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Abstract

Single-cell RNA sequencing (scRNA-seq) is a powerful new method that makes it possible to study gene

expression data at the level of individual cells. Cell type annotation, using a reference sets, is a crucial

step in this analysis for obtaining insights into tissue and cell composition. However, there is a need to

evaluate and objectively know which are the best annotation tools in the immunology field. In this study,

we evaluated the performance of four current automatic cell type annotation methods: Support Vector

Machine (SVM), SVMrejection, SingleR and scType using three test sets (MCA, PBMCs and JArribas) and

two reference sets (ImmGen and Monaco). Overall, the best-performing method was SingleR based on

the percentage of correctly classified cells and the weighted-average F1 score. The results also showed

that the classification methods were able to correctly predict most of the cells belonging to a cell type,

when there was a good representation of this cell type in the test data. Moreover, SVMrejection not only

did not improve the results of SVM but it worsened them. Our findings suggest that SingleR is the best

annotation tool, especially when it is fitted for each cell using immune data and the reference set is small

or the cell types are imbalanced. As SVMrejection did not perform well, other options must be researched

in order to annotate when there are no common cell types between test and reference sets.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) is a powerful tool for

characterizing individual cells and producing new insights into tissue

composition and dynamic biological processes. It has revealed an

unprecedented variety of cell types and subpopulations that were invisible

with traditional experimental techniques. Specifically, scRNA-seq can

have an important role in understanding immune cell diversity in the

tumor microenvironment (TME) by generating high-resolution landscapes

of different cancer types. Consequently, this method is able to identify

cancer-specific states and composition biases across all major immune

cell types that colocalize with cancer cells (Nieto et al. (2021)).

Although there has been an emergence of scRNA-seq methods,

deconvolutional methods using bulk RNA-seq data are still used to estimate

tissue cell proportions. Specifically, there are two types of methodologies;

the first one obtains a score describing the enrichment of a cell type in a

sample and, the other is a quantitative deconvolution method that estimates

the relative fractions of cell types of interest using mostly a linear least

square regression. See Cobos et al. (2020) for a benchmarking of the

different cell type deconvolution pipelines for transcriptomics data.

The advances in understanding tumor composition and its evolution

(Kuipers et al. (2017)) and also, the scalability of scRNA-seq experiments

have rapidly substituted deconvolutional methods that use bulk RNA-seq

data (Lafzi et al. (2018)). That is, having large numbers of direct single-

cell measurements leads to substantially greater resolution of single-cell

variation than is possible with deconvolutional methods, even with high-

quality bulk data (Lei et al. (2022)).

A crucial step in analyzing scRNA-seq is to annotate different cell types and

cellular states present in a complex cell mixture based on gene expression

profiles. This step is often done through unsupervised clustering of cells

based on their transcriptomic profiles, followed by cluster annotation

between clusters (Ianevski et al. (2022)). This annotation step involves

manual inspection of cluster-specific marker genes, which is often a

time-consuming, error-prone task that suffers from limited reproducibility

across different experiments within and across research groups (Abdelaal

et al. (2019)). This becomes more pronounced as the number of cells and

samples increases, preventing fast reproducible annotation (Ianevski et al.

(2022)). Consequently, a growing number of classification approaches are

being adapted to automatically label cells in scRNA-seq experiments. For

instance, SingleR (Aran et al. (2019)), the most widespread method in the
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bioinformatics community, correlates gene expression profiles of single

cells or groups of cells from the test data with given cell types included

in the reference data. Machine learning approaches such as Support

Vector Machine (SVM, Pedregosa et al. (2011)) use a reference data

set where labels (cell types) are transferred by supervised classification.

Abdelaal et al. (2019) showed that SVM had the best overall performance

across experiments involving main lineage, deep annotation level, different

protocols, and with/without alignment of the datasets. Also, they showed

that incorporating a rejection option in SVM (SVMrejection), to account

for non represented cell types, led to better performance. Moreover, scType

is a promising new marker gene database-based method as it takes into

account the specificity of positive and negative marker genes across cell

clusters and cells (Ianevski et al. (2022)).

These approaches assign each cell in an uncharacterized test dataset

based on the most similar reference sample(s) or the selection markers that

characterize a cell type. Any published labelled RNA-seq dataset (bulk or

single-cell) or marker gene database can be used as a reference, though

its reliability depends greatly on the expertise of the original authors who

assigned the labels or selected the markers (Amezquita et al. (2022)).

Another important aspect is that these approaches use different algorithmic

strategies that might have an impact on the performance depending on the

experiment. For this reason, there is a need to evaluate the performance of

these current automatic cell type annotation methods in order to determine

the best annotation tools in the immunology field.

To assess which are the best annotation tools, this work presents an

evaluation of the performance of SVM, SingleR and, scType using two test

sets (MCA and PBMCs) and two reference sets (ImmGen and Monaco)

conditioned by species, then an evaluation of the performance of SVM

and SVMrejection using both MCA and PBMCs as test and reference sets

and different data processing. Finally, the SVM and SingleR annotations

are compared using JArribas as the test set and ImmGen as reference.

2 Material and methods

Datasets

A total of three test datasets were used to evaluate all classification

methods.

The first test dataset, PBMCs, was obtained from human samples and

consists of UMI count data from 10x chromium seq technology. It contains

peripheral blood mononuclear cells found in one sample, as described in

Ding et al. (2019).

The second set is a Mouse Cell Atlas, MCA, which consists of UMI

count data from Microwell-seq technology found in 6 samples. Han et al.

(2018) analyzed more than 400,000 single cells covering all of the major

mouse organs and constructed a basic scheme for an MCA. However, only

the adult peripheral blood samples were included in the evaluation of the

annotation methods.

The last one, JArribas, is an in house data set, comprising filtered

count matrices from 10X Genomics from 3 samples obtained from a mouse

model. This dataset was used exclusively to compare annotations obtained

from SingleR and SVM.

Two reference sets were used to test SVM and SingleR annotations.

ImmGen was one of these datasets used to annotate the PBMCs, MCA,

and JArribas test sets with the annotation methods. It consists of microarray

profiles of pure mouse immune cells from the project of the same name

(Heng et al. (2008)).

Monaco was the other reference set used to annotate the PBMCs

dataset. It consists of bulk RNA-seq samples of sorted immune cell

populations from GSE107011, based on humans (Monaco et al. (2019)).

All test and reference datasets, except JArribas, had been previously

annotated, and it is important to take into account that these annotations

were considered as ground truth for the evaluation of the performance of

the classification tools. Consequently, we validated that these annotations

came from expert knowledge and were scientifically verified. They were

not obtained from any computational method using the classification tools

to be evaluated.

Table 1 summarizes previously mentioned datasets.

Data processing

A Quality Control (QC) was performed in order to check if our data was

correctly distributed. Various metrics were used to assess the distribution of

the data. Low values of the number of genes detected in each cell indicated

dead/dying or an empty droplet, whereas high values of the total number

of molecules detected within a cell were doublets (or multiplets). If these

cases were detected, they were consequently removed from the dataset.

Figure S1 shows how these metrics were distributed for MCA and PBMCs

datasets.

Regarding the test datasets, the Seurat package (version 4.1.1) (Hao

et al. (2021)) was used to perform the needed preprocessing steps on their

counts matrices. These steps were the following:

• Normalization: The NormalizeData() function divides counts for each

gene by the total counts in the cell and multiplies that value for each

gene by the scale.factor (10,000 by default), and then, natural log

transforms them.

• Identification of highly variable features: this step is performed

using the FindVariableFeatures() function with selection.method as

vst; First, it fits a line to the relationship of log(variance) and log(mean)

using local polynomial regression (loess). Then, it standardizes

the feature values using the observed mean and expected variance

(given by the fitted line). Feature variance is then calculated on the

standardized values after clipping to a maximum and selecting only N

top genes (2000 in this case) with the highest variance.

• Data scaling: The ScaleData() function shifts the expression of each

gene (all genes, not only those with the highest variance), so that the

mean expression across cells is 0 and scales the expression of each

gene, so that the variance across cells is 1.

• Linear dimensional reduction: The RunPCA() function performs a

Principal Component Analysis (PCA) on the scaled data with only the

previously determined variable features used as input.

• Cluster the cells: The FindNeighbors() function uses a KNN graph

based on the Euclidean distance in the PCA space, and refines the

edge weights between any two cells based on the shared overlap in

their local neighborhoods (Jaccard similarity) and the FindClusters()

function uses the Louvain algorithm.

• Non-linear dimensional reduction: The RunUMAP() function

uses the Uniform Manifold Approximation and Projection (UMAP)

algorithm for dimension reduction to visualize and explore these

datasets, and learns the underlying manifold of the data in order to

place similar cells together in low-dimensional space.

Once those preprocessing steps were applied to each test set, the Seurat

object obtained from this processing was used in SingleR and scType to

perform the cell-type annotation and the scaled data from the same object

was obtained for the SVM prediction of cell types.

The reference data (ImmGen and Monaco) were already log

normalized and consequently, only the ScaleData() function was applied.

The corresponding object was used with SingleR and scType to perform the

cell-type annotation and the scaled data from the same object was obtained

for the SVM prediction of cell types, the same as the test datasets.
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Apart from that, PBMCs and MCA were used both as test and reference

data equally while evaluating SVM and SVMrejection. Here, the raw

counts and the scaled data from Seurat processing were used. Also,

the same experiments were performed trying to correct the batch effects

from both datasets using the Matching Mutual Nearest Neighbors (MNN)

algorithm, check Haghverdi et al. (2018) for more information about this

algorithm.

Furthermore, the cell type’s correlation matrix was computed for MCA

and PBMCs dataset in order to assess the dataset complexity (Figure S2).

Classification methods

This section describes how the classification methods used in this paper

work. Table 2 shows a summary of all of them.

SVM

Support Vector Machine (SVM) is a supervised learning algorithm that

can be used with classification problems. The algorithm finds the optimal

separating hyperplane between classes using nonlinear mapping to a

sufficiently high dimension. The hyperplane is defined by the observations

that lie within a margin optimized by a cost hyperparameter C that gives a

trade-off between getting a large margin and classifying correctly as many

examples as possible. These observations are called the support vectors

(Hastie et al. (2017), Kuhn and Johnson (2016)).

An important part of the SVM is the use of kernels. They are able

to enlarge the feature space in a specific way so as to find the optimal

separating hyperplane between classes using nonlinear mapping. That

is, the use of kernels reduces the amount of computation required for

SVM by avoiding the math that transforms the data from low to high

dimensions. The linear kernel is the simplest of all the kernels, which is

the one implemented in this work. Technically, the data is not projected

onto higher dimensions when this kernel is used, so it is just the inner

product of observations with the constant term C. The linear kernel is

typically used on data sets with large amounts of features as increasing the

dimensionality on these data set does not necessarily improve separability

(Hsu et al. (2003)).

Section B of the Supplementary Information has more details related

to SVM and its formulation.

SVMrejection

Some classes present in the test data might not be in the reference. Then,

a rejection option must be constructed in order to identify those cases

when the prediction step of the classes in the test data is performed, like

suggested in Abdelaal et al. (2019).

However, the output of SVM is represented by scores and this

rejection step cannot be done. Platt scaling or Platt calibration is a

way of transforming the output of a classification model into probability

distribution over classes by fitting a logistic regression model to the

classifier’s score (Pedregosa et al. (2011)).

Specifically, it produces the posterior probability P (y = 1|f) by

fitting the logistic regression model considering y as arbitrarily labeled +1

and -1 with a binary classification and f as the classifier’s score:

P (y = 1|f) =
1

1 + expAf +B

The parameters A and B are estimated using a maximum likelihood

method that optimizes the training set. A held-out calibration set or cross-

validation can be used to avoid overfitting to this set, but Platt additionally

suggests transforming the labels y to target probabilities: t+ =
N++1

N++2

and t− = 1
N−+2

where N+ and N− are the number of positive and

negative samples, respectively. This transformation follows by applying

Bayes’ rule to a model of out-of-sample data that has a uniform prior over

the labels (Platt (1999)).

SingleR

The annotation of cell types in SingleR is performed either for each cell

independently or for each cluster already found in the Cluster the cells step

from the Data processing. The steps to obtain SingleR annotations are the

following:

First, a Spearman correlation coefficient is calculated between the

single-cell expression or aggregated profile per clusters in the test data and

each sample of the reference data set. The calculation of this correlation

only uses the variable marker genes identified by pairwise comparisons

between labels in the reference data, so as to improve resolution of

separation between labels because these marker genes are those that drive

it. Here, it is important to note that the use of Spearman’s correlation

provides a measure of robustness to batch effects across test and reference

datasets (Aran et al. (2019), Lun (2022)).

Next, the correlation coefficients for each label of the reference

data set are aggregated to provide a single value per cell type and per

single cell/cluster. By default, SingleR aggregates these coefficients using

the 80th percentile of correlation values as a score for that label and

single cell/cluster, to prevent misclassification due to heterogeneity in the

reference samples (Aran et al. (2019), Lun (2022)).

Although it is optional, a fine-tuning step is implemented in this work

where SingleR reruns the correlation analysis, but only for the cell types

close to the maximum score, computed from the previous step. Then,

scores are recomputed using only marker genes for the subset of labels,

focusing on the most relevant features. Finally, the lowest-value cell type is

removed (or values more than 0.05 below the top value), and then this step

is repeated until only two cell types remain. That is, the label corresponding

to the top value score after the last run is assigned to the single-cell (Aran

et al. (2019), Lun (2022)).

scType

Cell-type annotation in scType is performed using an in-built

comprehensive marker database that integrates the information available

in the CellMarker database and PanglaoDB.

It also uses a cell-type specificity score (S) that measures how uniquely

a particular marker (i) identifies a specific cell-type of the given tissue (t).

This score S is calculated separately for each marker gene Mi within

a tissue t as St
i = 1 −

|Mi|t−min(|M|t)
max(|M|t)−min(|M|t) where |Mi|t denotes

the number of cell types of tissue t where the ith marker is enlisted and

min(|M |t) and max(|M |t) are the minimum and maximum number of

cell types for which any of the provided genes is enlisted as a marker in

the scType database (Ianevski et al. (2022)).

Then, in order to assign each cell-type to a cluster (p) given the input

scRNA-seq data (X) with m genes and n cells, each gene expression profile

is standardized into z-scores across all cells. Considering only positive and

negative marker genes corresponding to different cell types of the specified

tissues, these markers are extracted from the scType database (Ianevski

et al. (2022)).

Moreover, each gene expression level is multiplied with its cell type-

specificity score (St
i ): X′ = ((Z(XT ))T ∈ Mt)Ṡt

i , resulting in a

transformed expression matrix of n cells and |Mt| genes. Here, Mt

represents the vector of marker genes of all cell types within the tissue

t and Z denotes the z-score explained previously (Ianevski et al. (2022)).

These transformed expression values for each cell-type are summarized

into cell type-specific marker-enrichment-score as the normalized sum of

all the individual genes supporting a cell-type and such transformation:

x′
c =

∑j
i=1

x′

i√
j

−
∑l

k=1
x′

k√
j

. Here, c represents a specific cell-type within

the tissue, i, . . . , j are the indices corresponding to cell-type-specific
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marker genes, while k, . . . , l are the indices of negative marker genes that

are not expected to be expressed in the cell type. x′
c results in normalized

expression matrix of c-by-n dimension, where each row represents a cell

type and each column an individual cell (Ianevski et al. (2022)).

Finally, the values of each row (cell type) are summed up across the

cells corresponding to a specific cluster p, obtaining the cluster summary

enrichment-score (called scType score): ScType scorec =
∑

z∈p xz
c . A

cell type with the highest scType score is assigned to the cluster p (Ianevski

et al. (2022)).

Evaluation of the methods

The performance of cell type annotation methods was evaluated through

the number and global percentage of correctly classified cells and the

weighted-average F1 score. For each cell type in the test dataset, the

number and percentage of correctly classified cells and F1 scores was

reported.

Specifically, the F1 score was computed per class in a One vs All

manner as: F1(class = a) = 2 ·
precision(class=a)·recall(class=a)
precision(class=a)·recall(class=a)

where precision(class = a) =
TP (class=a)

TP (class=a)+FP (class=a)
and

recall(class = a) =
TP (class=a)

TP (class=a)+FN(class=a)
with a as each cell

type (Grandini et al. (2020)).

The weighted-average F1 score was calculated by taking the mean of

all per-class F1 scores while considering each class’s support (that is, the

number of actual occurrences of that class in the dataset). The weighted-

average F1 score was computed as Weighted-average F1 score =∑n
i=1 siF1i∑

n
i=1

si
where si is the support of each cell type i = 1, . . . , n (i.e.

the number of cells in each cell type included in the dataset) and F1i is

the per-class F1 score i = 1, . . . , n (Grandini et al. (2020)).

When fitting SVM and SingleR, both test and reference data were

needed. However, the correspondence of cell types was not the same (Table

3 shows which cell types were found in each dataset). For this reason, the

classification methods were fitted using two approaches: the first one with

all cell types of both test and reference data (called the All cell types setting)

and the other one, with their intersection (called the Common cell types

setting) in order to see how the performance varies between the two.

When the cell type annotation methods were fitted with the All cell

types setting, we studied how the cell types not present in the reference

set were classified by giving the percentage for each annotated cell type in

such cases.

Furthermore, the computation time of all experiments was obtained,

showing how this time was distributed when the reference data had a

different number of cells and different data processing.

As JArribas didn’t have any scientifically verified annotations made

by experts, we compared the annotations with those of SingleR and SVM.

Using SingleR’s annotations as ground truth, we computed the global

and cell type-specific misclassification percentage for different settings of

the methods: whether they had main or specific cell type labels, feature

selection or SingleR fitted for each cell or cluster. We also constructed a

Sankey plot to visualize and compare both annotations for each setting.

The workflow of all experiments performed in this study is described

in Figure S3. The analyses were carried out with the R package version

4.1.2 (R development Core Team, GNU, GPL), Rstudio version 1.4.1106

(R Foundation for Statistical Computing, Vienna, Austria), and Python

3.8.5 (Python Software Foundation, Python Language Reference).

3 Results

This section contains the evaluation of four annotation methods (Table 2)

using three test sets and two reference sets. These datasets had different

numbers of cells types, cells, genes, and samples. In addition, they were

obtained from different protocols and species, as can be seen in Table 1.

3.1 Evaluation of SVM, SingleR and scType using MCA

and PBMCs data as test sets

We evaluated the performance of SVM, SingleR, and scType in a species

specific environment. Thus, we tested MCA using the ImmGen as

reference dataset for mouse and PBMCs with Monaco as reference dataset

for human.

Moreover, one important aspect in the annotation of cell types was

the correspondence of these cells between test and reference data which

sometimes can be discordant. Table 3 shows which cell types are present

in each dataset, emphasizing the importance of those that are present in

the test but not in the reference set, or otherwise.

As this is a real scenario that can happen during the annotation of

cell types, we evaluated each method using two settings: with all cell

populations in both sets (All cell types setting) and with the same cell

population between the test and reference datasets. (Common cell types

setting) (See Evaluation of the methods in Methods Section 2).

MCA - ImmGen

If we focus on the cell type annotation where MCA was considered as test

set and ImmGen as a reference set, we evaluated the performance of SVM,

SingleR, and scType using the All cell types setting and the Common cell

types setting (Figure 1A,C). We visually compared the cell annotations for

all methods and settings through the corresponding UMAP plot (Figure

1B,D).

Table 4 shows how SingleR fitted for each cell independently was the

best-performing classifier in both settings. In the All cell types setting,

this method had 4640 (65.4%) cells correctly classified with a weighted-

average F1 score of 0.70. Whereas, in the Common cell types) the number

and percentage of these cells were 5324 (96.03%) with a weighted-average

F1 score of 0.98.

In contrast, the method with the lowest metrics was SVM in both

settings. It had 4346 (61.25%) cells correctly classified with a weighted-

average F1 score of 0.67 in the All cell types setting. Whereas, it had 4801

(86.6%) cells correctly classified with a weighted-average F1 score of 0.91

in the Common cell types setting.

Overall, all methods performed similarly in the All cell types setting,

where the percentage of cells correctly classified and the weighted-average

F1 score were around 60% and 0.7, respectively. Moreover, in the same

setting, the most represented cells types in the test data (> 1300 cells per

cell type) were those that had the highest percentage and F1 score (i.e. T

cells, B cells and Neutrophils). The others (< 40 cells per cell type) were

not found during the annotation step, except Dendritic cells (DC). It was

captured by the SVM and SingleR fitted for each cell,with a percentage of

47.37% and 18.42% and F1 score of 0.17 and 0.20, respectively.

ScType annotation showed similar results; those cell types that were

more represented in the test data had the highest percentage and F1 score

(i.e. T cells, B cells and Neutrophils). Regarding those cell types that

were not seen in the reference data using SingleR and SVM (i.e. B cells

(Plasmocytes), Erythroid cells, Lymphocytes and Myeloid cells), scType

was only capable of correctly predicting Erythroid cells with 76.72% cells

correctly classified. None of the B cells (Plasmocytes), Myeloid cells, or

Lymphocytes were correctly captured by the method.

Inspecting Figure S4 shows how SVM, SingleR fitted for each cluster,

and SingleR for each cell annotated those cell types that were not seen in the

reference data. We can see how all methods agree on annotating Myeloid

cells as Monocytes, Lymphocytes as Stem cells and Erythroid cells as

Stem cells. However, SVM had a lower percentage in this last case, at

around 20%. SVM also annotated Erythroid cells as Endothelial cells with

a similar percentage. The unique case where all methods didn’t agree was

on B cells (Plasmocytes); both configurations of SingleR predicted them
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Table 1. Description of the datasets used during this study

TEST DATA REFERENCE DATA

MCA

(scRNAseq)

PBMCs

(scRNAseq)

JArribas

(scRNAseq)

Monaco

(bulk RNA seq)

ImmGen

(microarray)

Number of cell types 9 8 Unknown 8 19

Number of cells 7095 6003 18620 114 830

Number of genes 34947 33694 34285 46077 22134

Number of samples 6 1 3 17 13

Species Mouse Human Mouse Human Mouse

Protocol Microwell - seq 10x Genomics 10x Genomics Illumina HiSeq 2000
Affymetrix Mouse

Gene 1.0 ST Array

Source
Ding et al. (2019)

UMI count data

Han et al. (2018)

UMI count data
-

Heng et al. (2008)

log-normalized

expression values

Monaco et al. (2019)

processed and normalized

using the RMA on

probe-level data

Table 2. Automatic methods for cell annotation included in this study

Name Version Lenguage Description Reference

SVM 0.23.2 Python SVM with linear kernel using LinearSVC() function Pedregosa et al. (2011)

SVMrejection 0.23.2 Python SVM with linear kernel and rejection option using LinearSVC() and CalibratedClassifierCV() functions Pedregosa et al. (2011)

SingleR 1.8.1 R Correlation to training set Aran et al. (2019)

scType Release version R Cell type identification using specific marker combinations Ianevski et al. (2022)

Table 3. Description of which cells types are included in each dataset used during this study. Cells types represented as red squares are not included in the corresponding dataset.

Abbreviations: ILC, Innate lymphoid cell; NK, Natural killer; NKT, Natural killer T; Tgd, T gamma delta

TEST DATA REFERENCE DATA

Cell type MCA (scRNA-seq) PBMCs (scRNA-seq) Monaco (bulk RNA-seq) ImmGen (microarray)

B cell; B cell (Plasmocyte); B cell, pro 1395; 31 ; 0 676; 0; 0 20; 0; 0 79; 0; 1

Basophil 4 6

Cytotoxic cell 2127

Dendritic cell 38 88 8 88

Endothelial cell 20

Eosinophil 4

Epithelial cell 25

Erythroid cell 116

Fibroblast 21

ILC 23

Lymphocyte 127

Macrophage 1 79

Mast cell 26 20

Megakaryocytes 48

Microglia 3

Monocyte; CD14+; CD16+ 0; 967; 175 12; 0; 0 33; 0; 0

Myeloid cell 1277

Neutrophil 2144 4 23

NK cell 429 4 38

NKT cells 22

Progenitor 4

Plasmacytoid 38

Stem cell 36

Stromal cells 7

T cell; Cd4+ T cell; Cd8+ T cell 2; 1; 1937 0; 1455; 0 12; 30; 16 231; 0; 0

Tgd 71
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Fig. 1. Workflow and the overall performance of the automatic annotation methods (SVM, SingleR and scType) using MCA and ImmGen as test and reference set, respectively.

A) Scheme representing which test and reference sets are used for the evaluation of these methods using the All cell types setting. Also, it is represented which cell types (with different

colors) are present in both sets, only in the test and reference sets and, cell types obtained from the scType predicted annotations as this method uses marker gene database and it does not rely

on reference sets. B) UMAP representation for the true annotations of the test set (MCA) and the predicted annotations obtained from the different methods (SVM, SingleR fitted for each

cluster and cell and, scType). Each cell type is represented with a different colors and it matches with those specified in A). C) Scheme representing which test and reference sets are used

for the evaluation of SVM and SingleR using the Common cell types setting. Also, it is represented which cell types are present in both sets. Here, the scType predicted annotations are not

included as this method does not rely on reference sets but in marker gene databases. D) UMAP representation for the true annotations of the test set (MCA) and the predicted annotations

obtained from the different methods (SVM and SingleR fitted for each cluster and cell). Each cell type is represented with a different color and it matches with those specified in C).

Abbreviations: DC, Dendritic cell; ILC, Innate lymphoid cell; NK, Natural killer; NKT, Natural killer T; Tgd, T gamma delta.

as B cells but SVM annotates them as Tgd cells, Fibroblasts and B cells at

approximately 20% in each case.

Moreover, in the Common cell types setting, the performance of the

classification methods improved in relation to the All cell types setting.

The percentage and the weighted-average F1 score were around 90% and

0.9, respectively in all methods, although, SingleR fitted for each cell

independently performed best.

Consequently, the percentage and F1 scores for each type also

increased. Some of the cells that were not highly represented in the test data

and not detected in the All cell type setting, were now correctly predicted

by some methods with a high percentage. An example of this was Dendritic

cells or Mast cells where SVM had 84.21% and 100.00% cells correctly

classified, respectively.

PBMCs - Monaco

Using PBMCs as test set and Monaco as reference set, we evaluated the

performance of SVM, SingleR, and scType using the All cell types setting

and the Common cell types setting (Figure 2A,C). We visually compared

the annotations for all methods and settings through the corresponding

UMAP plot (Figure 2B,D).

Table 5 suggests that scType was the best performing classifier in the

All cell types setting, with 3481 (57.99%) cells correctly classified and a

weighted-average F1 score of 0.57. In contrast, SingleR fitted for each cell

independently had the highest number and percentage of cells correctly

classified (3014 (79.53%)) and weighted-average F1 score (0.86).

In both settings, SVM performed worst of all (with the lowest

percentage of cells correctly classified and weighted-average F1 score).

We attempted to train this method with the ImmGen reference data to see

if the performance improved (Table S1) In the All cell types setting, the

percentage was reduced from 49.14% to 21.59% and weighted-average

F1 score from 0.47 to 0.24 in relation to SVM trained with Monaco. In

contrast, in the Common cell types setting the percentage improved from

74.88% to 79.31% and the weighted-average F1 score from 0.80 to 0.81.

Overall, all methods performed similarly for the All cell types setting,

where the percentage and the weighted-average F1 score oscillated

between 50 and 60% and between 0.5 and 0.6, respectively (Table 5).

Furthermore, both settings had a good representation of all cell types

in the test set (> 80 cells per cell type). These cells types were detected

with a percentage of more than 60% for all methods (Table 5).

ScType performed similarly to the other methods, but none of the cell

types that were not seen in the reference data during the training of SVM

and SingleR (i.e. Cytotoxic, Megakaryocyte and, Plasmacytoid cells) were

correctly captured by the method, with 0% of cells correctly classified for

each cell type.

Inspecting Figure S5 we can see how all methods agreed on annotating

Plasmacytoid cells as Dendritic cells. However, Megakaryocyte cells were

classified as Progenitors by SVM and SingleR fitted for each cell, but as

NK cells by SingleR for each cluster. Also, both SingleRs shared the fact

that Cytotoxic cells were annotated as T cells in around 50 - 75% of the

cells. But there were cases where they were annotated as NK cells (around

20%) by SingleR for each cluster and as T cells (around 30%) and NK

cells (around 15%) by SingleR for each cell.

Moreover, the Common cell types setting showed improved

performance in each classification method in relation to the All cell types
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Table 4. Performance of the different automatic methods (SVM, SingleR fitted for each cluster and cell and, scType) for the cell type annotation used in this study in two settings: All cell

types and Common cell types. MCA is used as test and ImmGen as reference set. For each setting, the method’s performance is evaluated through the number and global percentage of

correctly classified cells and the weighted-average F1 score. For each cell type in the test dataset, it is reported the number and percentage of correctly classified cells and F1 score. The

highest metrics are represented with green color, even if it represents the global metric for the annotation method or the cell type included in the test data. B cell (Plasmocyte), Erythroid

cell, Lymphocyte and Myeloid cell are cell types only included in the test but not in the reference set. Consequently, methods like SVM and SingleR fitted for each cluster and cell are not

able to annotate them in the All cell types and they are represented with a hyphen (-). In the Common cell types setting, these cells are not included when performing the SVM and SingleR

fitted for each cluster and cell. They are also represented with a hyphen (-). ScType is able to capture those cell types that are not present in the reference set as it does not rely on this set

but in a marker gene database. For this reason, this method is not included in the Common cell types setting.

MCA - ImmGen

All cell types (n = 7095) Common cell types (n = 5544)

SVM SingleR - clusters SingleR - cells scType SVM SingleR - clusters SingleR - cells

Num. cells correctly classified (%) 4346 (61.25%) 4592 (64.72%) 4640 (65.4%) 4574 (64.47%) 4801 (86.6%) 5187 (93.56%) 5324 (96.03%)

Weighted-average F1 score 0.67 0.70 0.70 0.67 0.91 0.93 0.98

Cell types (Num. cells correctly classified (%) | F1 score)

T cell 1198 (61.75%) 0.76 1557 (80.26%) 0.88 1389 (71.60%) 0.84 1532 (79.09%) 0.86 1506 (77.63%) 0.86 1853 (95.52%) 0.96 1847 (95.21%) 0.98

B cell 1309 (93.84%) 0.93 1128 (80.86%) 0.87 1284 (92.04%) 0.93 1326 (95.05%) 0.94 1325 (94.98%) 0.95 1215 (87.10%) 0.92 1366 (97.92%) 0.98

Dendritic cell 18 (47.37%) 0.17 0 (0.00%) 0.00 7 (18.42%) 0.20 0 (0.00%) 0.00 32 (84.21%) 0.27 0 (0.00%) 0.00 23 (60.53%) 0.67

Neutrophil 1821 (84.93%) 0.91 1907 (88.95%) 0.94 1960 (91.42%) 0.96 1627 (75.89%) 0.79 1912 (89.18%) 0.94 2119 (98.83%) 0.93 2068 (96.46%) 0.99

Macrophages 0 (0.00%) 0.00 0 (0.00%) 0.00 0 (0.00%) 0.00 0 (0.00%) 0.00 0 (0.00%) 0.00 0 (0.00%) 0.00 1 (100.00%) 0.04

Mast cells 0 (0.00%) 0.00 0 (0.00%) 0.00 0 (0.00%) 0.00 0 (0.00%) 0.00 26 (100.00%) 0.17 0 (0.00%) 0.00 19 (73.08%) 0.84

B cell(Plasmocyte) - - - - - - 0 (0.00%) 0.00 - - - - - -

Erythroid cell - - - - - - 89 (76.72%) 0.87 - - - - - -

Lymphocyte - - - - - - 0 (0.00%) 0.00 - - - - - -

Myeloid cell - - - - - - 0 (0.00%) 0.00 - - - - - -
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Fig. 2. Workflow and the overall performance of the automatic annotation methods (SVM, SingleR and scType) using PBMCs and ImmGen as test and reference set, respectively.

A) Scheme representing which test and reference sets are used for the evaluation of these methods using the All cell types setting. Also, it is represented which cell types (with different

colors) are present in both sets, only in the test and reference sets and, cell types obtained from the scType predicted annotations as this method uses marker gene database and it does not

rely on reference sets. B) UMAP representation for the true annotations of the test set (PBMCs) and the predicted annotations obtained from the different methods (SVM, SingleR fitted for

each cluster and cell and, scType). Each cell type is represented with a different color and it matches with those specified in A). C) Scheme representing which test and reference sets are used

for the evaluation of SVM and SingleR using the Common cell types setting. Also, it is represented which cell types are present in both sets. Here, the scType predicted annotations are not

included as this method does not rely on reference sets but in marker gene databases. D) UMAP representation for the true annotations of the test set (MCA) and the predicted annotations

obtained from the different methods (SVM and SingleR fitted for each cluster and cell). Each cell type is represented with a different color and it matches with those specified in C).

Abbreviations: NK, Natural killer.

setting. The percentage and the weighted-average F1 score were between

75% and 80% and between 0.80 and 0.86, respectively. But again, SingleR

fitted for each single cell independently had the highest performance.

Computation time

All experiments performed in this Section 3.1 have an associated

computation time. Figure 3 shows how this time was distributed over

these experiments. In general, SVM and SingleR fitted for each cell had

the longest computation time in both settings. Specifically, in the All cell

types setting, these methods were fitted in 172.68 and 102.10 seconds

using the ImmGen reference and, in 4.02 and 12.43 seconds using Monaco.

Moreover, in the Common cell types setting, these methods were fitted in

8.71 and 27.05 seconds using the ImmGen reference and, in 1.55 and 7.21

seconds using Monaco. Furthermore, having a reference with more cells,

made the fitting of the method slower as any method trained with ImmGen

took more time to be fitted than one trained with Monaco.
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Table 5. Performance of the different automatic methods (SVM, SingleR fitted for each cluster and cell and, scType) for the cell type annotation used in this study in two settings: All cell

types and Common cell types. PBMCs is used as test and Monaco as reference set. For each setting, the method’s performance is evaluated through the number and global percentage

of correctly classified cells and the weighted-average F1 score. For each cell type in the test dataset, it is reported the number and percentage of correctly classified cells and F1 score.

The highest metrics are represented with green color, even if it represents the global metric for the annotation method or the cell type included in the test data. Cytotoxic, Megakaryocyte,

Plasmacytoid are cell types only included in the test but not in the reference set. Consequently, methods like SVM and SingleR fitted for each cluster and cell are not able to annotate them

in the All cell types and they are represented with a hyphen (-). In the Common cell types setting, these cells are not included when performing the SVM and SingleR fitted for each cluster

and cell. They are also represented with a hyphen (-). ScType is able to capture those cell types that are not present in the reference set as it does not rely on this set but in a marker gene

database. For this reason, this method is not included in the Common cell types setting.

PBMCs - Monaco

All cell types (n = 6003) Common cell types (n = 3790)

SVM SingleR - clusters SingleR - cells scType SVM SingleR - clusters SingleR - cells

Num. cells correctly classified (%) 2950 (49.14%) 3291 (54.82%) 3349 (55.79%) 3481 (57.99%) 2838 (74.88%) 2936 (77.47%) 3014 (79.53%)

Weighted-average F1 score 0.47 0.47 0.50 0.57 0.80 0.82 0.86

Cell types (Num. cells correctly classified (%) | F1 score)

B cells 649 (96.01%) 0.90 675 (99.85%) 0.99 666 (98.52%) 0.99 675 (99.85%) 0.99 623 (92.16%) 0.87 674 (99.70%) 1.00 662 (97.93%) 0.99

Dendritic cell 87 (98.86%) 0.51 86 (97.73%) 0.82 81 (92.05%) 0.66 86 (97.73%) 0.82 86 (97.73%) 0.56 82 (93.18%) 0.92 82 (93.18%) 0.79

Monocytes 782 (68.48%) 0.81 1077 (94.31%) 1.00 1100 (96.32%) 0.98 1141 (99.91%) 1.00 943 (82.57%) 0.90 1141 (99.91%) 1.00 1108 (97.02%) 0.98

NK 376 (87.65%) 0.60 401 (93.47%) 0.62 387 (90.21%) 0.65 401 (93.47%) 0.64 411 (95.80%) 0.84 416 (96.97%) 0.78 413 (96.27%) 0.92

Cd4+ T cells 1056 (72.58%) 0.67 1052 (72.30%) 0.50 1115 (76.63%) 0.60 1178 (80.96%) 0.87 775 (53.26%) 0.69 623 (42.82%) 0.60 749 (51.48%) 0.68

Cytotoxic - - - - - - 0 (0.00%) 0 - - - - - -

Megakaryocyte - - - - - - 0 (0.00%) 0 - - - - - -

Plasmacytoid - - - - - - 0 (0.00%) 0 - - - - - -
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Fig. 3. Computation time of SVM, SingleR for each cell and each cluster and scType using

2 settings: All cells when all cells are used in the test and reference set and Common cell

types with only concordant cells between sets are used. A) Barplots with the computation

time (in seconds) for each classification method and setting using MCA as test set and

ImmGen as reference set (ImmGen has 830 cells with the All cell types setting and 520

with Common cell types setting). B) Barplots with the computation time (in seconds) for

each classification method and setting using PBMCs as test set and Monaco as reference

set (Monaco has 114 cells with the All cell types setting and 86 with Common cell types

setting).

3.2 Evaluation of SVM and SVMrejection

This section shows some insights on the implementation of SVM and

SVMrejection.

Before this implementation, SVMrejection, a variation of SVM that

incorporates a rejection option to account for non represented cell types,

was fitted with MCA and PBMCs as tests and ImmGen and Monaco as

reference sets. However, most of the cells were annotated as T cell for both

cases and a small part of them as Unknown.

In an attempt to see if enlarging the size of the datasets or using

two scRNA-seq datasets as both test and reference data improves the

performance, we compared the annotations of SVM and SVMrejection

with MCA as test data and PBMCs as reference data, and the other way

around. Also, in an effort to understand the rejection option of SVM, we

also included different data preprocessing methods.

Although, in general, SVMrejection had a higher global percentage

and weighted-average F1 score because of the cells correctly classified as

"Unknown", cell types seen in both sets (i. e. T cells, B cells and Dendritic

cells) had a lower percentage and F1 score using SVMrejection than SVM

(Table 6 and 7).

Also, it is important to mention that Seurat processing had the highest

global percentage and weighted-average F1 score when both MCA and

PBMCs were used as test data. It had 1924 (27.12%) of cells correctly

classified and a weighted-average F1 score of 0.29 with SVM and, 3021

(42.58%) of cells correctly classified and a weighted-average F1 score

of 0.43 with SVMrejection using MCA as test data. Moreover, it had

1931 (32.17%) of cells correctly classified and a weighted-average F1

score of 0.23 with SVM and, 3690 (61.47%) of cells correctly classified

a weighted-average F1 score of 0.65 with SVMrejection using PBMCs as

test data.

Finally, cell types like B cells (Plasmocytes), Erythroid cells,

Lymphocytes, Macrophages, Mast cells, Myeloid cells and Neutrophils

were not present in the reference set and not seen during the training of the

classification methods using MCA as s test set. Figure S6 shows how SVM

and SVMrejection annotated these cell types for each data processing.

Figure S7 shows how SVM and SVMrejection annotated cell types not

included in the reference set and not seen during the training of these

methods (i.e. CD14+, CD16+, Cytotoxics, Megakaryocyte cells, Natural

Killer cells and, Plasmacytoid cells) using PBMCs as test.

Computation time

All experiments performed in this Section 3.2 have an associated

computation time. Figure 4 shows how this time was distributed over these

experiments.

In all of them, SVMrejection took the longest to be fitted. For example,

it took 78.83 seconds using raw counts processed with MNN algorithm,

whereas SVM took 19.17 seconds.

With MCA as the reference set, Seurat was the data processing with

longest computation time (60.25 seconds when fitting with SVM and

191.85 seconds with SVMrejection). Whereas with PBMCs as a reference

set, both Seurat processing and raw counts had the longest computation

time. In this case, SVM took 36.91 seconds with Seurat processing and

35.63 seconds with raw counts; SVMrejection took 128.05 with Seurat

and 114.91 seconds with raw counts.
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Table 6. Performance of SVM and SVMrejection using three different data processing: raw counts, processed with Seurat and raw counts processed with Mutual Nearest Neighbor (MNN)

method. MCA is used as test set and PBMCs as reference set. For each data processing, the method’s performance is evaluated through the number and global percentage of correctly

classified cells, the weighted-average F1 score and the number and percentage of cells unlabeled. For each cell type in the test dataset, it is reported the number and percentage of correctly

classified cells and F1 score. Apart from that, there are cell types that are included in the test but not in the reference. If this cases are classified as Unknown with SVMrejection, the number,

percentage and F1 score of these cases are computed. With SVM, these cases are represented as hyphens (-) as this methods does not contain a rejection option. The highest metrics for each

data processing are represented with green color, even if it represents the global metric for the annotation method or the cell type included in the test data.

MCA: test data, PBMCs: reference data

RAW COUNTS (not aligned) PROCESSED WITH Seurat PROCESSED WITH MNN (aligned)

SVM SVMrejection SVM SVMrejection SVM SVMrejection

Num. cells correctly classified (%) 1885 (26.57%) 1955 (27.55%) 1924 (27.12%) 3021 (42.58%) 1325 (18.68%) 2029 (28.6%)

Weighted-average F1 score 0.30 0.23 0.29 0.43 0.23 0.37

Num. cells unlabeled (%) - 5320 (74.98%) - 4490 (63.28%) - 2540 (35.8%)

Cell types in test data and reference

(Num. cells correctly classified (%) | F1 score)

T cell 743 (53.26%) 0.66 1 (0.07%) 0.00 1216 (87.17%) 0.86 147 (10.54%) 0.19 973 (69.75%) 0.78 664 (47.60%) 0.63

Dendritic cell 1111 (57.27%) 0.62 1 (0.05%) 0.00 706 (36.39%) 0.44 213 (10.98%) 0.18 332 (17.11%) 0.26 173 (8.92%) 0.16

B cell 31 (81.58%) 0.08 1 (2.63%) 0.05 2 (5.26%) 0.06 0 (0.00%) 0.00 20 (52.63%) 0.39 10 (26.32%) 0.35

Other cell types not seen in reference

(n = 3722) as unknown
- - 1952 (52.44%) 0.43 - - 2661 (71.49%) 0.65 - - 1182 (31.76%) 0.38

Table 7. Performance of SVM and SVMrejection using three different data processing: raw counts, processed with Seurat and raw counts processed with Mutual Nearest Neighbor (MNN)

method. PBMCs is used as test set and MCA as reference set. For each data processing, the method’s performance is evaluated through the number and global percentage of correctly

classified cells, the weighted-average F1 score and the number and percentage of cells unlabeled. For each cell type in the test dataset, it is reported the number and percentage of correctly

classified cells and F1 score. Apart from that, there are cell types that are included in the test but not in the reference. If this cases are classified as Unknown with SVMrejection, the number,

percentage and F1 score of these cases are computed. With SVM, these cases are represented as hyphens (-) as this methods does not contain a rejection option. The highest metrics for each

data processing are represented with green color, even if it represents the global metric for the annotation method or the cell type included in the test data.

PBMCs: test data, MCA: reference data

RAW COUNTS (not aligned) PROCESSED WITH Seurat PROCESSED WITH MNN (aligned)

SVM SVMrejection SVM SVMrejection SVM SVMrejection

Num. cells correctly classified (%) 2073 (34.53%) 2665 (44.39%) 1931 (32.17%) 3690 (61.47%) 1884 (31.38%) 2120 (35.32%)

Weighted-average F1 score 0.24 0.43 0.23 0.65 0.21 0.30

Num. cells unlabeled (%) - 1161 (19.34%) - 3296 (54.91%) - 706 (11.76%)

Cell types in test data and reference

(Num. cells correctly classified (%) | F1 score)

T cell 602 (89.05%) 0.88 443 (65.53%) 0.79 675 (99.85%) 0.87 623 (92.16%) 0.96 395 (58.43%) 0.71 257 (38.02%) 0.54

Dendritic cell 1413 (97.11%) 0.52 1377 (94.64%) 0.53 1255 (86.25%) 0.54 665 (45.70%) 0.47 1454 (99.93%) 0.50 1452 (99.79%) 0.52

B cell 58 (65.91%) 0.72 3 (3.41%) 0.07 1 (1.14%) 0.02 0 (0.00%) 0.00 35 (39.77%) 0.55 15 (17.05%) 0.29

Other cell types not seen in reference

(n = 3784) as unknown
- - 842 (22.25%) 0.34 - - 2402 (63.48%) 0.68 - - 396 (10.47%) 0.18
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Fig. 4. Computation time of SVM and SVMrejection using 3 different data processing: Raw

counts, processing with Seurat and processed with the Mutual Nearest Neighbor (MNN)

method. A) Barplots with the computation time (in seconds) for each classification method

and data processing using PBMCs as test set and MCA as reference set (taking into account

that MCA dataset has 7095 cells). A) Barplots with the computation time (in seconds)

for each classification method and data processing) using MCA as test set and PBMCs as

reference set (taking into account that PBMCs dataset has 6003 cells).

3.3 Comparison of SVM and SingleR annotations using

JArribas dataset with ImmGen as reference

This section aims to compare SingleR and SVM annotations on a dataset

that does not contain annotations that have been scientifically verified

(the JArribas dataset). This comparison is done in a species specific

environment. Thus, we tested JArribas using the ImmGen as reference

dataset for mouse.

Different settings for both methods were taken into account to produce

their annotations: whether they had a general (main) or specific cell type

was used, feature selection or not in the test data and the configuration of

SingleR: for each cell or for clusters (Figure 5A). For example, for Setting

1a) SVM was trained using specific cell type and with feature selection

in the test data, then SingleR was trained with the same characteristics

but it was fitted per clusters. In contrast, Setting 1b had the same SVM

annotation but SingleR was fitted for cells.

Figure 5B shows the global misclassification percentage for each

setting with SingleR annotation as gold standard (true predictions).

Settings 3a and 3b had the lowest misclassification percentage (7.74 %

and 6.80 %, respectively). The same percentage was computed specifically

for each cell type. In each case, the lowest one was obtained using

the same settings 3a and 3b (Figure 5C). Figure 5D visually compares

the annotations for SingleR and SVM and each setting through the

corresponding Sankey plot. Both Figure 5C,D shows how B cells and

Dendritic cells were better classified in Setting 2a, 3a and 3b compared to

the others, with less than 4% of misclassification in each case. Fibroblasts

and Neutrophils were worse classified in Setting 1a and 1b compared to

the others, with more than 87% of misclassification in each case. And ILC,

Macrophages, NK cells and T cells were best classified in Setting 3b, with

less than 28 % of misclassification in each case.
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Fig. 5. Comparison of SVM and SingleR annotations using JArribas dataset. A) Scheme representing which test and reference sets are used for the comparison of these methods. Their

annotations are obtained through different settings present in the table. Each Setting have an associated color as stated in the table. B) Taking SingleR’s annotations as gold standard (true

annotations), the barplot shows the global misclassification percentage for each setting according to the color specified in A). C) The barplots represent the misclassification for each cell

type for every setting. These cell types are present in the annotation of SingleR for all settings. D) Sankey plot showing the cell annotations from SingleR (in the left) and SVM (in the right)

for each setting. It is only selected those cell types are present in the annotation of SingleR for all settings.
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4 Discussion

In this study, a comprehensive evaluation was conducted to assess the

performance of four automatic annotation methods for scRNA-seq analysis

(SVM, SVMrejection, SingleR and ScType). We evaluated these methods

on three test datasets (MCA, PBMCs and JArribas) and two representative

and detailed reference datasets (ImmGen and Monaco). We systematically

assessed the performance through the number and global percentage of

correctly classified cells and the weighted-average F1 score.

Regarding to evaluation of SVM, SingleR and scType using MCA and

PBMCs data as test sets, the best-performing method was SingleR fitted for

each cell. Specifically, this method had the highest number and percentage

of cells correctly classified and the best weighted-average F1 score in

both MCA and PBMCs test data. The scType method also performed

well using PBMCs as test data in the All cell types setting. These results

are consistent with a previous work suggesting that SingleR performs best

when the size of the reference data is small or the cell types are imbalanced

(Zhao et al. (2020)), as in our reference data. However, the performance of

SVM differs from previous reports (Abdelaal et al. (2019)) as all analyses

all analyses had the lowest percentage of cells correctly classified and

weighted-average F1 score.

Moreover, it is important to take into account that the most represented

cell types in the test data were those that had the highest percentage

of cells correctly classified and F1 score, whereas those that had less

representation, were more difficult to annotate. For example, most of these

cell types in the All cells types setting with MCA as test data had 0% of

cells correctly classified. In contrast, PBMCs had a good representation of

all cell types (i.e. each cell type has more than 80 cells) and all cell types

were detected with a percentage greater than 60% for all the methods.

Although scType performed similarly to SVM and SingleR using both

test data, it should have been able to capture those cell types that were

not seen in the reference data during the SVM and SingleR training, as

it only relies on a marker gene database. However, most of these cases

were not correctly captured by the method. Cytotoxic, Megakaryocyte

and Plasmacytoid cells types included in the PBMCs as test had 0% of

cells correctly classified.

In addition, in the All cell types setting, we analyzed how cell types

included in the test set, but not in the reference, were annotated. For

example, four cell types were present in MCA but not seen in the ImmGen

dataset. In this case, all methods agreed on annotating Myeloid cells as

Monocytes, which may be due to the fact that Granulocytes and Monocytes

are collectively called Myeloid cells and these come from differentiated

descendants with common progenitors derived from hematopoietic stem

cells in bone marrow (Kawamoto and Minato (2004)). All methods also

agreed on classifying Lymphocytes as Stem cells, as Lymphocytes are

mature, infection-fighting cells that develop from lymphoblasts, a type of

blood stem cell in bone marrow (The American Cancer Society (2022)).

Moreover, in most of the cases, the methods classified Erythroid cells as

Stem cells although SVM also annotated them as Endothelial cells in 20%

of the cases. Erythroid cells and stem cells are related because the first

one is differentiated from hematopoietic stem cells (HSCs) and resides

within specific niches in adult bone marrow (Fan et al. (2015)). However,

Erythroid and Endothelial cells do not have a specific relation to each

other. Finally, the unique case where all methods did not agree was with

B cells (Plasmocytes). Both configurations of SingleR predict them as B

cells, given that both of them are related (Allman and Northrup (2010))

but SVM annotates them as Tgd, Fibroblasts, and B cells in the amount of

approximately 20% in each case.

A relevant aspect that is worth mentioning is that enlarging the size

of the reference data (i.e. the number of cells), makes the fitting of the

method slower as any method trained with ImmGen took more time to be

fitted than one trained with Monaco (Abdelaal et al. (2019)). The SVM

and SingleR fitted for for each cell methods had the longest computation

times.

Furthermore, the Common cell types setting performed better than the

All cell types setting, but this is not a real scenario and there is a need to

include an "Unknown" option when a cell in the test data is not seen during

the training of the method (i.e. not in the reference dataset). Including a

rejection option in SVM (SVMrejection) could be an possibility. It is

created from a calibration step that transforms the score obtained from the

model to probabilities, as Abdelaal et al. (2019) proposed).

In the evaluation of SVM and SVMrejection, we compared both

methods on the MCA - ImmGen and PBMC - Monaco configurations, but

unexpectedly the results were not as promising as Abdelaal et al. (2019)

stated; all cells were classified as T cells or as Unknown. Section C of

the Supplementary Information has more details related to experiments

performed on the MCA dataset. We speculate that implementing a rejection

option remains a challenging task as it relies on posterior probabilities to

assign labels but ignores the actual similarity between each cell and the

assigned population, as Abdelaal et al. (2019) had postulated. This option

was additionally tried with MCA as test data and PBMCs as reference

data, and the other way around, in an attempt to see if enlarging the size

of the datasets or using two scRNA-seq data as both test and reference

data improves the performance when training SVM. However, adding this

rejection option did not improve the performance of SVM, as the three cell

types seen in both sets, T cells, B cells and Dendritic cells, were better

classified using SVM without the rejection option. Apart from performing

badly, SVMrejection takes the longest time to be fitted, especially with

Seurat data processing.

According to the comparison of SVM and SingleR annotations using

JArribas dataset with ImmGen as reference, we found that SingleR and

SVM produced similar annotations when they were fitted using main cell

types labels, without feature selection and SingleR was fitted for each cell,

because it had the lowest global and specific-cell type misclassification

percentage when SingleR annotation was considered as gold standard.

Some limitations of this study are the limited number of datasets

and methods used. Analysing more of them could lead to more robust

results and reliable conclusions. Other limitations were inherited from the

datasets. For example, reference data (ImmGen and Monaco) were small

and the cell types were imbalanced, making it difficult for classification

methods to do a correct annotation.

Future studies improving SVMrejection could help in those cases

where cell types are discordant between test and reference datasets.

Research into other methods may be needed. One option could be using

correlations between each cell in the test data and cell types present in the

reference, and discarding those that have all correlations below a threshold.

Also, research into the possibility of building an ensemble voting of

different tools could be a solution in order to improve the performance

of the SVM(Zhao et al. (2020)).

We suggest the use of SingleR since it performs better compared to the

other classifiers, especially when it is fitted for each cell and the reference

data is small or the cell types are imbalanced. The results also suggest

that any classification method is able to correctly predict most of the cells

belonging to a cell type when there is a good representation of this cell

type in the test data. We can further speculate that the performance of

classification methods is dependent on the reference dataset (as Abdelaal

et al. (2019), Ding et al. (2019), Huang et al. (2021) suggested). Finally,

we see that SingleR and SVM have similar annotations when using main

cell types, without feature selection on the test data and SingleR is fitted

for each cell.
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5 Conclusions

This project presents a comprehensive evaluation of automatic annotation

methods for single-cell RNA sequencing data. We recommend the use of

SingleR fitted for each cell type as it had performed best overall, especially

when using immune data, when the size of the reference data is small, and

when the cell types are imbalanced. SVM performed worse in those cases.

Finally, incorporating a rejection option is vital when the cell types are

discordant between test and reference datasets, but it remains a challenging

task, as all analyses performed in this study using SVMrejection did not

perform well. Other options must be researched in order to annotate when

there are no common cell types between test and reference sets.
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