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ABSTRACT 

Over the past decade, increased computational capabilities have enabled us to address biological 

questions using data-driven methods, particularly where traditional techniques have been limiting. We 

hypothesize these computer-based methods can be used to predict enzyme activation status. To verify this 

claim, we have selected a benchmark protein for study, Human HRAS, sourcing a comprehensive set of 

experimentally labelled structures from available databases. Seven physical, computationally inexpensive 

features were extracted from these structures at the amino acid alpha carbon level and aligned to the 

canonical sequence to convey their metrics locally. Subsequently, three-dimensional tensors were 

generated with them from the set of all possible combinations of the obtained features. A random forest 

model was then trained on t-SNE preprocessed tensors to look for the highest performing combination of 

features. Our results strongly suggest that activation status in Human HRAS, and probably other proteins, 

is mainly codified in the electrostatic and Van der Waals forces, with solvation forces playing a lesser role. 

These forces, when processed through machine learning models, offer substantial predictive capability. In 

contrast, methods based on the physical three-dimensional position of residues, such as coordinate-based 

data and pairwise Root Mean Standard Deviation, were not independently effective in distinguishing 

activation states. 
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1 - INTRODUCTION 

In the last ten years we’ve been seeing an exponential growth of computational resources available for 
tackling biological problems previously thought only achievable through empirical methods. Since the 
publication of Alphafold by Deepmind in 2018 (Jumper et al., 2021), proving the solution to the folding 
problem through graph neural networks, the explosion of solutions to biological problems has escaped the 
confines of exclusive supercomputers and is achievable in low-end terminals. Besides, both enormous 
databases of molecular data and supercomputing time are readily available for marginally low costs, 
enabling solutions faster and more affordable than ever. 

The folding problem has been one of the philosopher stones of computational biology for decades. The 
solution space of transforming moderately sized proteins of a few hundreds of amino acids into their final 
three-dimensional conformation yielded numbers in the order of 10500 possibilities, completely outside the 
capacities of our most potent supercomputers to deal with. It was thought as well that we couldn’t achieve 
it until a sufficiently powerful quantum computer was developed, capable of simulating the complex 
interatomic forces that give proteins their shapes and functions. This cornerstone is yet many decades 
away. 

It would turn out we wouldn’t have to wait that long. The Critical Assessment of Structure Prediction 
(CASP14) competition of 2020 achieved unprecedented levels of accuracy in protein predictions and can 
be plausibly seen as the kickstart of the race to develop purely computational pipelines that could save 
much money and time. 

Perhaps one of the most fundamental questions one can ponder when studying almost any protein with 
enzymatic capacity is whether it is active or inactive. Activation status of a protein is a complex deal, 
mediated by post-translational modifications, subcellular location, environmental properties, allosteric 
molecules, feedback mechanisms and a myriad of other circumstances. In this regard, a purely brute-force 
computational approach to the simulation of a protein status is an intensive endeavor, not shy of the 
requirements the very folding problem would have had were not for the steps taken in machine learning 
and neural networks. 

A simpler approach to this problem could be not trying to tackle all the possibilities that can determine 
whether a protein is active or inactive based on atomic magnitudes, but whether some of the measurable 
properties of the structures are statistically associated to their activation. For example, we can hypothesize 
that closer, more compact structures are harder for substrates to access to, and perhaps over a large 
sample of similarly behaving molecules, a pattern can be detected that can be clearly associated with the 
catalytic capacity of the protein. 

In that regard, several properties of a figurative protein come to mind that have an instant association with 
the location of its constituent components in relation to one another and with the medium. These are 
relatively easily calculated through well-known computational methods, and perhaps within that high-
dimensional photography of several metrics and coordinates there is a particular pattern that can 
unequivocally denote or not a protein as active.  

In a preliminary unpublished work, the laboratory of Jordi Villà (Lingner et al., 2010) investigated the 
relevance of residue level solvation free energy values for the discrimination of active and inactive 
structures of Ras, as showed in Figure 1.1. 
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They went for a probabilistic approach that did not conclude any statistically significant association, 
although preliminary results hint at the existence of two distinct conformational patterns separating the 
active and inactive structures. Other study can be tangentially associated to the goal of this one (Tahir & 
Hayat, 2017), although their target was on more general protein-protein interactions (PPI). Their results are 
encouraging in this line of research. 

 

Considering the aforementioned factors, prior to employing machine learning techniques, it is advisable to 
ascertain whether traditional statistical methods cannot achieve comparable classification outcomes. The 
latter methods are notably more straightforward to implement. 

Considering our objective, we aim to investigate the feasibility of developing a machine-learning classifier 
that can interpret information from existing databases by analysing multiple physical properties of a 
benchmark protein. This classifier should reliably determine whether a specific protein is in its active or 
inactive state. 

Thus, the two main goals of the project are: 

• Demonstrating that a statistical method applied to the physical properties of our benchmark protein is 
insufficient to categorize its experimental structures into active and inactive forms. 

• Select and train a machine learning model based on physical feature metrics that can successfully 
predict with sufficient efficacy the activation status of our labelled dataset. 

More specific goals of this project are: 

• Successfully generating a computational pipeline that can automatically generate a model from existing 
available data. 

• Extract relevant physical-chemical features from existing data on our benchmark protein and study their 
predictive potential on activation status. 

Figure 1.1 – Preliminary unpublished work by the laboratory of Jordi Villà on residue-level solvation energies for the 
discrimination of active versus inactive protein structures. The heatmap clearly distinguishes two groups of structures, upper 
(active) and lower (inactive). 
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• Label the retrieved data for activation status to train a supervised machine learning model. 
 

1.1 - HRAS 

The proposed model protein for this project is human HRAS (Uniprot Accession Code P01112). HRAS is a 
member of the RAS family, a great community of GTPases, which means it hydrolizes guanosine 
triphosphate (GTP) into guanosine diphosphate (GDP). RAS proteins function as molecular relays, 
transmitting signals from activated receptors. They switch between two states: an inactive state when bound 
to GDP and an active state when bound to GTP. In the active GTP-bound state, RAS can engage with and 
activate a variety of downstream proteins, leading to a spectrum of cellular responses, such as cell growth, 
survival, differentiation, and potential transformation into cancerous cells. 

The structures can be visualized in Figure 1.1 (Fetics et al., 2010). For more information on HRAS structural 
and functional characteristics, refer to Annex 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HRAS is a well-studied protein with a critically important physiological function. That is the regulation of 
several intracellular signaling cascades. It interacts with several effector proteins, and have a role to play 

Figure 1.2 – HRAS 3K9L structure. Pink regions correspond to Switch I. Orange regions correspond 
to Switch II. Altogether, they are mainly responsible for the enzymatic activity of HRAS. Green 
regions constitute the Linker joining both Switches. 
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in cell proliferation, differentiation, and survival. Thus, it is a well conserved protein, because mutations that 
render it dysfunctional usually lead to lethality. 

1.2 – Features 

Weighted Contact Number 

WCN has been shown to provide dynamical characterization of protein structures from the simple 
measurement of the distance between nodes (C-alpha, centroids, all atoms). Given a network with nodes 
𝑖 and 𝑗, the Weighted Contact Number is defined as the sum of the inverse of the squares of all the distances 

between nodes 𝑖 and 𝑗. 

𝑊𝐶𝑁𝑖 = ∑
1

𝑑𝑖𝑗
2

𝑗≠𝑖

 

When the nodes we are using are, for example, C-alpha atoms in each amino acid residue, we can evaluate 
a residue-based WCN. It provides a practical way to featurize protein conformation at the residue level. A 
mutation that significantly alters the WCN of a residue might disrupt the protein’s stability or its capacity to 
undergo necessary structural shifts for its function, leading to inactivate or constituent states (Lin et al., 
2008). 

WCN provides insights into the local environment of an amino acid residue by quantifying the distance to 
surrounding residues. It is a good measure of the “compactness” of each region, which according to our 
hypothesis, may critically determine the function of a particular structural region. 

𝒑𝑲𝒂 of Ionizable Groups 

The 𝑝𝐾𝑎 of an amino acid residue indicates the 𝑝𝐻 at which it is half-protonated. 

Starting with the Henderson-Hasselbach equation (Bombarda & Ullmann, 2010): 

𝑝𝐻 = 𝑝𝐾𝑎 + log (
[A-]

[HA]
) 

 

Given the condition in which the residue is half protonated, both protonated and deprotonated forms are 
equal, we can arrange the equation so: 

pH = pKa 

Changes in protonation states can drastically affect the distribution of charges across the whole electronic 
domain of the protein, and thus its structure and function (Krusemark et al., 2009).  

Many proteins operate at specific 𝑝𝐻 values. Trying to consider all the possible environmental conditions 
that can influence a protein structure, or the critical role the surrounding medium’s 𝑝𝐻 can have on its 
activation state, is precisely the kind of computational effort this project intends to avoid. The best way then 
to codify the behavior of those structures under different proton concentrations is to study the 𝑝𝐾𝑎 to know 
the rate of dissociation of its residues. 

Many enzymes utilize acidic or basic residues as catalytic groups. In fact, only a fraction of the constituent 
amino acids in regular proteins account as ionizable groups that interact strongly with the surrounding 
medium as acids or alkalis. These “chemical hinges” can have a powerful effect on their surrounding 
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distribution of electric charges, and a deep impact on the final conformation of the structure, its affinity to 
substrate and finally its activation state (Fossat et al., 2021). 

Energetic Landscape 

On a wide perspective, the process of protein folding is driven by energetic considerations (Haq et al., 
2010). The native state of a protein is often its lowest energy state, be it on globally or in their multiple 
transient states (Sorokina et al., 2022). Deviations from this state, be it because of mutations, environmental 
interference, or PPI, can lead to protein misfolding or new conformations altogether, metastable or 
persistent. These alterations can usually be associated to pathological or constituent states, and thus to 
the activation status. 

This is critical in the case of HRAS as its function is heavily modulated by a multitude of effector proteins 
like GAP. Even when it’s not possible or convenient to model all the possible PPI participating in the 
metabolic cascades HRAS regulates, the total energy of its residues will probably contain a pattern 
characteristic of the interaction with other molecules. Its total energy metrics can provide insights into the 
stability of their interaction, the potential for allosteric regulation and the probability of transient or stable 
interactions. 

Solvent Interactions 

Solvation energies reflect how the residues interact with the protein’s solvent (usually water). Proteins 
consist of a mix of hydrophobic and hydrophilic residues. Their particular distribution of these in a protein’s 
surface and interior plays a crucial role in its folding and function (Tomar et al., 2016). 

This property in particular can provide clear insights into the degree of exposure or shielding of hydrophobic 
regions, indicating potential binding sites, allosteric sites or regions of structural importance. 

In conjunction with the coordinates-based WCN or the electric charge based pKa already mentioned, the 
solvation profile can give us not only the amount of shielding of a residue, but its predisposition to occupy 
lower or higher energy regions. For example, a residue with a high degree of hydrophobicity can still be 
relatively exposed to the surrounding medium due to the particular distribution of residues in the immediate 
area, but under a conformational shift can greatly modify its position to one more suited to its solvation 
value (Hudáky et al., 2001). 

Molecular Interactions and Stability 

Finally, to account for all possible sources of conformational shifts in a protein, we have to move to the 
electronic forces determining the attraction and repulsion between residues. In this study, the metrics that 
have been considered to account for the electronic component of intramolecular forces are electrostatic 
and Van der Waals. 

Electrostatic forces arise from interactions between charges groups. In proteins, these are often the side 
chains of amino acids with intrinsic charge like arginine, lysine, glutamate, or aspartate. For instance, an 
enzyme might stabilize a negatively charged transition state by positioning a positively charged residue 
nearby. In fact, the particular working mechanism of HRAS contains a single positive residue initializing the 
reaction, known as an “Arginine Finger”. 

Electrostatic potential provides insights into charge distribution on the protein’s surface. Charge-charge 
interactions play a pivotal role in ligand binding, PPI and general conformation shifts (Gallicchio & Levy, 
2011). 

Meanwhile, Van der Waals attractive and repulsive components reflect non-covalent interactions between 
atoms. This ubiquitous forces are quantum-mechanical in nature and arise from fluctuations in the electronic 
charge density (Hermann et al., 2017). Even though the forces mediated by these components are 
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extremely weak, they can indicate shifts in the protein’s structure, particulary in the surface (Gao et al., 
2015) (Hähl et al., 2012). 

1.3 - Statistical Discrimination 

In order to determine if active and inactive structures can be discriminated by purely statistical mechanisms, 
we have used two clustering-based metrics: 

Root Mean Standard Deviation (RMSD) 

It is a widely used metric in homology analysis to quantify the similarity of two protein structures. It is defined 
as: 

𝑅𝑀𝑆𝐷 = √
1

𝑛
∑|𝑟𝑖 − 𝑟′

𝑖|2

𝑛

𝑖=1

 

in the two datasets being compared, where 𝑛 is the number of datapoints, and 𝑟 and 𝑟’ are the coordinates 

of the 𝑖th datapoint. 

For all our complete training protein dataset, all samples were first superimposed to each other, and their 
RMSD value calculated. If the scalar divergence between all possible pairs of samples contains within itself 
the necessary discriminating information, we will be able to see a clustering pattern around the two 
categories. 

Coordinate-based Clustering  

As for the coordinate-based clustering, we can implement an algorithm that can be fed on the three-
dimensional locations of the residues, and these processed by another clustering algorithm. If the 
divergence in the 3D coordinates of the atoms in all pairwise comparisons is significant enough and codifies 
the activation status of the proteins, we will see a clustering pattern around the two categories as well. 

Classifier 

Our selected method is Random Forest for the following reasons: 

• Accuracy. Random Forests often provide a very high accuracy, particularly on complex datasets 
with many features. 

• Feature Importance Discrimination. Random Forests provide insights into the importance of 
different features in making predictions. 

• Resilience to over and underfitting. Due to the averaging or majority voting system, Random 
Forests are less prone to overfitting than individual decision trees or other ML-based classifiers.  

• Large dataset handling. Random Forests can handle large datasets with high-level dimensionality, 
as well as a large number of input variables. 

• Outlier management: Random Forests are resilient to outliers. They can be used to detect and 
account for outliers in the dataset.  
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2 - METHODS 

2.1 - Pipeline Execution 

The pipeline is explained in full detailed in Annex 2, and the full code is available in the provided Github 
repository. Please refer to the Resources and Code Availability Section for the link to the repository. 

Data Acquisition: Four types of data were retrieved: 

• Canonical sequence of human HRAS. 

• BLASTp query results using the canonical sequence. 

• PDB files from BLASTp output. 

• Metadata from the RCSB database. (See Annex 2 for retrieval specifics) 

Feature Extraction: Seven features were extracted via specific scripts: 

• WCN using the WCN Standalone Library (Floor, n.d.) 

• pKa using the PropKa Library (Olsson et al., 2011) 

• Rosetta profiles using the Pyrosetta Library (Chaudhury et al., 2010).  

The features were globally aligned (BLOSUM62) to the amino acids of the canonical sequences and stored 
into dataframe objects. 

Data extraction: RMSD values were determined for all possible structure pairs, and alpha carbon 
coordinates were extracted from all selected structures. All possible combinations of feature dataframes 
were created using: 

𝐶(𝑛, 𝑘) =
𝑛!

𝑘! (𝑛 − 𝑘)!
 

Where 𝑛 represents the total number of dataframes and 𝑘 is a random number between 1 and 7. The 
operation yielded 127 distinct combinations. 

The dataframes within these combinations were stacked along the third dimension into 3D tensor objects, 
normalized using the Z-score method. Null values were handled through zero imputation. 

Dimensionality Reduction and Modelling: Tensors were flattened to 2D arrays and preprocessed with t-
SNE of two components. Random forest models were trained on these arrays using a three-fold cross-
validation and a hyperparameter grid search. The full details of the model training are available in Annex 2. 

2.2 - Analysis 

Hierarchical clustering of RMSD values and a 3D PCA on alpha-carbon coordinates were conducted. Each 
dataframe metric was used to train separate random forest models, from which feature important residues 
were selected. A two-sample t-test was performed between active and inactive datasets from the 15 most 
important of these residues. Model training outputs were also stored and analysed. For the complete list of 
metrics obtained, consult Annex 2.  

Detailed visuals and analyses are available in the Results section and in the 'Analysis' folder on the provided 
Github repository. Specific values obtained from the analysis are available in Annex 3. 



González, J.  Universitat de Vic  

 

11 
 

3 – RESULTS 

3.1 - Statistical Analysis  

Comprehensive statistical evaluations, including normalization, clustering, feature importance, and 
significance studies of the seven metrics, are accessible in the 'Analysis' subfolder of the associated Github 
repository. 

As we can observe in Figure 3.1. Clustering study of RMSD and coordinates for our samples does not yield 
any aggrupation pattern corresponding to the activation states of the dataset proteins. The PCA performed 
on the coordinates extracted from the .PDB files can be seen in Figure 3.2 and does not reveal any 
clustering pattern corresponding to the activation status. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 – Tree cluster visualization of RMSD values in the complete dataset. Y axis corresponds to the 
distance between nodes of the tree. X axis contains the different structure identifiers, marked by colour. The 
red names correspond to active structure identifiers, and the blue correspond to inactive structure identifiers. 
There is not a clearly discernible clustering pattern in the structures, and there are more than two clusters 
that do not correspond to the categories of active and inactive. 
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3.2 – Feature Importance and Discriminative Analysis 

We can observe the impact each of the 15 most important amino acid residues has on random forest model 
generation for each of the analyzed metrics in Figure 3.3. The precise values are available in Annex 3. For 
these amino acids, the results of the two-sample t-test (α=0.05) reveals the following distribution in each 
metric: 

Figure 3.2 – PCA visualization of the 3D coordinates obtained from the .PDB files.Each of the axis represent the contribution of 
the dimensions to the PCA. There is not clustering arrangement of the datapoints in the space of the PCA into two separate, 
clearly discernible groups.  
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Figure 3.3 – Each of these tables represent the most important amino acids in random forest model formation for each 
one of the features analysed. The x-axis contains the 15 top-performing amino acids of the whole HRAS in descending 
order of importance. The y-axis contains the t-statistic from the comparison test between the active and the inactive 
datasets. The red dots represent the False Discovery Rate-corrected p-values of the test, and the dotted line represents 
the alpha of the analysis (0.05)  
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WCN Profile (Refer to Figure 3.3 and Table A3.2): 

Major positions in this profile align with vital HRAS regions. The Switch I region exhibited stark disparities 
between active and inactive structures, with residues T35 (p=3.01E-08) and D39 (p=0.03083573) showing 
pronounced differences. The Switch II region brought attention to residues G60 (p=1.00E-31) and Q61 
(p=3.84E-09). Additionally, T35, G60, Q61, G10 (p=2.66E-05), G12 (p=2.83E-08), and G13 
(p=0.00940391) varied structurally and functionally. Comprehensive structural characteristics of HRAS can 
be referenced in Section 1.1 and Annex 1. 

pKa Profile (Refer to Figure 3.3 and Table A3.3): 

This profile highlighted significant positions in the Switch I region, specifically Y32 (p=0.000181767) and 
D38 (p=0.000181767). The Switch II region revealed significance at R68 (p=0.000181767). Notably, Y32 
is pivotal for HRAS's functional activity. Consult Section 1.1 and Annex 1 for an in-depth exploration. 

Total Energy Profile (Refer to Figure 3.3 and Table A3.4): 

The variations between the datasets means for analyzed positions were rather limited in this profile. We 

find very little significance in T35(p=0.04730029) in Switch I, and Y64(p=0.04730029) in Switch II. Refer 

to Section 1.1 and Annex 1 for HRAS structural characteristics. 

Solvation Profile (Refer to Figure 3.3 and Table A3.5): 

This profile elucidated significant variances among key HRAS residues. Residues D33 (p=2.24E-05), I36 
(p=2.24E-12), and S39 (p=2.91E-06) in the Switch I region and R73 (p=0.00190848) in the Switch II region 
were of interest. Residues G10 (p=0.01283681), G12 (p=0.000105356), G13 (p=0.000105356), and C118 
(p=2.91E-06) showcased structural and functional variations, with C118 being of unique significance in this 
profile. Further insights on HRAS are available in Section 1.1 and Annex 1. 

Electrostatic Force Profile (Refer to Figure 3.3 and Table A3.6): 

A notable distinction in mean values for amino acids between active and inactive structures emerged. 
Residues Y32 (p=0.041433874), D33 (p=2.19E-10), T35 (p=4.31E-09), E37 (p=0.000299298), and D38 
(p=0.00136504) in the Switch I region, and G60 (p=0.000123179) and Q70 (p=0.000485045) in the Switch 
II region were highlighted. Refer to Section 1.1 and Annex 1 for further structural details. 

Van der Waals Attractive Force Profile (Refer to Figure 3.3 and Table A3.7): 

The profile underscored several significant disparities in the mean values. Residues Y32 (p=0.007392506), 
D33 (p=9.81E-14), T35 (p=0.000511909), I36 (p=0.000924024), and S39 (p=0.000459318) in the Switch I 
region demonstrated heavy significance. In the Switch II region, Y64 (p=4.38E-09) and M72 (p=2.06E-07) 
were of note. For an in-depth understanding of HRAS, refer to Section 1.1 and Annex 1. 

Van der Waals Repulsive Profile (Refer to Figure 3.3 and Table A3.8): 

Despite the T-test analyses indicating significance in many residues, FDR Correction impacted numerous 
p-values. Residues D33 (p=0.015590989) in the Switch I region and Y64 (p=0.00074742) in the Switch II 
region remained significant post-correction. For details on HRAS structure, refer to Section 1.1 and Annex 
1. 

 

3.3 - Machine Learning Model Results 

ROCAUC and Accuracy Analysis 



González, J.  Universitat de Vic  

 

15 
 

Insights into the distribution can be found in Annex 3, Table 3.9 and Table 3.10. Figures 3.4 and 3.5 offer 
visual depictions of the data. It should be highlighted that the models with the best ROCAUC scores 
consistently showcased the best performances in other metrics, as illustrated in Figure 3.5. 

 

 

 

 

 

 

 

 

 

 

Log Loss Analysis 

For a detailed assessment, consult Figure 3.5 and Table A3.11. While top-performing models display slight 
variations when assessed using the log loss metric, the combination of both Van der Waals components 
emerges as the best performer. Interestingly, weak non-covalent forces remain predominant in terms of 
predictive capability.  

Cohen's Kappa (CK) and Matthew's Correlation Coefficient (MCC): 

Figure 3.4 – ROC Curves of the top 5 performing models. The x-axis represents the False Positive Rate. The y-axis 
represents the True Positive Rate. The closer the curves are to the top-left corner of the plot, the better the classifier. 
The names codify which features the model was trained on: w=WCN; p=𝑝𝐾𝑎; t=Total Energy; s=Solvation Profile; 
e=Electrostatic Profile, v1=Van der Waals Attractive Profile; v2=Van der Waals Repulsive Profile.  

 

 

Figure 3.5 – Each plot represents the ranking of the 5 top-performing models for each of these metrics: Accuracy, Log Loss, 
Cohen’s Kappa and Matthew’s Correlation Coefficient. The models are ranked for each metric from the top performing (top) to 
the worst performing (bottom). The names codify which features the model was trained on: w=WCN; p=pKa; t=Total Energy; 
s=Solvation Profile; e=Electrostatic Profile, v1=Van der Waals Attractive Profile; v2=Van der Waals Repulsive Profile. 
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For visualization, see Figure 3.5. Both metrics confirm the top-scoring models. The exact values can be 
found in Annex A3, Table A3.12 and Table A3.13. 

 

Feature Importance Distribution: 

To understand how importance is distributed across features for each of the top-performing models in terms 
of accuracy, refer to Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6- Ranking of the most important features in each of the 5 top-performing models. The models are 
ranked from the best performer (top) to the worst (bottom). In each, the top 2 most important features for 
model generation are ranked from most important (top) to second most important (bottom). The names 
codify which features the model was trained on: w=WCN; p=pKa; t=Total Energy; s=Solvation Profile; 
e=Electrostatic Profile, v1=Van der Waals Attractive Profile; v2=Van der Waals Repulsive Profile. 
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Confusion Matrix Analysis 

A detailed examination of the Confusion Matrix for the top five performing models is presented in Figure 
3.16. 

 

 

Figure 3.7 – Confusion matrices of the 5 top-performing models according to ROCAUC score. The x-axis in each 
plot represents the True labels. The y-axis represents the Predicted Label. The names codify which features the 
model was trained on: w=WCN; p=pKa; t=Total Energy; s=Solvation Profile; e=Electrostatic Profile, v1=Van der 
Waals Attractive Profile; v2=Van der Waals Repulsive Profile. 
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3.4 - Discussion 

Coordinate-based analysis of the structures doesn’t reveal any clear clustering pattern related to enzymatic 
activation. However, the battery of testing metrics performed on the models seems strongly indicative of 
the capacity of physical properties of a protein to codify in them its activation status. Even though analysis 
of the features suggests statistical significance in the means of values comparing active and inactive 
structures, it’s more likely that machine learning and its superior pattern recognition capabilities are 
necessary to create a model that can make predictions based on the data. 

Several metrics show very strong statistical significance when comparing the means of values in the most 
important positions in most metrics analyzed. Significant differences in Switch I and Switch II are to be 
expected given the role of these zones in the regulation of HRAS functional cycle.  

Of particular interest are Y32 and T35, both highly conserved across structures and critical in function. Y32 
is very important in the stabilization of HRAS as it is only accessible upon GAP binding, and can lead to 
intrinsic GAP independent GTPase activity in mutant isoforms of HRAS (Ilter & Sensoy, 2019), while T35 
plays a role in the binding of GEFs and other downstream effectors. We also observe significant differences 
in G10, G12 and G13, all crucial for HRAS function. Finally, we find an interesting C118 significantly different 
between active and inactive datasets in the solvation profile, which might explain its role in activation 
prediction due to its role in GEF binding. 

As for the Random Forest model, we find accuracies up to 80%. Interestingly, top performers seem to 
consistently have three features in common corresponding to weak molecular interactions (Electrostatic 
and Van der Waals), down to the best 10 performers. 

In the testing metrics of the models, we can very clearly observe a predominance of the weak forces as the 
most valuable metrics for the prediction of the activation status of proteins, followed by the solvation profile. 
While the winning model is the one trained on the exclusively Van der Waals forces tensor, we can observe 
at least one occurrence of the electrostatics or Van der Waals features in any of the best performers, across 
all metrics. We can also observe that the only occurrence of one of these forces not being the most impactful 
in model generation is when Van der Waals repulsive is in conjunction with the solvation profile, hinting to 
the possibility that solvation might be more influential in prediction than the Van der Waals repulsive force. 

That exactly the winning model would be the combination of the weakest forces is simultaneously surprising 
and a good indicator that they codify the most information about the conformational configuration of the 
structures leading to activated status. 

It's important to note that these weak non-covalent forces not only consistently lead to better prediction 
outcomes (ROCAUC, Accuracy, MCC, CK), but to greater resilience to stochastic artifacts of detection as 
well (Log loss). 

Our primary hypothesis for this phenomenon is that the Van der Waals and electrostatic forces 
predominantly, followed by solvation to a lesser extent, influence higher-level folding more than other 
analysis metrics combined. Furthermore, they may be more specifically associated with the events leading 
to activation.These forces may have a more predominant role in tertiary and quaternary structure 
determination. Simply said, the models could be capturing subtle configuration shifts indicative of the 
adaptation of the protein to allosteric ligands or the substrate itself. 

While total energies or pKa distributions can have a deeper impact on the complete configuration of the 

protein from its linear state, determining arrangement the location of each residue deep within or in the 
surface, these shifts are simply too broad to accurately represent the minimal conformational changes 
happening at the active site, in the switch regions or other allosteric sites where activators or the substrate 
join in. 

For example, while residue protonation plays a crucial role in protein folding and stability, this metric applied 
to the alpha carbon of the amino acids might not capture the nuanced changes associated with the very 
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specific interactions that lead to activation or deactivation. In the medium, the intricate interplay between 
electrolytes and the ionization of polar groups collectively contribute to general enzyme function (Ou et al., 
2016). However, this likely doesn't provide discernible patterns concerning ligand binding and active site 
topology. 

Moreover, both Van der Waals and electrostatic forces are sensitive enough to the local environment. They 
can quantify with great precision small interactions and movements in space; enough precision to be 
detected even through the masking effect other greater and more drastic forces exert on the configuration 
of the protein and thus in the model weights. 

One of the most potent sources of evidence for this hypothesis is the relative importance of each feature. 
In all weak forces analysis we find hard statistical significance on amino acids constituent or adjacent to 
function-critical regions of HRAS. 

That these forces act so predominantly as markers of activation can be attributed to two main factors: 

• Some authors have observed that while electrostatic and Van der Waals forces lead only to weak 
intermolecular shifts, their combined action is greatly intensified (Persson et al., 2009). In this study it 
is shown that both interactions can work in a cooperative way in order to optimize specific biochemical 
mechanisms.  
 

• Van der Waals and other non-covalent weak forces mainly influence surface processes, whereas other 
stronger forces, like solvation energies determine at a more fundamental level the structure and function 
of the protein. This, in turn, means that while greater forces acting at longer distances determine the 
folding phase solution, lighter forces operating outside the more compact, energy-dense interior are 
almost solely responsible for interactions with regulator molecules and the substrate itself. Particularly 
in the case of electrostatic interactions, evidence exists that the influence of surface charges on ion 
binding to proteins may be more common than generally supposed and could have important 
consequences for protein function (Linse et al., 1988). 
 

Several works have shown that active site electrostatic preorganization can be linked to the instability of 
residues vital for catalysis. A notable investigation (Bonet et al., 2005) examined RAS/GAP complexes, 
identifying protein-protein interaction (PPI) "hotspots". These are specific regions on the HRAS exterior that 
undergo conformational alterations, positioning residues in an energetically advantageous alignment for 
interaction with residues on partner protein surfaces. Such findings underscore the significance of 
electrostatic and weak forces in modulating allosteric regulation and suggest their potential as predictors 
for protein activation status. 
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4 - CONCLUSION 

It can be concluded that classical statistical analyses of the physical properties in enzyme structures fall 
short in predicting activation status on their own. However, these structures exhibit patterns linked to their 
activation status. Leveraging machine learning with feature analysis harnesses these patterns, enabling 
the creation of predictive classifiers. Notably, weak surface forces appear especially informative, capturing 
nuances like allosteric regulation and subtle conformational shifts at active sites. 

Utilizing existing databases, a classifier can be developed to predict catalytic activation status, leveraging 
data that can be inexpensively processed from available sources. While this computational approach offers 
a valuable layer of insight, enabling significant advancements in the understanding of proteins as molecular 
switches and facilitating the identification of pathological mutations leading to aberrant activity, it does not 
eliminate the need for experimental methods. Rather, it complements and streamlines the research process 
by providing an additional layer of information, making experimental endeavors more targeted and efficient. 

By integrating the innovations of Alphafold with contemporary machine learning strategies, the field is 
advancing towards enhanced precision in protein dynamics simulations. These computational 
advancements offer a refined understanding of protein behavior, for example in the context of protein 
mutations. It's evident that the confluence of technology and biology is shaping a promising trajectory for 
protein research. 
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A1 - HRAS STRUCTURAL CHARACTERISTICS 

There are three primary RAS genes which produce four closely related RAS proteins: NRAS, HRAS, and 
two splice variants of KRAS, KRAS4B and KRAS4A. While these proteins can interact with the same 
downstream partners due to having identical effector binding domains, their activities are not entirely 
redundant. Variations in their posttranslational modifications mean they follow different pathways within the 
cell and position themselves in specific regions of cell membranes. This positioning may grant them access 
to varied effector groups, leading to different signaling results. For example, research shows that the 
cancer-causing forms of HRAS are more efficient than NRAS or KRAS in altering fibroblast cells, but NRAS 
excels in transforming blood-forming cells. Supporting this, gene studies reveal unique roles: eliminating 
NRAS or HRAS individually or in tandem in mice yields mostly normal outcomes, but a KRAS deficiency is 
fatal during embryonic development. 

Approximately 30% of human cancers, encompassing both solid tumors and blood-related cancers, have 
mutations linked to RAS genes. Intriguingly, specific RAS gene variants are more commonly associated 
with certain organ-specific cancers. For instance, KRAS mutations appear in almost 90% of pancreatic 
cancers. In blood cell-related cancers, NRAS mutations are more prevalent than those in KRAS, while 
HRAS mutations are uncommon. The reasons for these varied mutation rates among RAS gene variants 
in blood cell-related cancers remain unclear (Parikh et al., 2007). 

The HRAS structure consists of two main parts: a highly conserved G-domain, which is similar across 
different isoforms and is essential for its GTPase function, and a highly variable region that determines its 
positioning on the cell membrane. 

HRAS oscillates between two conformational states: the GTP-bound active form and the GDP-bound 
quiescent form. The meticulous modulation of these biophysical transitions is fundamental to ensuring 
homeostatic cell signaling and is orchestrated by a set of regulatory proteins with high specificity. 

Central to this regulatory machinery are the Guanine Nucleotide Exchange Factors (GEFs), particularly the 
SOS (Son of Sevenless) proteins. These factors, through their Ras Exchange Motif(REM) and CDC25 
domains, engage with HRAS in its GDP-associated form. The interaction causes steric hindrance, inducing 
a conformational alteration in the Switch I and Switch II regions of HRAS. This destabilizes the Mg2+ ion 
coordination, facilitating the egress of GDP. Subsequently, given the high intracellular concentration of GTP 
relative to GDP, GTP competitively binds to the nucleotide-binding pocket of HRAS, transmuting it into its 
active conformation. 

Conversely, GTPase-activating Proteins (GAPs), including the p120GAP and neurofibromin (NF1) 
isoforms, serve to attenuate HRAS signaling. By interacting with the Switch I and Switch II regions of GTP-
bound HRAS, GAPs allosterically augment the GTP hydrolysis rate, a process that inherently is relatively 
slow. The provided catalytic asparagine residue from GAPs accelerates the nucleophilic attack on the 
gamma-phosphorus of GTP by a water molecule, engendering the rapid formation of GDP and inorganic 
phosphate (Pi). This shifts HRAS back to its quiescent state, truncating the signaling cascade (Herrero et 
al., 2020). 

Anomalies or aberrations in these regulatory processes can precipitate pathophysiological conditions, 
including oncogenesis, given the pivotal role of HRAS in multiple signaling pathways (Glennon et al., 2000). 

Its particular domain distribution is as follows (Downward, 2003; Gremer et al., 2010; Herrero et al., 2020; 
Ilter & Sensoy, 2019; Rhett et al., 2020): 

G-domain (GTPase domain): 

▪ Comprises the majority of the HRAS protein (Residues 1 – 166). 
▪ It is responsible for binding to GTP, GDP or analogous. 
▪ Contains motifs essential for GPT binding and hydrolysis. 
▪ Allows HRAS to switch between GTP or GDP bound states (Active or inactive) 
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Switch I and Switch II regions: 

▪ Flexible regions within the G-domain 
▪ Switch I goes from residues 30 – 40, while Switch II goes from residues 60-76. 
▪ Undergo conformational changes upon GTP or GDP binding. 
▪ These conformational changes determine the interactions with other effectors and regulators. For 

example, when HRAS is GTP-bound (active), Switches I and II adopt a conformation that allows 
the union of effector protein RAF. 

Hypervariable region (HVR): 

▪ Located at the terminal C of the protein. It’s the part of the protein outside the G-domain. 
▪ It’s the location that most differentiates the RAS isoforms (HRAS, KRAS, NRAS). 
▪ Contains important post-translational modifications, such as farnesylation, which determines the 

membrane location of the protein. 

C-terminal CAAX motif: The “C” stands for cysteine, “A” for aliphatic amino acids and “X” for any amino 
acid. This motif is the site for the forementioned lipid modification that binds HRAS to the cell membrane, 
located at the terminal carbon of the protein. 

Linker region: Connects the G-domain to the HVR region between residues 86 and 104, although this can 
vary based on the whether HRAS is GTP-bound or not. 

 

At the amino acid level, specific residues in HRAS have a vital role for its function. The most important are 
(Downward, 2003; Rhett et al., 2020): 

Glycine-10 (G10): 

• This residue is a part of the P-loop (phosphate-binding loop) and is involved in binding the 
phosphate groups of GDP/GTP. 

Glycine-12 and Glycine-13 (G12 and G13): 

• These residues are situated in the phosphate-binding loop (often referred to as the P-loop) of the 
G domain of HRAS. The P-loop plays a vital role in binding the phosphates of GDP and GTP. 

• Mutations on these residues can render HRAS constitutively active, leading to oncogenic signaling. 
These are common mutated residues in HRAS-associated tumoral processes. 

Tryptophan-28 (W28): 

• This residue plays a role in effector binding, helping in interaction with downstream partners. 

Valine-29 (V29): 

• Positioned close to the nucleotide binding pocket, this residue can affect nucleotide affinity and 
potentially influence the GDP/GTP-bound states of HRAS. 

Tyrosine-32 (Y32): 

• Located in the Switch I region. 

• It is important for the stabilization of the activate conformation of GTP-bound HRAS (active). 

Threonine-35 (T35): 

• Located in the Switch I region. 
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• Important for effector interaction and the binding of downstream effectors like RAF. 

Glutamate-37 (E37): 

• A 2010 study found that duplication of E37 in the Switch I region impairs effector/GAP binding, and 
it is associated with increased GTP to GDP dissociation (Gremer et al., 2010). 

Glycine-60 and Glutamine-61 and Aspartate-119 (G60 ,Q61, D119): 

• Located in the Switch II region. 

• They play critical roles in GTP hydrolysis.  

• Q61, in particular, is critical for catalysing GTP hydrolysis by stabilizing the transition state. 
Mutations at Q61 can hinder GTP hydrolysis, leading to HRAS persisting in its active form. 

• D119 plays a role in GTP hydrolysis, working in conjunction with Q61 to stabilize the transition 
state. 

• Mutations in them impair the intrinsic GTPase activity, and are also visible in neoplastic processes. 

Lysine-117 (K117): 

• This lysine is involved in binding the γ-phosphate of GTP and plays a role in HRAS's intrinsic 
GTPase activity. Mutations here could affect the GTPase activity of the protein. 

Cysteine-118 (C118): 

▪ Located away from the nucleotide binding site. 

• It is important for the interaction with regulatory proteins like GEFs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



HRAS Activation Classifier  Universitat de Vic 

 

24 
 

A2 - COMPUTATIONAL PIPELINE 

A-2.1 - Overall Function 

The pipeline is designed to run from end-to-end on a single command. In order to generate the machine 
learning model, it first obtains from the internet the canonical sequence associated to the Uniprot accession 
code, as well as a large collection of protein structures via BLASTp query under the specified identity 
thresholds. The retrieved structures allow for the download of the whole .PDB files associated with them, 
which are programmatically trimmed to obtain the chain corresponding to the BLASTp hit. Subsequentally, 
several nested functions obtain relevant metadata from the structures and store them in a Pandas 
dataframe structure. The chains are then converted to new .PDB files, their sequences aligned to the 
canonical sequence previously stored, so each relevant metric is associated to its value in the alpha 
carbons of the experimental structures and aligned to their corresponding position in the canonical 
sequence. The data extracted for all these proteins at the alpha carbon level is: 

Weighted Contact Number (WCN) 

PropKa Profiles (PKa) 

Pyrosetta profiles for: 

▪ Total Energy 
▪ Solvation 
▪ Electrostatic Potential 
▪ Van der Waals Attractive Component (1) 
▪ Van der Waals Repulsive Component (2) 

The script extracts several .CSV objects through the execution for statistical analysis and quality control, 
as well as logging all activity throughout the execution.  The first goal of the script is the generation of seven 
dataframes, one for each of the metrics analyzed, whose rows correspond to the analyzed experimental 
structures, while the columns correspond to the position of the aminoacids in the canonical sequence (pe: 
Pos 1: M, Pos 2: T) 

These dataframes contain the values of each metric associated to each of the corresponding alfa carbons 
in the alignment. Therefore, different numerical parameters for the alignment yield different substitutions 
and gaps, modifying the results. The gaps are represented through NaN values. 

These dataframes are then inputted to the second script (Tensor#.py), whose first task is the normalization 
and preparation of the raw metric data. The script performs a Z-score normalization of all values and 
performs a 0-input operation on all NaN values of the dataframes in preparation for the Random Forest 
analysis.  

Then it proceeds to group all the normalized dataframes in all the possible permutations, stacking them 
across the third dimension to obtain the set of all possible 3D tensors where the first dimension contains 
the aminoacid positions, the second contains the experimental structures and the third a Pandas array of 
the normalized metrics for each amino acid. The operation results in the creation of 127 distinct tensors, 
going from 1 metric (original dataframes) to 7 metrics (the complete stacking of all metrics), identified by a 
unique code that distinguish the analysis contained in them.  

The third script (RF_model.py) has two functions. First, it compresses the 3D tensors into 2D structures 
using a feature importance statistical analysis tool (t-SNE), before initializing a Random Forest model and 
training it with the obtained structure.  

The second is the training of the models, one for each tensor in the set. Hyperparameter selection is done 
programmatically using the Grid Search algorithm across a number of options for several distinct 
hyperparameters. The model is then trained using cross-validation with three folds on each of the 127 
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permutations of normalized metrics dataframes. The results are then stored for subsequent analysis and 
the execution of the pipeline stops. 

A2.2 - Overall Structure 

The pipeline consists of a string of three Python scripts with sequential instructions for retrieval, 
preprocessing and analysis of .PDB files obtained from the PDB database in order to train the most effective 
binary classifier through Random Forest modelling.  

The scripts are orchestrated through the use of Nextflow, and callable from a single bash command 
specifying the analysis parameters. The required arguments for the execution of the pipeline are: 

• --uniprot_code (Required) 

• --active_ligands (Required) 

• --inactive_ligands (Required) 

• --query_coverage_threshold (Default: 50) 

• --identity_threshold (Default: 30) 

• --gap_open_penalty (Default: -0.2) 

• --gap_extend_penalty (Default: -0.2) 

• --seed (Default: 1) 
 

It logs their own execution in runtime, on top of NextFlow responding to halting states and having its own 
log control during the execution. It will retry restarting three times after encountering a non-exceptionable 
problem before halting the process.  

It also generates their own folders for storing of the analysis files. NextFlow ensures the assignment of 
execution permissions for the subsequent directories, subdirectories, and stored files, for which it is 
convenient to assign the script itself permissions under the sudoer group. The pipeline generates such 
folders in the same directory where it is located at the time of execution, generating absolute paths in the 
same directory address as the location of the NextFlow file, and given no permission problems, expands 
the directory structure downwards until the pipeline is completed and the execution halted. 

The pseudo-random number used for the reproducibility of the analysis is specified in the seed parameter 
supplied during the script call, and it is shared among all the scripts until the end of the execution.  

All the files generate several .PKL (Pickle) files along the execution. Pickle files are binary storage files that 
store the result of particularly heavy or critical processes that would otherwise take significantly more time 
to process again and again throughout the execution of the pipeline. These are saved to the “pickles” folder 
after the analysis. Inside this one there is the “tensors” subdirectory, which stores the generated tensors 
from the permutations of all metrics dataframes. 

The retrieval of the .PDB files is done via an intermediary file type (.ENT), and stored in the “ent_files” folder 
after the analysis. These contain all the retrieved files from the BLASTp query, but many of them remain 
without use after the filtering process. 

The resulting filtering yields the .PDB files trimmed to the chain corresponding to the hits in the BLASTp 
query, and are stored in the “full_pdb_files” folder. 

The metadata analysis includes a function for the generation of FASTA files from the selected chain .PDB 
files in order to perform phylogenetic tree analysis on them. These are stored in the “chain_fasta_files” 
folder after analysis. 

PropKa analysis generates its own files, necessary for the extraction of the 𝑝𝐾𝑎 data. These files are stored 
in the “propk_files” folder. 
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Exception to this are the “pyrosetta_pdb_files” and “wcn_full_pdb_files” folders, which contain the same 
.PDB files analyzed, but whose B-factor value is substituted at each alpha-carbon with the associated metric 
from the corresponding analysis, allowing the visualization of the given values through tools like UCSF 
Chimera. 

The “result_dataframes” folder contains the several dataframes extracted along the analysis in .CSV format. 
These files are reported in Table 2.1. 

 

Table A2.1 - .CSV files generated during the execution of the pipeline. The Analysis column contains the type of data contained in 
the files. The Raw file column contains the names of the files with non-normalized data. The Normalized file column contains the 
names with the normalized data. 

Analysis Raw File Normalized File 

Alignment alignment_dataframe.csv - 

Metadata metadata_dataframe.csv - 

WCN wcn_dataframe.csv w_dataframe_normalized.csv 

PropKa propka_dataframe.csv p_dataframe_normalized.csv 

Total Energy pyrosetta_total_energy_dataframe.csv t_dataframe_normalized.csv 

Solvation pyrosetta_solvation_dataframe.csv s_dataframe_normalized.csv 

Electrostatics pyrosetta_electrostatics_dataframe.csv pyrosetta_electrostatics_dataframe.c

sv 

Van Der Waals 

attractive 

pyrosetta_vanderwaals1_dataframe.csv pyrosetta_vanderwaals1_dataframe.

csv 

Van Der Waals 

repulsive 

pyrosetta_vanderwaals2_dataframe.csv v2_dataframe_normalized.csv 

 

 

From the alignment_dataframe.csv, all structure ids in subsequent dataframes follow the same ordering of 
structures along the second dimension. That is, alphabetically.  

Finally, the “models” folder contains the “RF” subdirectory, where all the models corresponding to all the 
possible permutations of metrics dataframes are stored after training. Each of these subdirectories contain 
two files: The trained model and another file with extensive data regarding the output and selected 
parameters of said model / combination, both in pickle format. 

 

A2.3 - Data Extraction 

The first script (Aligner#.py) is the largest, amounting to 1447 lines of code. Its purpose is the retrieval, 
transformation, and data extraction of the .PDB files. It revolves around the class Datahub, that contains all 
the necessary data throughout the analysis, as well as storing the input parameters for the execution of the 
script. The script per se requires the input via bash of the Uniprot Accession code (in this case P01112 
corresponding to HRAS), as well as gap open and extension penalties for global (Needleman-Wunsch) 
alignment (default BLOSUM62). It also requires the desired thresholds for identity search and query 
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coverage, as well as two comma separated strings of the ligands that unequivocally distinguish the given 
protein as active or inactive for labeling purposes. 

Retrieval and Preprocessing 

Three types of queries are performed: 

• A HTTP request to Uniprot, querying the Uniprot accession code (P01112 HRAS) in search of the 
canonical FASTA file containing the raw aminoacid sequence. 

• A BLASTp query against PDB, looking for hits on the previously obtained canonical sequence. The 
default Expect value is 0.01, with a hitlist size of 10000 samples and a word seed of 3. All the other 
parameters are left as default. 

• Download of all the selected PDB files after filtering them. 

The result of the FASTA query is stored and parsed, removing the header, and turning it into a Seq object 
for ease of use. This Seq object is used to perform the BLASTp search. The parameters of the search are 
stored inside a pickle file, and parsed to obtain a dictionary whose keys are the returned experimental 
structure ids, and whose keys are the chain identifiers of the HSP (High-Scoring Segment Pairs) of the 
BLAST search. Structures with repeated chains are deleted from the dictionary, and the selected .PDB files 
are downloaded via the Biopython library.   

The structures are then trimmed to contain only the chain containing the HSP from the BLASTp query, and 
the new .PDB files are stored for later analysis. Their sequences are extracted with Biopython based on 
query coverage and identity criteria, and will serve as the template for alignment in posterior feature 
extraction functions. 

Two metadata files for the analysis are also generated: A pairwise global alignment of all the structures 
against the canonical sequence and a large metadata dataframe. See metadata_dataframe in the Analysis 
folder of the provided Github repository. 

This data is obtained simultaneously from the RCSB database using the structure identification codes and 
from the proper .PDB files. The script will also generate FASTA files from the sequences of the selected 
chains using a simplified header (> [Structure ID]) for the purpose of performing a phylogenetic tree.  

The structures can be classified under the column “Read Activity Status” as “Active”, “Inactive” and 
“Unknown”, based on the ligand list supplied at script call. Those structures identified as “Unknown” don’t 
contain enough information on their metadata to be labeled as either active or inactive and are purged from 
the list of available structures for analysis. 

In the case of HRAS P01112, the script will look for following ligands to determine activity: 

Active: 

▪ Guanosine Triphosphate (GTP) 
▪ Guanosine-5'-[(β,γ)-imido]triphosphate (GNP), a non-hydrolyzable analog of GTP that blocks 

HRAS in its active state. 

Inactive: 

• Guanosine Diphosphate (GDP) 

• 5'-Guanosine-diphosphate-monothiophosphate (GDPβS or GSP), a non-hydrolyzable analog of 
GDP that blocks HRAS in its inactive state. 

The retrieval script recovered 554 structures, of which 435 were programmatically selected at the chosen 
filtering parameters based on bound ligands. 
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Weighted Contact Number 

The extraction is performed through the WCN module by Martin Floor (Floor, M.). It contains a method to 
directly obtain the WCN values of all alpha carbons from a given .PDB structure object. We first proceeded 
to feed the structures to the module and store these values as Numpy ndarrays. We performed the 
alignment stored in the alignment dataframe and associate the values corresponding to the substitutions or 
deletions in our query (structure) sequences. 

Then, we proceed to save the aligned WCN arrays to a dataframe. The structure will be the same as in the 
previously generated alignment dataframe. Refer to table of dataframes in Methods Section II. 

Subsequentially, we generate new .PDB files, substituting the alpha carbons B-factor value for the newly 
obtained WCN value for visualization with UCSF Chimera. 

 

PropKa 

PropKa predicts the 𝑝𝐾𝑎 values of ionizable groups in proteins based on the 3D structure of the protein 
(Søndergaard et al., 2011) (Olsson et al., 2011). It can handle standard amino acids and a few non-standard 
ones as well as ligands. 

We iterated over all the selected .PDB files and generate with them Molecular Container objects, using the 
default options and parameters of the module once the structure files are loaded. The Molecule Container 
objects are then read and their 𝑝𝐾𝑎 profiles calculated before being written to a new set of files. 

These files once stored have to be parsed to obtain the desired information. The data obtained this way is 
imputed on the alignment and stored in a dataframe. Refer to Table A2.1. 

 

Pyrosetta 

Pyrosetta is a well-known library, derived from the Rosetta project, whose main goal is the computational 
generation of molecular dynamics simulations for the purposes of molecule analysis (Chaudhury et al., 
2010). It contains powerful features and a wide set of proprietary profiles to quantify the properties of 
proteins, their amino acids and their subsequent components.  

We followed a common pipeline for the five metrics obtained from the selected .PDB files. It starts by 
generating a score function (“ref2015” is used for being the most up-to-date scoring system available to 
Pyrosetta). A general energy profile is calculated for each file, and then 5 profiles are extracted from them: 

• Total Energy 

• Van der Waals Attractive 

• Van der Waals Repulsive 

• Solvation 

• Electrostatic 

These profiles are stored in dictionaries, aligned to the canonical sequence, and exported to their respective 
dataframes. Refer to Table A2.1. 

 

A2.4 - Statistical Control 
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Apart from the analysis, 2 more analysis were performed on the selected files for statistical analysis: RMSD 
profiles and 3D coordinates of the alpha carbons for PCA study. 

 

RMSD 

We generated all possible pairs (combinations) of .PDB files and stores them as tuples. Then, it will attempt 
to obtain the Root Square Mean Deviation (RMSD) profile between them.  

We then used the Superimposer module from Biopython to perform this calculation. It obtained the alpha 
carbon identifiers from the .PDB files and performed a pairwise alignment between them. Once aligned, the 
RMSD value was calculated between them. The structure pairs and their RMSD value were stored in a 
pickle file for later analysis. 

 

Spatial Coordinates 

We performed pairwise global alignment between the canonical sequence and each of the selected .PDB 
files structures. Then, extracted the coordinates from the alpha carbons and stored them in a list of tuples 
associated to the structure IDs in a dictionary. That dictionary was stored in a pickle file and a 3D PCA was 
performed on the coordinates. Refer to the Analysis folder of provided Github repository for more 
information. 

 

A2.5 - Data Preparation 

The next script (Tensor#.py) is a lighter script with two main functions.  

First, we performed Z-score normalization and 0 imputation on all null values, and verified the shape of the 
seven resulting dataframes from the prior script.  

Then, we generated all possible combinations without repetition of these dataframes, and stacked them 
along a new dimension so spatial data on the position of each metric is retained. 

Afterwards, we imported all the result dataframes (WCN, Propka, Pyrosetta Total Energy, Pyrosetta 
Solvation, Pyrosetta Electrostatic, Pyrosetta Van der Waals Attractive, Pyrosetta Van der Waals Repulsive), 
as well as the alignment dataframe and the metadata dataframe.  

The 7 result dataframes were stored in a dictionary whose keys codify the type of analysis they contain. 
These would later be used to identify the tensors and the models trained on them. The identifier names can 
be checked in table A3.1 of Annex 3. 

 

A2.6 - Normalization and Verification 

In order to preserve the same order of analysis, protein structure IDs were extracted from the index of the 
alignment dataframe. Its structures were contrasted with those in the other result dataframes to verify the 
shape is exactly the same in all instances. That was a required step to the posterior creation of the tensors. 

Z-score normalization was performed first, not accounting for null values and thus preserving the mean and 
variance of the statistic from artifacts. The Z-score normalization was performed using an instance of the 
StandardScaler object from sklearn. 
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After normalization, 0 imputation was performed on all null values using an instance of the SimpleImputer 
object from sklearn. The resulting data was then reconverted into dataframes and saved to new .CSV files. 
Refer to Refer to Table A2.1 for the specific files generated. 

 

A2.7 - Tensor Generation 

The script generated and stored as a pickle file a structure identifier. This is a dictionary that unequivocally 
identifies each structure ID with its index number in the reference alignment dataframe. This would be used 
later during model creation for labeling purposes. 

Then, using the combinations module from itertools, the script looped over all possible combinations without 
repetition of dataframes to generate all possible tensors.  

For identification, the single full combination of all metrics was given a distinct name: “Complete”. 

Finally, the tensors were converted to Pytorch format, which enables several powerful operations to be 
effected on them. 

The resulting operation yielded 127 distinct tensors codified by the specific combination of features they 
contain. Each tensor is a three-dimensional object whose first dimension represents the positions and 
amino acids of the canonical sequence from the study protein (HRAS P01112), the second dimension 
represents the selected structure IDs and the third dimension is an array of Z-score normalized metrics 
corresponding to the particular combination the tensor contains.  

These tensors were saved as pickle files.  

 

Model Generation 

The data so prepared, tensors were loaded and processed for model training and evaluation. The third 
script (RF_model.py) takes care of two roles. 

First, it flattened the tensors into arrays and applied t-distributed Stochastic Neighbor Embedding (t-SNE) 
in preparation for the Random Forest model training. 

Then, a grid of hyperparameters is defined for the training of the models. The model is trained trying on all 
possible combinations of hyperparameters using cross-validation. 

The resulting models, their training and test metrics and the winning selection of parameters are then stored 
for later statistical analysis. 

  

Tensor Preprocessing 

Random Forest models cannot process 3D objects. Therefore, first, we processed each tensor flattening it 
using a Pytorch method into an array across the first dimension, so all the data is preserved.  

t-SNE of two components was applied to the flattened tensors using the TSNE module from sklearn.  

The resulting objects were then stored for model training. 
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A2.8 - Model Training 

A Random Forest model was initialized for each of the t-SNE transformed tensors and trained on them. 

The labels were extracted from the metadata dataframe, and the ordering was kept by the structure 
identifier, both obtained previously. 

The algorithm employed a test size of 30%. That is, 30% of the samples were hidden from the training 
algorithm for testing purposes while the remaining 70% was used to train the model.  

The training was performed through the GridSearchCV function from sklearn. using all possible 
combinations of hyperparameters featuring in the hyperparameter grid.  

The grid of hyperparameters is defined like this: 

• n_estimators ([10, 50, 100, 200, 500]): Number of trees in the Random Forest 

• max_depth ([None, 10, 20, 30, 40, 50]): Maximum depth of the trees. 

• min_samples_split ([2, 5, 10, 20]): Minimum number of samples required to split an internal node. 

• min_samples_leaf ([1, 2, 4, 8, 16]): Minimum number of samples required to be a leaf node. 

• max_features (['sqrt', 'log2', None]): Number of features to consider when looking for the best split, in 
reference to the total number of features. 

• criterion (['gini', 'entropy']): Quality of a split, Gini impurity or entropy information gain. 

 

The algorithm employed cross-validation of 3 folds. That is, it subdivided the training dataset into three 
subsets, training sequentially the model on each of those segments and validating the model on the 
remaining subsets. This helps prevent overfitting and provides an estimate of the model´s performance on 
unseen data. 

The training process employed n_jobs = -1. That means it used all available resources to perform the 
training. 

The total for the 3 folds and all possible parameters is 10800 models trained per tensor. 

The resulting model was stored as a pickle file. Several metrics were extracted from the models training 
and performed for later analysis, and also stored into pickle files along the models. These are: 

• Accuracy 

• Classification Report (To calculate F1) 

• Confusion Matrix 

• ROC Curve 

• ROCAUC 

• Precision Recall Curve 

• Log Loss 

• Cohen’s Kappa 

• Matthews Correlation Coefficient 

• Brier Score 

• Feature Importances 

• Best Parameter Selection 

For the complete statistical analysis of the top performers, please refer to the Analysis folder in the provided 
Github repository. 
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A3 - RESULTS TABLES 

 

Table A3.1 – Reference table for the codes denoting the different combinations of features present in the model-training tensors. 
Each character or combination of characters in the left side correspond to a feature. The complete identifier code gives the 
composition of the tensors: w=WCN; p=pKa; t=Total Energy; s=Solvation Profile; e=Electrostatic Profile, v1=Van der Waals 
Attractive Profile; v2=Van der Waals Repulsive Profile. 

 
FEATURE IDENTIFIER REFERENCE 

w WCN 
p PropKa 
t Total Energy 
s Solvation Energy 
e Electrostatics 

v1 Van der Waals Attractive 
v2 Van der Waals Repulsive 

 

 

Table A3.2 - Ranking of the 15 most important amino acid residues for the WCN profile according to the Random Forest 
Analysis, from most important (top) to least important (bottom). The Amino Acid Position column contains the position and the 
type of amino acid present therein. The T-statistic contains the value of t for the two-sample T-test performed between active 
and inactive samples of the dataset. The FDR Corrected P-Value column contains the p-value of such statistic, corrected for False 
Discovery Rate.  

Amino Acid Position T-Statistic FDR Corrected P-Value 

pos60:G 13.1762587 1.00E-31 

pos35:T 5.82726183 3.01E-08 

pos59:A 8.85657624 2.42E-16 

pos58:T 7.00705125 5.59E-11 

pos12:G 5.87148669 2.83E-08 

pos10:G 4.42854065 2.66E-05 

pos61:Q 6.26302539 3.84E-09 

pos11:A 4.23332139 5.42E-05 

pos13:G 2.68718453 0.00940391 

pos34:P 0.46992142 0.63868143 

pos16:K 3.14051319 0.00272836 

pos120:L -3.42486209 0.0011373 

pos62:E 1.83318234 0.07238532 

pos39:S -2.22418878 0.03083573 

pos46:I -2.98495416 0.00411841 
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Table A3.3 - Ranking of the 15 most important amino acid residues for the pKa profile according to the Random Forest Analysis, 
from most important (top) to least important (bottom). The Amino Acid Position column contains the position and the type of 
amino acid present therein. The T-statistic contains the value of t for the two-sample T-test performed between active and inactive 
samples of the dataset. The FDR Corrected P-Value column contains the p-value of such statistic, corrected for False Discovery 
Rate.  

Amino Acid Position T-Statistic FDR Corrected P-Value 

pos57:D -4.03E-01 0.701697053 

pos32:Y 4.27E+00 0.000181767 

pos40:Y 1.78E+00 0.190870153 

pos38:D 4.31E+00 0.000181767 

pos16:K -3.83E-01 0.701697053 

pos33:D 1.01E+00 0.469113438 

pos143:E 3.22E+00 0.005165992 

pos31:E 1.06E+00 0.469113438 

pos68:R -4.179209152 0.000181767 

pos96:Y -0.756416403 0.552238577 

pos97:R 2.623447708 0.027167931 

pos141:Y 1.4198444 0.293390622 

pos102:R 1.464023741 0.293390622 

pos95:Q 0.810572545 0.552238577 

pos47:D 0.709247829 0.552238577 

 

 

 

 

Table A3.4 - Ranking of the 15 most important amino acid residues for the Total Energy profile according to the Random Forest 
Analysis, from most important (top) to least important (bottom). The Amino Acid Position column contains the position and the 
type of amino acid present therein. The T-statistic contains the value of t for the two-sample T-test performed between active and 
inactive samples of the dataset. The FDR Corrected P-Value column contains the p-value of such statistic, corrected for False 
Discovery Rate.  

Amino Acid Position T-Statistic FDR Corrected P-Value 

pos58:T -4.337606816 0.00027738 

pos64:Y -2.508162595 0.04730029 

pos32:Y 2.40319861 0.05019641 

pos81:V -1.284273555 0.2997461 

pos33:D 1.292770271 0.2997461 

pos60:G 0.844657592 0.49854364 

pos55:I -2.799424964 0.04035924 

pos59:A -0.162384663 0.87108949 

pos17:S -0.772355982 0.50813651 

pos34:P -1.224188894 0.30223828 
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pos83:A -1.568979127 0.25175847 

pos46:I 2.119191294 0.0868102 

pos56:L 0.639154637 0.56047333 

pos35:T 2.506439832 0.04730029 

pos16:K 1.306121713 0.2997461 

 

 

Table A3.5 - Ranking of the 15 most important amino acid residues for the Solvation profile according to the Random Forest 
Analysis, from most important (top) to least important (bottom). The Amino Acid Position column contains the position and the 
type of amino acid present therein. The T-statistic contains the value of t for the two-sample T-test performed between active 
and inactive samples of the dataset. The FDR Corrected P-Value column contains the p-value of such statistic, corrected for False 
Discovery Rate.  

Amino Acid Position T-Statistic FDR Corrected P-Value 

pos36:I -7.66708813 2.24E-12 

pos10:G 2.643019777 0.01283681 

pos33:D -4.502481276 2.24E-05 

pos57:D 4.866433293 5.01E-06 

pos12:G 4.106845424 0.000105356 

pos17:S 3.904239015 0.00020977 

pos39:S -5.093304819 2.91E-06 

pos16:K 4.920105799 4.85E-06 

pos60:G 1.177807041 0.239612581 

pos73:R 3.277225434 0.00190848 

pos19:L 1.204955081 0.239612581 

pos35:T -1.515775107 0.150472839 

pos118:C -5.083982003 2.91E-06 

pos74:T -1.610326266 0.135198951 

pos13:G 2.175013003 0.041245666 

 

 

Table A3.6 - Ranking of the 15 most important amino acid residues for the Electrostatic profile according to the Random Forest 
Analysis, from most important (top) to least important (bottom). The Amino Acid Position column contains the position and the 
type of amino acid present therein. The T-statistic contains the value of t for the two-sample T-test performed between active 
and inactive samples of the dataset. The FDR Corrected P-Value column contains the p-value of such statistic, corrected for False 
Discovery Rate.  

Amino Acid Position T-Statistic FDR Corrected P-Value 

pos60:G 4.220586903 0.000123179 

pos35:T 6.361850912 4.31E-09 
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pos33:D 6.964539952 2.19E-10 

pos70:Q 3.723446753 0.000485045 

pos59:A 3.363153474 0.001415214 

pos37:E 3.887159104 0.000299298 

pos32:Y 2.173189012 0.041433874 

pos10:G -2.107620594 0.04465011 

pos28:F 0.916893767 0.415132358 

pos38:D -3.406682315 0.00136504 

pos16:K 3.141063653 0.002723366 

pos143:E -4.150155479 0.000123179 

pos99:Q -0.363568164 0.716383216 

pos80:C -0.394586502 0.716383216 

pos56:L -4.202160699 0.000123179 

 

 

 

Table A3.7 - Ranking of the 15 most important amino acid residues for the Attractive Van der Waals  profile according to the 
Random Forest Analysis, from most important (top) to least important (bottom). The Amino Acid Position column contains the 
position and the type of amino acid present therein. The T-statistic contains the value of t for the two-sample T-test performed 
between active and inactive samples of the dataset. The FDR Corrected P-Value column contains the p-value of such statistic, 
corrected for False Discovery Rate.  

Amino Acid Position T-Statistic FDR Corrected P-Value 

pos33:D 8.121724256 9.81E-14 

pos12:G -2.274192649 0.029391001 

pos35:T -3.74960071 0.000511909 

pos60:G -1.74E+00 0.096233231 

pos32:Y 2.83E+00 0.007392506 

pos36:I 3.55155159 0.000924024 

pos10:G -0.910838445 0.362959432 

pos39:S 3.826063233 0.000459318 

pos13:G -1.411764664 0.170185422 

pos64:Y -6.359388365 4.38E-09 

pos59:A -2.887402309 0.006845101 

pos16:K -3.824618265 0.000459318 

pos72:M -5.600229605 2.06E-07 

pos17:S 2.597354407 0.01330966 
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pos57:D -2.966499547 0.00600565 

 

 

 

Table A3.8 - Ranking of the 15 most important amino acid residues for the Repulsive Van der Waals profile according to the 
Random Forest Analysis, from most important (top) to least important (bottom). The Amino Acid Position column contains the 
position and the type of amino acid present therein. The T-statistic contains the value of t for the two-sample T-test performed 
between active and inactive samples of the dataset. The FDR Corrected P-Value column contains the p-value of such statistic, 
corrected for False Discovery Rate.  

Amino Acid Position T-Statistic FDR Corrected P-Value 

pos33:D -2.97E+00 0.015590989 

pos64:Y 4.103616816 0.00074742 

pos39:S -1.60736086 0.148374494 

pos17:S -2.711490937 0.026261311 

pos12:G 0.157134416 0.87522259 

pos27:H -1.650463369 0.148374494 

pos81:V -1.135892502 0.275056414 

pos9:V 3.405340781 0.00548625 

pos21:I -1.302372837 0.223361343 

pos60:G -1.31E+00 0.223361343 

pos107:D -1.911909019 0.09440269 

pos35:T 2.005315949 0.09440269 

pos120:L -2.31E+00 0.06412307 

pos72:M 2.235492235 0.064917068 

pos71:Y 1.9286393 0.09440269 

 

 

Table A3.9 – Ranking of the 5 best-performing models according to ROCAUC Score, from best performing (top) to worst performing 
(bottom). The names codify which features the model was trained on: w=WCN; p=𝑝𝐾𝑎; t=Total Energy; s=Solvation Profile; 
e=Electrostatic Profile, v1=Van der Waals Attractive Profile; v2=Van der Waals Repulsive Profile. 

Top 5 Feature Combinations by ROCAUC 

Feature Combination ROCAUC 

v1v2 0.8654 

wsev1 0.8359 

ptsv2 0.8211 
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psv1 0.8067 

ptev1 0.8043 

 

 

Table A3.10 – Ranking of the 5 best-performing models according to Accuracy, from best performing (top) to worst performing 
(bottom). The names codify which features the model was trained on: w=WCN; p=𝑝𝐾𝑎; t=Total Energy; s=Solvation Profile; 
e=Electrostatic Profile, v1=Van der Waals Attractive Profile; v2=Van der Waals Repulsive Profile. 

Top 5 Feature Combinations by Accuracy 

Feature Combination Accuracy 

v1v2 0.8086 

ptev1 0.7913 

wsev1 0.7826 

ptsv2 0.7739 

psv1 0.7652 

 

 

Table A3.11 – Ranking of the 5 best-performing models according to Log Loss, from best performing (top) to worst performing 
(bottom). The names codify which features the model was trained on: w=WCN; p=𝑝𝐾𝑎; t=Total Energy; s=Solvation Profile; 
e=Electrostatic Profile, v1=Van der Waals Attractive Profile; v2=Van der Waals Repulsive Profile. 

Top 5 Feature Combinations by Log Loss 

Feature Combination Log Loss 

v1v2 0.4744 

wsev1 0.4836 

ptsv2 0.5313 

psv1 0.5392 

ptev1 0.5661 

 

 

Table A3.12 – Ranking of the 5 best-performing models according to Cohen’s Kappa, from best performing (top) to worst 
performing (bottom). The names codify which features the model was trained on: w=WCN; p=𝑝𝐾𝑎; t=Total Energy; s=Solvation 
Profile; e=Electrostatic Profile, v1=Van der Waals Attractive Profile; v2=Van der Waals Repulsive Profile. 

Top 5 Feature Combinations by Cohen’s Kappa 

Feature Combination Cohen’s Kappa 

v1v2 0.6164 

ptev1 0.5808 
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wsev1 0.5643 

ptsv2 0.5492 

psv1 0.5295 

 

Table A3.13 – Ranking of the 5 best-performing models according to Matthew’s Correlation Coefficient, from best performing 
(top) to worst performing (bottom). The names codify which features the model was trained on: w=WCN; p=𝑝𝐾𝑎; t=Total Energy; 
s=Solvation Profile; e=Electrostatic Profile, v1=Van der Waals Attractive Profile; v2=Van der Waals Repulsive Profile. 

Top 5 Feature Combinations by Matthew’s Correlation Coefficient 

Feature Combination Matthew’s Correlation Coefficient 

v1v2 0.6179 

ptev1 0.5866 

wsev1 0.5651 

ptsv2 0.5545 

psv1 0.5302 
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RESOURCES AND CODE AVAILABILITY 

For the full computational pipeline code, further information, analysis and resources, see the Github 

repository at JorgeAndOmics/HRAS-Activation-Classifier (github.com). 

 

STRUCTURE REFERENCES 

For the complete list of PDB structures used in this project, please refer to the Analysis folder in the provided 
Github repository. In the metadata dataframe are available the structure identifiers, their title and their 
abstract, the later when accessible. 
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