 
with amphipathic behavior. The hydrophobic domain contains fatty-acid tails 
while the hydrophilic domain contains the head groups. This way polar head 
groups are in contact with the water whilst hydrophobic core is not and allows 
the activity for transmembrane proteins. Lipid membrane composition varies 
depending on the tissue and subcellular organelle. At first, scientists believed 
that lipids were randomly allocated through the membrane leaflet. On reality, 
there are two organizational levels one between the two leaflets (inner and 
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outer leaflet, transversal asymmetry) and the other within each leaflet (lateral 
asymmetry). Lipid composition of the membranes determine biophysical 
properties of such membrane. Interestingly it is the transversal asymmetry 
which includes differences in the composition among the two leaflets with 
functions modulating properties of the bilayer such as surface charge, 
membrane potential, permeability, shape, and stability. Inner leaflet contains 
phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol, 
meanwhile the outer leaflet contains phosphatidylcholine, sphingomyelin, and 
glycolipids. The phospholipids are asymmetrically placed among the two 
halves of the bilayer as well as the cholesterol (van Meer et al., 2008) (figure 
4).  

 

Figure 4: Plasma membrane structure. Inner leaflet contains phospholipids such as 

phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol. Outer leaflet contains 

phosphatidylcholine, sphingomyelin, and glycolipids. In addition, there are phospholipids and cholesterol 

placed between in both leaflets of the membrane bilayer. Cooper, G. M., & Hausman, R. E. (2009). The 

cell: A molecular approach. Washington, D.C: ASM Press.  

Phospholipids have amphipathic nature, containing hydrophilic polar region 

and hydrophobic non-polar region. They are the major component of plasma 
membranes. Furthermore, phospholipid synthesis happens at the 
endoplasmic reticulum. The structure consists of hydrophilic head (phosphate 
group attached to glycerol) and two hydrophobic tails of fatty acids. Moreover, 
the phosphate group can be replaced by ethanolamine, choline, or serine. In 
addition, the classification of main phospholipids is phosphatidylcholine, 
phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and 
phosphatidate (Quinn, 2002). 

Sphingolipids have amphipathic nature, containing hydrophobic and 
hydrophilic properties. Starting with the hydrophobic region that comprises 
sphingoid base with a fatty acid chain attached. On the other hand, the 
hydrophilic region has phosphate groups, sugar residues and hydroxyl groups. 
As said, sphingolipids are crucial components of plasma membranes. They 
start synthesizing at the endoplasmic reticulum and ends in the Golgi 
apparatus where takes place the addition of carbohydrates and other 
components on the ceramide. Different molecules are generated depending 
on the polar head that they attach. Hence, depending on the modifying 
structures they are classified as sphingomyelins (phospocholine or 
phosphoethanolmine and ceramide) or glycosphingolipids (cerebrosides and 
gangliosides) (Futerman & Riezman, 2005). 
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1.3 Weighted gene co-expression network analysis 

Before getting deep with weighted gene co-expression network analysis, I am 
going to contextualize some important bioinformatic aspects. The on growing 
omics sciences are a wide field dedicated to study biological processes like 
genomics, transcriptomics, lipidomics, proteomics and so on (Li et al., 2017). 
This project is focused on transcriptomics and lipidomics, being the study of 
cell RNAm transcripts and the study of the lipidome of cells respectively. 
Improvements in transcriptomics have taken the identification of differentially 
expressed genes on to the next level thanks to technologies like microarrays 
(Olivier et al., 2019). Microarray technology allows to study the expression of 
multiple genes at once. Consists of placing thousands of gene sequences in 
known locations on a glass slide which is known as the gene chip. Where the 
sample of either DNA or RNA is placed in contact with the gene chip. When 
complementary base pairing among sample and gene sequence happens, the 
chip emits light which is measured (Loewe & Nelson, 2011). The vast majority 
of data obtained from experiments are analyzed using the R and Rstudio 
platform presenting many advantages such as the ability to process higher 
amounts of samples data and obtain conclusions.  

In addition, after Sanger sequencing there has been an improvement because 
of the development of high-throughput technologies. Since then, they have 
become crucial in biology and medicine research specially genomics, 
epigenomics and transcriptomics. Hence, using high-throughput technologies 
allows to sequence multiple DNA molecules in parallel and creating large data 
sets for later analysis. Here is when network biology became popular, 
providing deeper understandings on complex biology systems and modularity 
in tissue of cellular networks. These correlation networks used in bioinformatic 
applications give place to the development of the weighted gene co-
expression network analysis (WGCNA) by Steve Horvath and his colleagues 
Peter Health and Bin Zhang (Churko et al., 2013).  

WGCNA analysis is very helpful in system biology, used to describe correlation 
patterns between genes from microarray samples. It is useful for finding 
clusters which are the modules of highly correlated genes, also allows to 
summarize clusters through module eigengene. Besides, using eigengene 
network method it can relate modules among them and to external traits such 
as in this case, relative expression of lipid species.  Moreover, it can calculate 
module memberships and assist network-based gene screening techniques 
allowing an easier identification of possible biomarker candidates or 
therapeutic targets. The network construction that takes place in WGCNA 
analysis contains the nodes that represent genes, this nodes are connected 
depending on their co-expression in the chosen tissue samples, in this case 
colon epithelium. (Langfelder & Horvath, 2008).  

All this can be achieved by R studio using WGCNA software package 
containing numerous functions that allow the weighted gene co-expression 
network analysis. For instance, functions for network construction, module 
detection, module and gene selection, topological properties calculations, data 
simulation and visualization.  
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To facilitate the comprehension of key terms explained and yet to be explained 
in the methodology, I provided a table of definitions.  

Term Definition 
Correlation network Constructed based on correlations 

between quantitative measurements with 
a matrix structure where the row 
corresponds to the nodes of the network 
and the column to sample measurements. 
This correlation network can be used to 
identify clusters (known as modules) that 
contain the nodes. 

Node Contains the genes in co-expression 
networks. 

Node profile Is the gene expression network 
Node significance Is the measurement of the gene 

significance (GS). 
Co-expression network Is an undirected, weighted gene network. 

The nodes of such a network correspond 
to gene expression profiles, and edges 
between genes are determined by the 
pairwise correlations between gene 
expressions. Through raising the absolute 
value of the correlation to a power β ≥ 1 
(soft thresholding), the weighted gene co-
expression network construction 
emphasizes high correlations at the 
expense of low correlations. 

Modules Are clusters of highly interconnected 
genes. In an unsigned co-expression 
network, modules correspond to clusters 
of genes with high absolute correlations. 
In a signed network, modules correspond 
to positively correlated genes. 

Connectivity Regarding each gene is the sum of 
connection strengths with the other 
network genes. At co-expression 
networks it measures the correlation of a 
gene with all the other genes in the 
network. 

Intramodular connectivity (KIM) Allows to measure the degree of 
connectivity or co-expression of a given 
gene regarding the other genes of a 
particular module. It is understood as a 
measure of module membership. 

Module eigengene (E) Considered as the representative of gene 
expression profiles in a module. Is the 
main component of a module. 

Eigengene significance When a microarray sample trait is 
available it can be correlated with the 
module eigengenes. Eigengene 
significance is the correlation coefficient. 

Module membership (MM) 
 

Also known as eigengene-based 
connectivity KME. It is a measure for each 
gene. And this estimate measurement of 
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module membership comes from the 
correlation of its gene expression profile 
with the module eigengene of a given 
module. When the MM value is close to 0 
it means that this gene is not part of this 
particular module. Whereas if the value is 
1 o -1 this gene is highly connected to that 
module. The sign of the value translates 
into if the gene has positive or negative 
relationship with the module. 
In addition, MM is very related to 
intramodular connectivity KIM. 

Gene significance (GS) Use of GS measures allows to incorporate 
external information into the co-
expression network. The gene is more 
biologically significant when its value is 
very high. On the contrary, when its value 
is close to 0 indicates that this gene is not 
significant. 

Module significance Average absolute gene significance 
measure for all genes forming a module 

Hub gene Abbreviation of highly connected gene. 
Table 2: Glossary of most used WGCNA terminology. Autor’s table. 

 

 

2. Objectives and hypothesis  

The team of Lipids in Human Pathology has proven a relationship between 

membrane lipids and the tumorigenic process in CRC. Hence, the lipidome of 

colonocytes is sensible to changes happening during differentiation from stem 

cell to fully matured colonocyte and during the malignancy process. Besides, 

stem cells have higher levels of phospholipids containing arachidonic acid 

(molecule with key role on cell signaling). These levels tend to decrease regularly 

throughout cell differentiation. Moreover, the levels of these lipids increase in the 

tumoral colonocytes. In order to get more knowledge on the regulatory 

mechanisms involving lipid composition two objectives are proposed. 

Objective 1: Performing a system biology approach by weighted gene co-

expression network analysis using sphingolipid SM d34:1. 

Objective 2: Evaluate the incorporation of deuterated fatty acids in healthy colon 

and tumor organoids and between the differentiated and non-differentiated 

regions of the crypt.  
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3. Methodology  
 

3.1 Weighted gene co-expression network analysis 

In order to carry out the WGCNA analysis there are several steps included 
that can be divided in two categories. First category before the WGCNA 
analysis contains steps such as sample collection, isolation of crypts, 
fluorescence activated cell sorting sample preparation, FACS gating and 
sample collection (for lipidomics analysis by MALDI-IMS and for 
transcriptomic analysis by microarray technology), analysis by MALDI-
IMS, transcriptome profiling microarray. Second category is the WGCNA 
analysis.  

 

Figure 5: Scheme of the general methodology. Autor's figure. 

3.1.1 Sample collection 

The human sample collection is from colon endoscopic biopsies, 
surgical colon fragments or glioblastoma surgical biopsies. All the 
sample collection for this study was specifically approved by the 
Ethics Research Committee of the Balearic Islands (IB 2118/13 PI, 
IB 2291/14 PI, IB 3350/16 PI, IB3626/18 PI). The informed consent 
was obtained from each patient before sample collection. Surgical 
colon specimens were obtained by the Department of General and 
Digestive Surgery at the HUSE (Palma, Spain) and were dissected 
by the Department of Pathological Anatomy unit.  
Fresh primary tumor samples and distant non-tumoral tissue were 
collected from the same patient.  
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3.1.2 Isolation of crypts  

The protocol was adapted from (Merlos-Suárez et al., 2011). 
Healthy and tumor colon crypts are isolated from CRC surgical 
patients derived biopsies. First, samples were washed twice with 
standard PBS, cut into 1-2 cm fragments using surgical scissors, 
and incubated with 10 μM DTT then twice dissolved during 5 min in 
PBS at room temperature. After removing the PBS, fragments were 
washed and then incubated during 45-60 min in 8 mM EDTA-HBSS 
at 4 °C. Finally, the supernatant was replaced with 5% FBS-HBSS 
(staining buffer, SB) and crypts were isolated by vigorously shaking 
of the colon fractions for 4 min. The supernatant containing the 
detached crypts was recovered. This step was repeated at least 3 
times to obtain a fraction highly enriched in crypts. To sum up, 
crypts were washed with SB and centrifuged (100×g, 4 °C, 10 min) 
three times. 

 

3.1.3 Fluorescence activated cell sorting sample preparation 

Healthy crypts or epithelial enriched fractions were centrifuged and 
incubated with TrypLE™ Express Enzyme. Incubations were for 10-
15 min at 37 °C with gentle agitation. Mechanical disaggregation by 
pipetting was performed to ensure high cell disaggregation. 
Digestion buffer was neutralized by adding FBS and filtered through 
100 and 40 μm cell strainer. Single-cell fraction was recovered at 
100×g, 10 min, 4 °C. Pellet was resuspended in 250 μl of SB and 
incubated 45 min at 4 °C with the following mix of antibodies: CD31, 
CD45, CD11b, CD117, EpCAM, EPHB2. Samples were washed 3 
times with SB (100×g, 10 min, 4 °C) and DAPI solution was added 
before cytometry analysis, DAPI serves as a viability marker.  
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Figure 6: Sorting of colonocytes according to their EphB2 expression used to classify them depending on 

their differentiation degree. As previously said, levels of EphB2 expression tend to decrease as cells 

differentiate along the crypt. Subfigure a show again the structure of the crypt with the types of cells in each 

region. Whereas stem cells are located in the bottom, they divide and give place to different colonocyte 

signatures that will keep differentiating along their way up. Subfigure b are immunofluorescent images of 

histological cuts from colon tissue samples both healthy and malignant, showing regions of EphB2 

expression. It’s gradually expressed along the crypt (red tonality) being most abundant at the base of healthy 

crypts, while the gradual expression is altered in the malignant tissue. Subfigure c is an immunofluorescent 

image as well, but the difference is that contains isolated crypts; besides that it can be observed the same 

characteristics as in (b). Subfigure d is a plot from the FACS, where after colonocytes are disaggregated 

they can be separated into different subpopulations according to EphB2 expression. This case they 

separated into four groups: high, medium, low and negative but for this project it will be taken into account 

only the groups of high, low and negative. . (Jung et al., 2011; Merlos-Suárez et al., 2011; Pasquale, 2008) 
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3.1.4 FACS gating and sample collection  

The combination of antibodies used was to ensure the isolation of 
highly purified colon epithelial cells, according to their expression of 
EPHB2.  
CD31, CD11b, CD45 were used to mark endothelial, myeloid, and 
leukocytic populations, respectively. EpCAM was used to mark the 
colon epithelial cell population, CD117 to mark colon epithelial cell 
subpopulation, and EPHB2 was used to subdivide the EpCAM+ into 
different subpopulations based on EPHB2 expression. For each 
sample, 3 different tubes were prepared for cytometry analysis and 
gating adjustment: 1. Negative control, 2. The Fluorescence minus 
one control (FMO) (CD31, 45, 11b, 117 and EpCAM) and 3. Full 
staining tube (all antibodies including EPHB2). Negative control was 
used to adjust background and sample fluorescence intensity. FMO 
to adjust EPHB2 + gating for FACS. Full tube contained the 
complete sample to process by FACS. Samples were collected in 
PBS (1.5-ml microtubes), vortex for 1 min, pelleted at 100×g, 10 
min, 4 °C. Pellets were stored at -80 °C. 
The protocol used in this case is an adaptation of Merlos-Suárez 
(Merlos-Suárez et al., 2011). 
FACS cells processing and sampling preparation for MALDI-IMS 
analysis contained few additional steps. The EphB2 subpopulations 
obtained were thawed by heat-shock (1 min, 37 °C) and 
immediately pelleted by centrifugation (300×g, 15 min, 4 °C). Pellets 
were kept on ice and homogenized by pipetting in 5-10 μl of PBS 
prior to apply the sample by dripping 0.5-1 μl drops, one on top of 
each other on a standard glass slide. Samples from same patient 
and condition were distributed on the same glass slide, separating 
into single drops each EPHB2 subpopulation. A total of 48 EphB2 
subpopulations were analyzed from healthy and tumor samples. 
 

3.1.5 Lipidomics analysis by MALDI-IMS 

Samples were analyzed in the SGiker Lipidomic Service 
(UPV/EHU, Bilbao, Spain). Briefly, histological sections obtained 
from patient-derived biopsies or surgical sections were prepared 
and analyzed by MALDI-IMS as described in Garate et al (Garate 
et al., 2015). DAN (1,5-diaminonaphtalene) was used as matrix for 
negative detection mode. Matrix was sublimated with the aid of a 
commercial glass sublimator. Scans were performed in both 
negative- and positive-ion mode, using a MALDI-LTQ-Orbitrap XL 
analyzer.  
The resulting lipid spectra were aligned using the Xiong method 
(Xiong et al., 2012) and was normalized to the total ion current. Lipid 
assignment was based on the comparison between the 
experimental m/z and the species in the software’s database and in 
the lipid maps database (www. lipidmaps.org).  
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3.1.6 Transcriptomic analysis by profiling microarray of 
EphB2+ cell population sorted by FACS  

For the transcriptomic analysis, RNA was extracted and then a 
purity analysis was made. RNA extraction was made from the FACS 
isolated cells of the CRC patients using RNeasy Micro Kit (Qiagen). 
Approximately 1-1.5·105 FACS cells were collected in 2 ml Rnase-
free Eppendorf containing 350 μl of Buffer RLT and vortexed 2 min 
to ensure cell disruption. RLT volume was adjusted to keep the 
proportion of 350 μl RLT for every 100 μl of sorted cells. At this 
point, cells were stored at 80 °C until processed. Then, frozen 
lysates were incubated at 37 °C in a water bath, until completely 
thawed and salts are dissolved. Samples were centrifuged at 
5000×g, 5 min, 20 °C, to eliminate undissolved materials. The 
supernatant was transferred to a gDNA Eliminator spin column and 
manufacturer instructions were followed. Total RNA was eluted of 
the RNeasy MinElute spin column by adding 14 μl RNase-free water 
directly to the center of the spin column membrane and centrifuged 
for 1 min at full speed, 20 °C to elute the RNA. A final volume of 12 
μl of concentrated RNA was obtained. 
 
For assessing the purity of the RNA, it was used the nanodrop 
(multi-well spectrophotometer) using 1 or 2 µl of solution. In any 
case, the 260/280 ratio was between 1.7 and 2.0 to be acceptable 
for analysis. 
 
Then for the transcriptome profiling microarray of EphB2+ cell 
subpopulations sorted by FACS was used Clariom S Pico Assay, 
human (Affymetrix). This made possible the characterization of 
gene expression levels of approx. 15,000 viable cells of each of the 
EphB2 subpopulations isolated (high, low intensity and the negative 
control). The array was prepared following step by step the 
manufacturer instructions. The quality of the array data was 
assessed and normalized using dedicated software.  
 

3.1.7 WGCNA analysis  

In this case, WGCNA analysis was performed from microarray data 

containing expression profiles according to the table I at the annex. 

In table I is found the clinical information such as age, sex, 

localization of the tumor, histological type (all being 

adenocarcinomas), TNM classification and specification of the 

analysis performed in each case. Given the limited amount of 

sample and limitations for instance the considerable amount of 

sample required to perform lipidomics analysis, it wasn’t possible to 

perform all the types of analysis for each patient. That is why table 

I specifies the analysis performed in each case. Moreover, to 

compensate the methodological limitation that one patient sample 
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wasn’t enough for doing the two types of analysis (transcriptomics 

and lipidomics) we used samples from different patients but with 

same condition tending to maximally homogenize using TNM 

classification. On the other hand, lipidomic data was normalized to 

the total ion current (TIC) the transcriptomic data used was given to 

me already normalized by the standard protocol.  

Weighted correlation network analysis contains five key steps that 

are indicated in the figure 7 below. An overall purpose is to 

transform genomic data into a scale-free network and use co-

expression and others as a measure of connectivity between genes.  

 

 

Figure 7: General scheme of weighted gene co-expression network analysis. This 
methodology consists of several steps. First the construction of the gene co-expression 
network using interaction patterns among genes, measuring correlations. Then the 
identification of modules containing the highly interconnected genes, this step allows 
hierarchical clustering and dynamic tree cuts. Next, there is the possibility of relating 
modules with external information such as in this case lipid traits (relative normalized 
expression of lipidic species at the lipid class). Therefore, one can study module 
relationships thanks to the eigengene networks (that contain eigengene modules which 
are summary profiles of each module). In addition, allows to find possible biomarkers by 
assessing intramodular connectivity. Autor’s figure.  

First was made the gene co-expression network using interaction 

patterns between genes. Hierarchical clustering was performed 

using function hclust based on the average method. A similarity 

matrix among genes was made measured by correlation with values 

from -1 to 1 using spearman method. Resulting matrix is symmetric 

with number of rows and the number of columns equal to the 

number of genes included in the network.  

Then this matrix is transformed into an adjacency matrix to be more 

similar to a scale free network used in systems biology to later 

assess the number of nodes (genes in the co-expression networks) 

and their connectivity. For this step it was important to choose the 

type of network and decide the soft-threshold beta. Types of 

networks can be unsigned, signed, and signed hybrid. In unsigned 

networks, genes are similar if they are strongly correlated, whereas 

in signed network genes are similar only if they are positively 
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correlated and don’t consider genes with opposite correlation. In 

signed hybrid happens that negative associations are treated as 

zeros in the similarity matrix. For this study, unsigned network was 

chosen to be the more appropriate thus it is not omitting negative 

correlations such as the signed.  

Then to decide soft-threshold beta (value used to power the 

correlation of the genes meant to emphasize high correlations at the 

expense of low correlations and in some way to reduce the noise of 

the adjacency matrix) plots were made through WGCNA package 

called pickSoftThreshold where scale independence and mean 

connectivity plots (figure 8 and 9) were made and decided that the 

best values are twelve for healthy condition and twenty-two for 

tumor condition given the similarity between samples. So, we 

choose the power which produced higher similarity with a scale-free 

network.  

 

Figure 8: Determination of soft-thresholding power for the healthy condition in weighted 

gene co-expression network analysis (WGCNA) using scale independence and mean 

connectivity plots. Autor’s figure.  
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Figure 9: Determination of soft-thresholding power for the tumor condition in weighted 

gene co-expression network analysis (WGCNA) using scale independence and mean 

connectivity plots. Autor’s figure. 

Second big step was module identification to create the clusters of 

highly interconnected genes. Topological overlap matrix (TOM) was 

created from the adjacency matrix incorporating both direct and 

indirect relationships into TOM matrix. Additionally, TOM was 

transformed to represent dissimilarity among genes. TOM is a 

measure of similarity where larger values indicate more similarity 

between two genes, but for hierarchical clustering a measure of 

dissimilarity is needed so it was transformed to dissimilarity.   

Third step allowed to relate modules to lipidomics information by 

assigning connection to external traits and find biologically 

interesting modules. All this association analysis can be possible 

through module eigengenes, that summarize the expression 

patterns of the module’s genes across the samples. Thus, this 

module-trait associations were made by the correlation among 

module eigengene and the phenotype, which is the lipid traits, 

allowing the identification of modules highly correlated to the 

phenotype. Additionally, for each expression profile was calculated 

the gene significance (GS) as a value of correlation among 

expression profile and trait. Module membership (MM) was also 

defined as the correlation of expression profile and each module 

eigengene. 

Moreover, was made a functional enrichment analysis of the co-

expression modules. Where the modules were ranged by number 

of genes, p-value, Gene Ontology ID code, functionality of each 

gene as well as their term. Final two steps allowed the study of 

module relationships using eigengene network concepts and 

finding key drivers in interesting modules by intramodular 

connectivity for example, these steps were more interpretative 

rather than conceptual and will be commented on the results and 

conclusions.  
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The scripts made for this type of study followed the tutorial of  Peter 

Langfelder and Steve Horvath (Langfelder & Horvath, 2008). The 

tutorial is detailed and contains the standard scripts used for this 

analysis. A total of 16 scripts were applied and modified for this 

project, they can be found in the complementary folder. Starting with 

the general script containing the libraries and packages needed 

such as BiocManager, affycoretools, WGCNA, clusterProfiler, 

imager, stats, dplyr and DOSE. And then for each condition (healthy 

“S”, or tumoral “T”) there is a total of 8 scripts numerated in order 

and separated by their purpose.  

First, 01_prep_data.R the normalized expression set data was 

loaded and the two conditions were defined (high and low EphB2 

expression), then standard deviation and variance. Data was 

adjusted so that can be grouped by condition. On the other hand, 

csv file was loaded containing the lipid traits where rows 

corresponded to the samples defined by condition and position 

whilst columns represented the different lipids. 

Later, on 02_data_input_cleaning.R the expression data was 

transposed because it will be needed for the network constructure. 

With the function goodSamplesGenes was checked for missing 

values on genes. Next, samples were clustered to check on outliers 

using hclust function. Also, trait data was matched with the 

expression data. Last part of this script saved the expression data 

under an R.data file that was used for the following steps of the 

analysis.  

Network construction and module detection was made in the 

03_network_construction and module detection.R this step is the 

most important part on of the analysis. That’s why soft thresholding 

power was chosen from the pickSoftThreshold function. Then co-

expression similarity matrix was transformed into an adjacency 

matrix. To lower the background noise the adjacency matrix was 

transformed into a Topological Overlap Matrix. Additionally, 

hierarchical clustering was made to form the dendrogram with 

hclust function. Next, modules with similar profiles were merged and 

eigengenes were set to quantify co-expression similarity of entire 

modules. Finally, the network data was saved.  

Scripts 04_relating the consensus modules and 

04_PART_B_load_trait have on particularity and is that last one is 

directly ran from 04_relating the consensus modules. In those 

scripts was important to relate the modules with lipid traits. First 

were quantified module-trait associations by correlating eigengenes 

with lipid traits. Module trait relationship heatmap plot was made. 

Then MM vs. GS scatterplots were made for each module to 

quantify similarities of all genes in each module from 
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04_PART_B_load_trait. Furthermore, data frame was created 

containing information like probe names, gene ID, module color, 

GS, MM and p-Value of each module and saved on an excel file.  

05_interfacing network_GO was made the enrichment by Gene 

Ontology relating genes from each module to the genes that appear 

in GO database. Information like p-Value, GO ID’s or term name 

was saved on a file to later be used in tables 3 and 4. 

Finally remaining scripts 06_network visualization and 

07_cytoscape. First one was made to create plots of the network 

like network heatmap plot of all genes or from a selection of genes, 

eigengene dendrogram or eigengene adjacency heatmap. Last 

one, was made to create files for posterior export of the network for 

visualization on Cytoscape software. 

 

3.2 Organoid culture  

The protocol I used for organoid culture contains several important steps 
to follow. First and foremost, important is the sample collection, then the 
isolation of crypts from the sample. Followed by culture of crypts, organoid 
differentiation, and organoid passing. Then depending on the purpose, it 
can be followed by incubation with deuterated fatty acids and 
fluorescence-activated cell sorting. This part of organoid culture follows 
some same steps as on the WGCNA analysis methodology, and they are 
sample collection, isolation of crypts, fluorescence activated cell sorting 
preparation and FACS gating and sample collection.   

3.2.1 Sample collection 

As well as in the previous case, sample collection follows the same 
protocol. Sample collection is from colon endoscopic biopsies, surgical 
colon fragments or glioblastoma surgical biopsies. Surgical colon 
specimens were obtained by the Department of General and Digestive 
Surgery at the HUSE (Palma, Spain) and were dissected by the 
Department of Pathological Anatomy unit.  

Fresh primary tumor samples and distant non-tumoral tissue were 
collected from the same patient in order to proceed with the organoid 
culture steps.  

3.2.2 Isolation of crypts 

The protocol was adapted from (Merlos-Suárez et al., 2011). Healthy 
and tumor colon crypts are isolated from CRC surgical patients derived 
biopsies.  

Samples were washed twice with standard PBS, cut into 1-2 cm 
fragments using surgical scissors, and incubated with DTT then twice 
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dissolved during 5 minutes in PBS at room temperature. After removing 
the PBS, fragments were washed and then incubated during 45-60 
minutes in EDTA-HBSS at 4 °C. Finally, the supernatant was replaced 
with 5% FBS-HBSS (staining buffer, SB) and crypts were isolated by 
vigorously shaking of the colon fractions for 4 minutes. The supernatant 
containing the detached crypts was recovered. This step was repeated 
at least 3 times to obtain a fraction highly enriched in crypts. Finally, 
crypts were washed with SB and centrifuged (100×g, 4 °C, 10 min) 
three times. 

3.2.3 Obtention of patient derived organoids from colon crypts 

This part of the methodology was made in laminar flow cabinet. First 
supernatant was removed and resuspended with Advanced 
DMEM/F12 medium supplemented with Primocin, GlutaMax, HEPES 
and FBS. Then mixed the isolated crypts with Matrigel Matrix at a rate 
of 10 crypts per µl of Matrigel at 4ºC using a pipette. Next, using a P-
100 pipette, 25 µl of mixture drops (5 drops approx./ well) were seed 
into a 24-well culture plate avoiding bubble formation. After an 
incubation of 15 min at 37ºC upside-down to achieve Matrigel 
solidification, 300 µl of crypt medium was added per well. Finally, the 
plate was left in a humidified cell culture incubator (37ºC and 5% CO2) 
and only taken out when photos are made periodically at the cell 
observer microscope. Crypt-culture medium was replaced every 3 days 
(containing Wnt3a-conditioned medium, Primocin, GlutaMax, HEPES, 
B-27, Nicotinamide, N-Acetyl-L-cysteine, human EGF, human Noggin, 
human Big Gastrin, LY2157299 (TGFBR1 inhibitor), SB202190 (p38 
MAP kinases inhibitor), IGF-1, FGF2). 

3.2.4 Organoid differentiation  

To achieve organoid differentiation after 4-6 days in culture the growth 
factors such as PGE2, Nicotinamide, SB202190 were omitted. Wnt3a-
conditioned medium was reduced to 5% and then omitted 48 hours 
prior organoid harvesting. This protocol is an adaptation from T. Sato 
et al. 2011 and P. Jung et al. 2011 527,528. 

3.2.5 Organoid passing 

Performed once the organoids were stable and not growing anymore. 
Culture medium was replaced by 300 μl of Cell Recovery solution (that 
degrades the Martigel Matrix) and incubated one hour at 4ºC. Content 
of the wells was collected in 15 ml tube and pipetted several times 
gently. To remove the debris the solution in the 15 ml tube was 
centrifuged 40xg, 5-10 min at 4ºC. Later the supernatant was 
discarded. Organoid’s pellet was resuspended with TrypLETM Express 
and incubated 10 min at 37ºC. Then it was inactivated by adding 
Advanced DMEM/F12 medium supplemented with GlutaMax, HEPES 
and FBS. In addition, centrifugation at 1.200 rpm, 10 min at 4ºC was 
made to remove the supernatant. The remaining pellet was 
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resuspended in Advanced DMEM/F12 supplemented medium with 
Primocin, GlutaMax, HEPES and FBS. 
Depending on the experimental purpose, organoids were seeded back 
following instructions in 3.2.3 paragraph, or they were frozen. 

3.2.6 Incubation with deuterated fatty acids 

Depending on the experimental purpose in each case, colon 
organoids were incubated with 10 μM of arachidonic acid -d8 (AA-d8) 
before organoid harvest by the Matrigel Matrix disruption using 300 μl 
per well of Cell Recovery solution.  

3.2.7 Fluorescence activated cell sorting preparation 

Healthy crypts or epithelial enriched fractions were centrifuged and 
incubated with TrypLE™ Express Enzyme. Incubations were for 10-15 
min at 37 °C with gentle agitation. Mechanical disaggregation by 
pipetting was performed to ensure high cell disaggregation. Digestion 
buffer was neutralized by adding FBS and filtered through 100 and 40 
μm cell strainer. Single-cell fraction was recovered at 100×g, 10 min, 4 
°C. Pellet was resuspended in 250 μl of SB and incubated 45 min at 4 
°C with the following mix of antibodies: CD31, CD45, CD11b, CD117, 
EpCAM, EPHB2. Samples were washed 3 times with SB (100×g, 10 
min, 4 °C) and DAPI Solution was added before cytometry analysis. 

3.2.8 FACS gating and sample collection 

The combination of antibodies used was to ensure the isolation of 
highly purified colon epithelial cells, according to their expression of 
EPHB2.  
CD31, CD11b, CD45 were used to mark endothelial, myeloid, and 
leukocytic populations, respectively. EpCAM was used to mark the 
colon epithelial cell population, CD117 to mark colon epithelial cell 
subpopulation, and EPHB2 was used to subdivide the EpCAM+ into 
different subpopulations based on EPHB2 expression. For each 
sample, 3 different tubes were prepared for cytometry analysis and 
gating adjustment: 1. Negative control, 2. The Fluorescence minus one 
control (FMO) (CD31, 45, 11b, 117 and EpCAM) and 3. Full staining 
tube (all antibodies including EPHB2). Negative control was used to 
adjust background and sample fluorescence intensity. FMO to adjust 
EPHB2 + gating for FACS. Full tube contained the complete sample to 
process by FACS. Samples were collected in PBS (1.5-ml microtubes), 
vortex for 1 min, pelleted at 100×g, 10 min, 4 °C. Pellets were stored 
at -80 °C. 
The protocol used in this case is an adaptation of Merlos-Suárez 
(Merlos-Suárez et al., 2011). 
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4. Results and discussion  
 

4.2 WGCNA analysis  
 

Colorectal cancer is a leading cause of cancer death worldwide, its late 

detection contributes for becoming one of the deadliest. Hence the 

importance of studying the impact of colorectal cancer in the lipid 

composition during the differentiation process of colonocytes. Given that 

lipidome of colonocytes is sensible to changes occurring during 

differentiation from stem cell to matured colonocyte. With the purpose to 

get more knowledge on the regulatory mechanisms involving lipid 

composition, WGCNA analysis is the best suitable approach. Since it has 

already been used in cancer and genetic studies to explore complex 

relationships between genes and phenotypes by transforming gene 

expression data into co-expression modules.  

Before getting deep with WGCNA analysis, it is important to justify why 

both healthy and tumor conditions where studied. As said, the purpose is 

studying how lipid composition changes though differentiation. Thus, 

changes in the amount of sphingolipid type sphingomyelin where observed 

(figure 10). Overall composition between healthy and tumor condition 

remained similar but there are changes among high and low conditions 

which stand for stem cells and mature colonocytes (FD) respectively. 

Being higher levels of SM both in stem cells for healthy and tumoral 

condition. Quite reverse are the levels of SM in mature colonocytes being 

lower.  

 

Figure 10: Histogram of mean EphB2 expression levels regarding sphingomyelin total composition. 

High stands for high expression of EphB2 while low stands for low expression of EphB2. As 

described in the introduction, regions with high EphB2 expression correspond to stem cells like. 

Whereas regions with low EphB2 expression correspond to fully diferentiated or mature 

colonocytes. Autor’s figure. 
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4.2.1 Healthy condition 

As already said, this type of analysis allows to describe correlation 

patterns between genes from microarray samples, finding clusters 

and relating modules with external traits such as lipid expression 

levels.  

For the data aggregation, hierarchical clusters were created and 

representing them into dendrograms containing the samples. This 

was useful to check for outliers and the possible linkages between 

clustering. As we can see in figure 11 samples containing high 

levels of EphB2 expression are clustered all together and have 

more similarity than samples of low EphB2 expression.  

 

Figure 11: Hierarchical cluster represented by dendrograms based on the "average" 

method. This dendrogram created by hclust function, indicates the similarity between 

samples merging them into clusters. Autor’s figure. 

Then the first set of modules obtained by the Dynamic Tree Cut 

algorithm. Correlated modules were merged, and each colored row 

represents a color-coded module containing a group of highly 

connected genes as seen in figure 12.  



27 
 

 

Figure 12: Identification of gene co-expression modules via hierarchical average linkage 

clustering (Dynamic tree cut algorithm was used to identify modules, and genes in the 

same branch could be assigned to different modules). At the top is the hierarchical 

clustering plot whilst at the bottom are represented the modules with different colors 

respectively. Autor’s figure. 

Heatmap was made to see the interactions between modules and 

lipid traits (relative expression of lipid species normalized at the lipid 

class) (figure 13) a result of summarizing each module’s gene co-

expression by eigengene and then calculated the correlations of 

each eigengene with the lipid traits. It allows an easy identification 

of expression sets (modules) that are highly correlated to the 

phenotype. 

 In this case, modules correlating with high expression of EphB2 are 

strong positively correlated with our lipid of interest that is SM d34:1. 

Whereas, modules correlating with low expression of EphB2 are 

negatively correlated with this type of sphingolipid. Moreover, there 

are two visible patterns where the top modules have negative 

correlation with the first half of the lipid traits and positive correlation 

with the second half. On the contrary the central and lower modules 

present positive correlation with the first half of lipid traits and 

negative correlation with a minor portion of the second half. 
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Figure 13: Heatmap of the correlation between eigengene modules and lipid traits 

(normalized relative expression of lipid species to lipid class). Modules are present in the 

y axis whereas x axis contains the lipid traits. Thus, each row corresponds to a module 

eigengene, and each column corresponds to a lipid species. Every cell contains the 

corresponding correlation and p-value. Values of correlation range from -1 to 1 using a 

color scale blue for negatively correlated and red for positively correlated. Last column on 

the right named EphB2 stands for the levels of EphB2 expression red for high expression 

and blue for low expression. Autor’s figure. 

Selection of the best modules correlated to SM d34:1 was made 

according to correlation and p-value, assessed by module 

membership vs. gene significance plots (figure 14). Top four 
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modules significatively correlated were lightpink4 with correlation 

value of 0.69, mediumorchid3 with correlation value of 0.64, brown3 

with correlation value of 0.59 and magenta with correlation value of 

0.39. Each plot has the module genes distributed according to MM 

and GS, thus genes located in the upper left part are the ones more 

significant and are usually called module regulator genes. 

 

 

Figure 14: Plot of module membership (MM) vs gene significance (GS) for each of the top 

four modules.  Y axis represents gene significance for SM d34:1 whereas X axis 

represents module membership of the genes in the specific module. Values of correlation 

and p-value can be found below the title of each plot. Autor’s figure. 
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Enrichment analysis by Gene Ontology (GO) was made as seen in 

table 3. Its purpose is to extract conclusions from expressed 

genes in modules. By determining in which biological processes 

(BP), cellular components (CC) or molecular function (MF) are 

participating the genes.  

In this case, module lightpink4 contains genes involved mostly in 

biological processes, such as negative regulation of gene 

expression, fatty acid elongase complex, transmembrane-ephrin 

receptor activity, ephrin activity, inactivation of MAPK activity and 

negative regulation of calcium-dependent cell-cell adhesion. 

Whereas mediumorchid3 contains genes involved mostly in 

molecular functions regarding lipid metabolism regulation, for 

example inositol tetrakisphosphate 1-kinase activity, inositol 

phosphorylation and fatty acid elongase complex.  

Module brown3 genes are involved in biological processes and 

molecular functions such as inactivation of MAPK activity and 

negative regulation of calcium-dependent cell-cell adhesion. 

Genes from magenta module are majority involved in biological 

processes regarding cell division like interkinetic nuclear migration, 

nucleosome and chromatin assembly and negative regulation of 

centriole replication. 

Table 3: Significantly enriched functional terms of genes in most significant modules 

selected by correlation and p-values. This table contains information regarding four 

modules which are lightpink4, mediumorchid3, brown3 and magenta. For each there is 

information about p-value, GO identification code and their ontology as well as functional 

terms. Biological processes (BP), cellular components (CC) or molecular function (MF).   

Module name p-value GO ID Ontology Term name 

Lightpink4 0.00016 1902498 BP regulation of protein 
autoubiquitination 

 0.00053 0000956 BP nuclear-transcribed mRNA 
catabolic process 

 0.00056 0000932 CC P-body 

 0.00057 0051823 BP regulation of synapse structural 
plasticity 

 0.00057 0070973 BP protein localization to 
endoplasmic reticulum exit site 

 0.0011 0061001 BP regulation of dendritic spine 
morphogenesis 

 0.0013 0010629 BP negative regulation of gene 
expression 

 0.0015 1900452 BP regulation of long-term synaptic 
depression 

 0.0016 0050807 BP regulation of synapse 
organization 

 0.0021 0006000 BP fructose metabolic process 
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Mediumorchid3 0.0021 0015821 BP methionine transport 

 0.0021 0034514 BP mitochondrial unfolded protein 
response 

 0.0021 0004742 MF dihydrolipoyllysine-residue 
acetyltransferase activity 

 0.0021 0015191 MF L-methionine transmembrane 
transporter activity 

 0.0021 0047325 MF inositol tetrakisphosphate 1-
kinase activity 

 0.0021 0052725 MF inositol-1,3,4-trisphosphate 6-
kinase activity 

 0.0021 0052726 MF inositol-1,3,4-trisphosphate 5-
kinase activity 

 0.0042 0052746 BP inositol phosphorylation 

 0.0042 0009923 CC fatty acid elongase complex 

 0.0042 0000825 MF inositol tetrakisphosphate 6-
kinase activity 

Brown3 0.00037 0005005 MF transmembrane-ephrin receptor 
activity 

 0.00043 0005003 MF ephrin receptor activity 

 0.00098 0000188 BP inactivation of MAPK activity 

 0.0022 0046588 BP negative regulation of calcium-
dependent cell-cell adhesion 

 0.0022 0060035 BP notochord cell development 

 0.0022 0005900 CC oncostatin-M receptor complex 

 0.0022 0070611 MF histone methyltransferase 
activity (H3-R2 specific) 

 0.0022 0070612 MF histone methyltransferase 
activity (H2A-R3 specific) 

 0.0022 1990275 MF preribosome binding 

 0.0044 0034970 BP histone H3-R2 methylation 

Magenta 0.00058 0016831 MF carboxy-lyase activity 

 0.00062 0071393 BP cellular response to 
progesterone stimulus 

 0.002 0022027 BP interkinetic nuclear migration 

 0.0022 0006334 BP nucleosome assembly 

 0.0031 0016830 MF carbon-carbon lyase activity 

 0.0038 0031497 BP chromatin assembly 

 0.0042 0046600 BP negative regulation of centriole 
replication 

 0.0042 0032356 MF oxidized DNA binding 

 0.0043 0097110 MF scaffold protein binding 

 0.0048 0031225 CC anchored component of 
membrane 

 

 

 



32 
 

4.2.2 Tumor condition 

For the tumor condition data aggregation were made by hierarchical 

clusters into dendrograms. This was useful to check for outliers and 

the possible linkages among clustering. Figure 16 shows that all 

samples are tumoral. But on the contrary of the healthy condition, 

tumor samples don’t cluster under similar expression of EphB2 

levels. Instead, they follow a rather particular distribution where 

most clusters contain samples from the same patient with both low 

and high expression of EphB2.  

 

Figure 15: Hierarchical cluster represented by dendrograms based on the "average" 

method. This dendrogram created by hclust function, indicates the similarity between 

samples merging them into clusters. Autor’s figure. 

Modules obtained by the Dynamic Tree Cut algorithm. The 

correlated modules were merged, and each colored row represents 

a color-coded module containing a group of highly connected 

genes. Compared to the healthy condition, there are less modules 

in tumor condition as we can see in figure 12 and 17. 
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Figure 16: Identification of gene co-expression modules via hierarchical average linkage 

clustering by Dynamic tree cut algorithm. At the top is the hierarchical clustering plot whilst 

at the bottom are represented the modules with different colors. Autor’s figure. 

Next, a heatmap was made to see the interactions between 

modules and lipid traits which are the relative expression of lipid 

species normalized at the lipid class (figure 18). Each module gene 

co-expression is summarized by eigengene, then calculated the 

correlations of each eigengene with the lipid traits. Helping to 

identify modules highly correlated to the phenotype. In particular, 

tumor condition shares similarities with healthy condition regarding 

modules correlating with high expression of EphB2 and at the same 

time positively correlated with SM d34:1.  

As we can see there are fewer modules in this heatmap compared 

to the healthy condition. And correlations are slightly less intensive 

regarding color. More modules are found with correlation values 

around zero.   
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Top four best modules correlated to SM d34:1 according to 

significant correlation and p-value, assessed by module 

membership vs. gene significance plots (figure 19) were 

paleturquoise with correlation value of 0.6, orangered4 with 

correlation value of 0.49, darkorange2 with correlation value of 0.39 

and yellowgreen with correlation value of 0.39.  

Figure 17: Heatmap of the correlation between eigengene modules and lipid traits 

(normalized relative expression of lipid species to lipid class). Modules are present in the 

y axis whereas x axis contains the lipid traits. Each row corresponds to a module 

eigengene, and each column to a lipid species. Every cell contains the corresponding 

correlation value. Values of correlation range from -1 to 1 using a color scale blue for 

negatively correlated and red for positively correlated. Last column on the right named 

position stands for the levels of EphB2 expression red for high expression and blue for low 

expression of EphB2. Autor’s figure. 
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Figure 18: Plot of module membership (MM) vs gene significance (GS) for each of the top 

four modules.  Y axis represents gene significance for SM d34:1 whereas X axis 

represents module membership of the genes in the specific module. Values of correlation 

and p-value can be found below the title of each plot. Autor’s figure. 

For tumor condition, enrichment analysis by Gene Ontology (GO) 

was also made as seen in table 4.  

In this case, module paleturquoise contains genes involved mostly 

in biological processes participating in cell division like mitotic 

centrosome separation, mitotic spindle, RNA polymerase II 
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regulatory region sequence-specific DNA binding and centrosome 

separation.  

However, orangered4 contains genes involved in a mix of molecular 

functions and biological processes. For example, regulation of B cell 

apoptotic process, ionotropic glutamate receptor complex and 

glutamate receptor activity.  

Module yellowgreen genes are involved in biological processes 

such as transcription processes. Containing genes with functions 

like cellular metabolic process, tRNA 3’-end processing, RNA 5’-

end processing, transferase activity and chromatin DNA binding. 

Genes from darkorange2 module are also a mix of BP and MF like 

negative regulation of transcription by competitive promoter binding, 

AMP metabolic process and intracellular signal transduction. 

 

Table 4: Significantly enriched functional terms of genes in most significant modules 

selected by correlation and p-values. This table contains information regarding four 

modules which are paleturquoise, orangered4, yellowgreen and darkorange2. For each 

there is information about p-value, GO identification code and their ontology as well as 

functional terms. Biological processes (BP), cellular components (CC) or molecular 

function (MF). 

Module name p-value GO ID Ontology Term name 

Paleturquoise 0.0009 0060322 BP Head development 

 0.0017 0015631 MF Tubulin binding 

 0.0019 0000235 CC Astral microtubule 

 0.0022 2000179 BP Positive regulation of neural 
precursor cell proliferation 

 0.0023 0007100 BP Mitotic centrosome separation 

 0.0027 0051299 BP Centrosome separation 

 0.0029 0030900 BP Forebrain development 

 0.0029 0072686 CC Mitotic spindle 

 0.0040 0000977 MF RNA polymerase II regulatory 
region sequence-specific DNA 
binding 

 0.0042 0001012 MF RNA polymerase II regulatory 
region DNA binding 

Orangered4 0.00053 0008328 CC Ionotropic glutamate receptor 
complex 

 0.00098 0030207 BP Chondroitin sulfate catabolic 
process 

 0.0014 0004970 MF Ionotropic glutamate receptor 
activity 

 0.0016 0050655 BP Dermatan sulfate proteoglycan 
metabolic process 

 0.0016 0004549 MF tRNA-specific ribonuclease 
activity 
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 0.0018 0002902 BP Regulation of B cell apoptotic 
process 

 0.0027 0035235 BP Ionotropic glutamate receptor 
signaling pathway 

 0.0030 0008066 MF Glutamate receptor activity 

 0.0033 0001783 BP B cell apoptotic process 

 0.0033 0032281 CC AMPA glutamate receptor 
complex 

Yellowgreen 0.00041 0042780 BP tRNA 3’-end processing 

 0.00066 0006807 BP nitrogen compound metabolic 
process 

 0.0016 0044237 BP Cellular metabolic process 

 0.0018 0099116 BP tRNA 5’-end processing 

 0.0020 0051580 BP Regulation of neurotransmitter 
uptake 

 0.0021 0031123 BP RNA 3’-end processing 

 0.0023 0098810 BP Neurotransmitter reuptake 

 0.0027 0031490 MF Chromatin DNA binding 

 0.0030 0016740 MF Transferase activity 

 0.0033 0000966 BP RNA 5’-end processing 

Darkorange2  0.0003 0007264 BP Small GTPase mediated signal 
transduction 

 0.00043 0010944 BP Negative regulation of 
transcription by competitive 
promoter binding 

 0.00066 0046033 BP AMP metabolic process 

 0.0013 0019003 MF GDP binding 

 0.0016 0017137 MF Rab GTPase binding 

 0.0017 0035556 BP Intracellular signal transduction 

 0.0018 0046332 MF SMAD binding 

  0032925 BP Regulation of activin receptor 
signaling pathway 

  0045921 BP Positive regulation of exocytosis 

   0032400 BP Melanosome localization 
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4.3 Organoid culture 

 

 

Figure 19: Organoid culture images taken from Carl Zeiss Cell Observer at 5X. A) Organoids of healthy 

condition 30 min after being seed. B) Organoids of healthy condition 24 hours after, additionally the scale is 

of 200 µm. C) Organoids of healthy condition 72 hours after. D) Organoids of healthy condition right after 

differentiation (0 hours). E) Organoids of healthy condition 72 hours after differentiation. F) Organoids of 

healthy condition 7 days after differentiation.  

Given the fact that organoids require a considerable number of weeks and that 

especially healthy condition colon organoids are susceptible to contamination, we 

couldn’t obtain lipidomic results. Moreover, there were less operations, thus less 

samples during the period I did my internship because of COVID restrictions in 

the hospital. Luckily, we successfully cultured healthy condition colon organoids 

and even had the chance to apply the differentiation process on them as seen in 

figure 19. All images in this figure are from the same region allowing to see how 

organoids change though the culture process.  

In this case, 24 hours after the seed, some crypts had already started to slightly 

grow into forming organoids. It is not until 72 hours later that more significant 

growth was made. When the differentiation process started, organoids changed 

their aspect by becoming darker in the interior and exterior surface. To remember, 

in differentiation process crypt culture medium wasn’t the same as the culture 

used for organoid growth, factors like PGE2, Nicotinamide and SB202190 were 

omitted. Wnt3a-conditioned medium was reduced to 5% and then omitted 48 

hours prior organoid harvesting. Changes in the organoids suggested that the 

differentiation process was effective. Additionally, as organoids become more 

differentiated they tend to look like they are starting to die, because their surface 

looks irregular and even degraded. Most of the times it’s an optic illusion because 

of the 3D nature of the organoids combined with the fact that microscopes show 

the image in 2D at a particular level, thus other levels create shadows contributing 

to this darkening.    
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5. Conclusion 
 

Data obtained from MALDI-IMS demonstrate the existence of a decreasing 

sphingomyelin gradient through colonocyte differentiation. Levels of 

sphingomyelin are similar between healthy and tumor condition but different 

depending on if it is the upper or lower region of the crypt.   

Through WGCNA analysis is demonstrated that expression profile between 

healthy and tumor is different, because of the different modules and genes 

expressed in both cases.  

In contrast, lipidomic results to evaluate the incorporation of deuterated fatty acids 

in colon organoids weren’t obtained because of time and sample limitations. 

Nonetheless, I performed a successfully organoid culture observing changes 

after causing the differentiation process.  
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7. Annex 
 

Table I. CRC patient’s clinical information.  

 

Abbreviations: Adenocarcinoma (ADC), not described (ND). 

 

Patient Age Sex Localization Histological type TNM ANALYSIS 

305 65 M Sigmoid colon ADC T4b, 
N0 

Healthy FACS samples MALDI-IMS 

309 83 F Sigmoid colon ADC T3, N0 Healthy FACS samples MALDI-IMS 

311 75 F Sigmoid colon ADC T3, N1c Healthy FACS samples MALDI-IMS 

312 72 F Sigmoid colon Residual 
Neoplasia 

X, N0 Healthy FACS samples MALDI-IMS 

313 71 M Cecum ADC T3, N0 Tumor FACS samples MALDI-IMS 

314 86 M Cecum ADC T3, N0 Tumor FACS samples MALDI-IMS 

315 71 F Ascending 
colon 

ADC T3, N1c Tumor FACS samples MALDI-IMS 

316 82 M Sigmoid colon ADC T3, 
N2a 

Tumor FACS samples MALDI-IMS 

317 48 M Sigmoid colon Mucinous ADC T4b, 
N0 

Tumor FACS samples MALDI-IMS 

320 65 M Sigmoid colon ADC T3, N0 Tumor FACS samples MALDI-IMS 

321 85 F Sigmoid colon ADC T3, N0 Healthy and Tumor FACS Human 
clariom S pico Affymetrix 

322 72 F Ascending 
colon 

ADC T4a,N0 Healthy FACS samples MALDI-IMS + 
Healthy and Tumor FACS Human 

clariom S pico Affymetrix 

330 71 M Sigmoid colon ADC T3, 
N2a 

Healthy FACS samples MALDI-IMS 

331 68 F Ascending 
colon 

Mucinous ADC T3,N0 Healthy and Tumor FACS Human 
clariom S pico Affymetrix 

332 78 M Ascending 
colon 

ADC T3,Nb Healthy and Tumor FACS Human 
clariom S pico Affymetrix 

335 83 M Ascending 
colon 

ADC T3, N0 Tumor FACS samples MALDI-IMS + 
Healthy and Tumor FACS Human 

clariom S pico Affymetrix 

373 73 F Sigmoid colon ADC T4a, 
N1c 

Healthy & Tumor FACS samples 
MALDI-IMS 


