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Abstract 

Motivation: Typhoid fever, resulting from Salmonella enterica serovars Typhi and Paratyphi A, stands 

as a significant contributor to illness and mortality. Recent challenge studies on the host immunity to 

these Salmonella bacteria, indicate that both infection and vaccination lead to changes in gene expres-

sion within leukocytes, and these alterations could be associated with immune and inflammatory re-

sponses during the course of the disease. The aim of the present study is to explore the methylation 

changes occurring during and after the paratyphoid infection by comparing individuals in two cell pop-

ulation (cd14+ and cd56+ cells), at three different timepoints: before, during and after the infection. 

Results: The analysis of the three timepoints performed separately in the two -cell leukocyte popula-

tions revealed that biggest differences in DNA methylation were observed in infected individuals in 

cd14+ monocytes cells. In this particularly cell types, highest differences in methylation in individuals 

before, during and after the paratyphoid infection, were observed in seven specific genes, with a global 

DNA hypomethylation for infected individuals than the other ones. The most significant CpGs were 

observed within the SND1, PSAP and MNDA genes. Gene set analysis revealed a significant enrich-

ment for signaling pathways related to Golgi vesicle transport and MHC protein complex. 
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1 Introduction  

Typhoid fever, resulting from Salmonella enterica 

serovars Typhi and Paratyphi A, stands as a significant 

contributor to illness and mortality (Dougan & Baker, 

2014). It constituted a pressing public health issue in eco-

nomically disadvantaged regions worldwide, giving rise to 

roughly 10.9 million instances and causing about 100,000 

dies each year (Typhoid & Paratyphoid, 2019). 
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Overcoming and managing typhoid infection present sev-

eral challenges, in accurately diagnosing enteric fever due 

to the limited sensitivity of current tests, limited short-term 

effectiveness of available vaccines (World Health, 2019), 

and the emergence of antibiotic-resistant strains.  

To address these concerns, infection biomarkers, more 

potent vaccines, and innovative treatments for enteric fever 

are imperative. The achievement of these objectives hinges 

upon acquiring a more comprehensive comprehension of 

the immune reaction to enteric fever, particularly discern-

ing the roles of innate and adaptive cellular immunity. 

The understanding of the underlying mechanisms and 

host responses to S. Paratyphi A infection is currently lim-

ited. Promising vaccine candidates, including live-attenu-

ated strains and conjugate vaccines are in developmental 

stages (Jin et al., 2017; Jin et al., 2021). However, none of 

these candidates have yet undergone efficacy trials. The ad-

vancement of vaccines to counter paratyphoid infection is 

hindered by the lack of comprehensive knowledge regard-

ing immune correlates of protection and the absence of a 

suitable animal model for testing. 

Recent challenge studies on the host immunity to these 

Salmonella bacteria (Zhu et al., 2023), indicate that both 

infection and vaccination lead to changes in gene expres-

sion within leukocytes, and these alterations could be asso-

ciated with immune and inflammatory responses during the 

course of the disease. One of the fundamental mechanisms 

driving these alterations involves epigenetics—a process 

that brings about changes in gene expression while preserv-

ing the integrity of the DNA sequence (Russo, Martienssen, 

& Riggs, 1996). 

Epigenetic regulation plays a pivotal role in coordinat-

ing normal immune responses and upholding immunologi-

cal memory. While the role of epigenetic processes in can-

cer and associated conditions has garnered substantial at-

tention for many years (P. A. Jones & Baylin, 2002), in the 

recent years a surge of interest focused on how infections 

and vaccines can reshape the human epigenome, conse-

quently influencing immune system activity.  

Researchers have increasingly turned their focus to-

wards comprehending how natural infections and vaccina-

tions can induce changes in the epigenome, thereby influ-

encing both the initial immune response and the long-term 

risk of diseases (Bannister, Messina, Novakovic, & Curtis, 

2020). Evidence indicates that epigenetic modifications ex-

ert significant control over the promoters and enhancers of 

various regulators within the immune response (Zhang & 

Cao, 2019).  

This susceptibility to epigenetic marks underscores the 

intricate interplay between epigenetic processes and the im-

mune system, shedding light on the mechanisms by which 

infections and vaccinations can modulate immune activity. 

Controlled human infection models (CHIMs) offer a 

unique opportunity to explore the immune response to path-

ogens at an epigenetic level within a tightly controlled 

environment. The application of different technologies, 

such as the study of the global DNA methylation in the ge-

nome, to specific leukocytes cells, such as the CD14+ and 

Cd56+ cells, obtained from participants in enteric fever 

CHIMs will make possible to characterize changes in gene 

expression occurring after typhoid exposure and during in-

fection. In this way, researchers aim to achieve an unprec-

edented level of understanding about gene expression dur-

ing both exposure and infection stages.  

CD56 cells, also known as the neural cell adhesion 

molecule, is the archetypical phenotypic indicator of natu-

ral killer (NK) cells, though they are present in a broader 

range of immune cells beyond its association with alpha 

beta T cells, gamma delta T cells, dendritic cells, and mon-

ocytes.   These cells have diverse roles in immunity, rang-

ing from direct cytotoxicity to immunomodulation, making 

them important players in immune responses and potential 

targets for therapeutic interventions (Gianchecchi, Delfino, 

& Fierabracci, 2018; Poli et al., 2009). 

CD14 was initially identified as a monocyte marker 

(Goyert et al., 1986), and functions as a pattern recognition 

receptor (PRR) that triggers intracellular responses upon 

recognizing various bacterial components (Zanoni & Gra-

nucci, 2012), it is also an important component of innate 

immunity, and a regulator of metabolism (Fernandez-Real 

et al., 2011).  

Given these premises, the main aim of the project is to 

explore the methylation changes occurring during and after 

the paratyphoid infection by comparing individuals in two 

cell population (CD14+ and CD56+ cells), at the three dif-

ferent timepoints: before, during and after the infection.  

2 Methods 

Study design 

The study design of the present project has been de-

scribed previously (Dobinson et al., 2017). Briefly, a group 

of healthy volunteers enrolled for an observational, human 

challenge study of S. Paratyphi A infection were selected 

at three different time-points: a basal sample (D0), an in-

fected sample (ED) — recruited 7-10 days after D0 — and 

a treated sample (D28) — recruited 28 days after the ED.  

Peripheral blood mononuclear cells (PBMCs) were 

isolated from blood sample at the three-time points and 

CD14+ and CD56+ cells were extracted.  

CD14 group was composted by 9 individuals at three 

time-point (D0, ED, D28), while CD56 group was repre-

sented by 7 individuals at the same three time points (D0, 

ED, D28). 
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Tabla 1. Clinical characteristics of the individuals in CD14+ 

and CD56+ cell populations. 

  CD14 (n = 9) CD56 (n= 7) 

Age 28.628 [±6.35] 28.674 [±6.31] 

Sex     

Male 5 (55%) 5 (71%) 

Female 4 (45%) 2 (29%) 

Smoking     

Yes 4 (45%) 3 (43%) 

No 5 (55%) 4 (57%) 

Ethnicity     

Indian 1 (11%) 1 (14%) 

White_other 1 (11%) 1 (14%) 

White_british 6 (67%) 4 (57%) 

White_irish 1 (11%) 1 (14%) 

BMI 23.278 [±3.85] 23.779 [±3.81] 

Dose     

700 1 (11%) 1 (14%) 

825 1 (11%) - 

1000 3 (33%) 3 (43%) 

1300 2 (22%) 2 (29%) 

2400 1 (11%) - 

2750 1 (11%) 1 (14%) 

 

Cell purification and sorting   

The process of cell purification and sorting was per-

formed as described previously (C. Jones et al., 2016; 

Toapanta et al., 2015) 

DNA isolation and bisulfite treatment 

Genomic DNA (gDNA) was extracted from sorted cell 

populations using the QIAamp DNA blood mini kit accord-

ing to the manufacturer’s instructions (QIAGEN, Chats-

worth, CA). DNA concentration was quantified for all sam-

ples using absorbance (Thermo Fisher Scientific, Waltham, 

MA); samples with less than 250ng of total gDNA were 

excluded from further analysis. DNA quality assessment 

was conducted using the Agilent TapeStation (Agilent, 

Santa Clara, CA.). 

After extraction, genome DNA underwent sodium bi-

sulfite conversion as a preliminary step before proceeding 

with the Illumina microarray analysis. This method is 

widely recognized as the gold standard for investigating the 

methylation status of CpG sites across the entire genome 

since it provides a qualitative, quantitative and efficient ap-

proach to identify 5-methylcytosine at single base-pair 

resolution.   Essentially, it involves converting unmethyl-

ated cytosine residues into uracil through sodium bisulfite-

induced deamination, while leaving methylated cytosine 

(5-mC) unaffected. As a result, uracils are amplified as thy-

mines in the subsequent PCR reaction, while 5-mC or 5-

hmC residues remain as cytosines. 

The EZ-96 DNA Methylation kit from Zymo Research 

Corp was employed in this study for bisulfite conversion. 

Subsequently, the treated DNA was hybridized onto the Il-

lumina Infinium MethylationEPIC BeadChip, and the array 

was scanned using the Illumina iScan system. This process 

quantified the percentage methylation status of each CpG 

site across the entire study cohort. 

DNA methylation analysis 

Quality control of DNA methylation, along with its 

processing, standardization, and statistical assessments, 

was carried out utilizing the R statistical software (R Ver-

sion 4.3.1). Distinct Bioconductor packages were em-

ployed, following the procedural framework detailed in 

Fortin’s recent EPIC methylation analysis guidelines 

(Fortin, Triche, & Hansen, 2017). The original intensity 

files (IDAT), representing raw data, were imported into R. 

The IDAT preprocessing and transformation into β and M-

values was carried out through the use of the minfi package 

(version 1.46.0) (Aryee et al., 2014). β-values denote the 

proportion of methylated signals relative to the overall sig-

nals (encompassing both methylated and unmethylated) for 

each genomic site. These values span from 0, signifying a 

lack of methylation across all cells, to 1, indicating total 

methylation at that particular site across all sample cells 

(Bibikova et al., 2006). M-values were derived as the loga-

rithmic ratio (base 2) of the intensities between methylated 

and unmethylated probes, and assume positive and negative 

values. M values near 0 imply parity in intensity between 

the two probe types. Positive M-values suggest greater 

methylated than unmethylated sites, while negative values 

suggest the opposite (Du et al., 2010). 

Within the Infinium 850K array, two categories of 

probes exist—Infinium I and Infinium II—yet a direct com-

parison between them is untenable. Therefore, an adjust-

ment is required to mitigate design bias. The normalization 

routines were executed using the preprocessQuantile func-

tion found within the minfi package. Moreover, probes un-

derwent several filtration steps, involving the elimination 

of probes with P-values exceeding 0.01 (when compared to 

the signal background), as well as those situated on the sex 

chromosomes. Further exclusions encompassed sites hous-

ing SNPs or with a minor allele frequency (MAF) below 

0.05, as these could potentially disrupt probe binding due 

to genetic variations in binding regions. Finally, probes 

known to exhibit cross-reactions were also removed from 

the dataset. 
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Adjusting for individual differences in cellular hetero-

geneity in the blood sample from which genomic DNA was 

extracted can improve biological interpretation, given the 

highly specific nature of DNA methylation in relation to 

cell types (Ziller et al., 2013) i.e., variations in cell compo-

sition across different phenotypes can introduce confound-

ing elements. In the present study, two specific cellular 

population were enriched from PBMCs; so, prior to inves-

tigating differentially methylated positions (DMPs), the 

FlowSorted.Blood.EPIC package and its adapted estimate-

CellCounts2 function was employed to assess the presence 

of various blood cell types inside these cellular population. 

This function, based on the Houseman algorithm (House-

man, Kelsey, Wiencke, & Marsit, 2015), permits estimation 

of relative proportions of distinct white blood cell subcate-

gories such as CD4+ T-lymphocytes, CD8+ T-lympho-

cytes, natural killer (NK) cells, B-lymphocytes, monocytes, 

and neutrophils. Following the application of the Shapiro-

Wilk test to assess the normality of cell type estimation, the 

Wilcoxon test was employed to compare the distributions 

of cell types across the various time points. 

Downstream analysis consisting on the search for 

DMPs has been performed separately in CD56+ and 

CD14+ cells. For this purpose, the limma package was em-

ployed (Smyth, 2005), assuming a linear model where the 

M values of each probe were used as quantitative depend-

ent variables in all analyses. The application of limma 

package makes possible to include covariate in the defini-

tion of the design matrix that represents the model to be fit. 

In both study groups, the comparison of different 

timepoints of the same individuals is the focus of the anal-

ysis, together with an adjustment of the model for age, sex 

and cell composition. The limma’s duplicateCorrelation 

function, aims to estimate the correlation structure among 

these replicates, allowing for more accurate statistical anal-

ysis by appropriately modeling the dependencies between 

samples. It computes a correlation value that represents the 

strength of the association between replicates, which can 

then be incorporated into the linear modeling, to improve 

the precision of differential methylation analysis and avoid-

ing an overfit and inflation of P-values, thus reducing the 

false positives. 

Identified DMPs were annotated to genes using the Il-

luminaHumanMethylationEPICanno.ilm10b4.hg19 for 

EPIC BeadChip “annotation” package which includes in-

formation about the position of the methylation loci in the 

genome, about the genomic features they map to and the 

known SNPs they can overlap.  

Following the Illumina's recommendations, the thresh-

old used for statistical analysis in DMPs detection is P-

value < 0.05 (adjusted for multiple testing using the Benja-

mini–Hochberg method (Benjamini & Hochberg, 1995)), 

and the absolute difference in the Delta Beta, considered as 

the difference of means of the Beta value of a single posi-

tion between the group of interest  > 0.1.  

Principal Component Analysis (PCA) was carried out 

to compare DNA methylation of individuals before, during 

and after the infection. Receiver operating characteristic 

(ROC) curve analyses were conducted to evaluate the diag-

nostic efficacy of the most significant candidate DMPs, and 

the determined area under the curve (AUC) was used to as-

sess prediction accuracy. 

Gene set enrichment analysis 

Once the analysis of DMPs between groups of samples 

has been completed, the long list of significant CpGs iden-

tified need to be interpreted, through the gene set enrich-

ment analysis. Unlike gene expression data, DNA methyl-

ation can occur anywhere on the genome and the number 

of CpGs profiled and gene length is not of one-to-one cor-

respondence. In fact, DNA methylation data result in mul-

tiple CpG association P-values per gene since several dif-

ferential CpGs can belong to the same gene, as well as one 

single CpG position can be found in more than one gene. 

One of the most recent R packages able to avoid this prob-

lem by adjusting for the number of CpGs instead of gene 

length, is called methylGSA (Ren & Kuan, 2019). This 

package allows the specification of the array type used, 

450K or EPIC; it supports pathways from “GO”, “KEGG”, 

and “Reactome and gives the possibility to include in the 

specificity of the functions, the option to consider the dif-

ferent genomic context when selecting the gene list like 

promoter regions (CpGs within genes belonging to 

“TSS1500”, “TSS200”, “1stExon”, or “5’UTR”), gene 

body or all together. Here the threshold adopted to select 

pathways significantly enriched is false discovery rate 

(FDR) <0.05. 

3 Results 

Cell estimation 

The analysis of cell composition revealed contrasting re-

sults for the two groups of cell population. In the CD56+ 

enriched cells, only monocytes cells differ among D0 and 

ED, while the remaining comparisons did not reveal any 

statistical significance (Figure 1A). However, in CD14+ 

cells, all the cell subtypes estimated were observed to sig-

nificantly differ before, during and after the infection, par-

ticularly in the contrasts D0-ED and D28-ED (Figure 1A). 

The most statistically significant differences were detected 

for natural killer cells and neutrophils (P-value < 1x10-3) 

(Figure 1B).  
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Search for differentially methylated position (DMPs) 

To search for DMPs among the three timepoints, the 

two cell subpopulations were analyzed individually. Before 

applying the linear model, the clinical characteristics of the 

patients were observed to assess for any possible cofound-

ing factor. Cigarette smoking has previously been shown to 

influence and to have important effects on DNA 

methylation patterns (Lee & Pausova, 2013); in our cohort 

almost half of individuals were classified as smokers. How-

ever, when we evaluated the difference between smokers 

and no smokers in the basal timepoint, we did not detect 

any significant difference (Figure 2A and 2B). For this rea-

son, the smoker status factor was not added to the linear 

regression model. 

Fig. 1. Boxplots showing the proportion of leukocyte cell type among the contrasts ED-D0 and ED-D28 in (A) CD56+ and (B) 

CD14+ cells. Asterix indicated significance levels (* for P-value < 0.01 and **for P-value < 0.001). 

Fig. 2. (A) QQ plot of the observed P-values against the expected P-values between smokers and non-smokers before the infectious 

challenge. (B) Manhattan plot of CpG sites associated with smoking. X-axis shows chromosomal positions. Y-axis shows -log10 P- 

values. No significant positions were observed between the two groups of subjects. 
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CD56 cells 

Only monocyte cell type was found to be significantly 

different among individuals before and during the infec-

tion, so this is the only cellular variable added, together 

with sex and age in the limma linear model. 

The preprocessed filtering of CD56+ cells data, left for 

downstream analysis 813,220 CpGs, and 21 samples (7 in-

dividuals at three timepoints). The limma linear regression 

model adjusted for age, sex and monocyte composition did 

not give any significant results with an FDR <0.05. For this 

reason, we consider positions with a nominal P-value 

<0.001. In this way we were able to detect 718 CpGs that 

perfectly split the three subgroups in the PCA (Figure 3A). 

The 718 DMPs identified were annotated to 297 unique 

genes. 316 CpGs (44%) were found to be hypomethylated 

in infected individuals when compared to individuals be-

fore infection, while 347 (48%) sites were hypomethylated 

in ED timepoints when compared to D28.  

CD14 

The six leukocyte subpopulations were found to be sig-

nificantly different among individuals before, during and 

after infections in the CD14+ cells, so in the design model, 

all of them were added as confounding factors together 

with age and sex. Filter analysis of CD14+ cells data, left 

814,342 CpGs, and 26 samples (9 at D0 and D28 and 8 at 

ED timepoints), one sample of the ED group was removed 

during preprocessing step for bad quality (sample with de-

tection P-value > 0.05).   

The limma model adjusted for age, sex and cell com-

position give 12 significant DMPs for the contrast ED-D0 

and 10 DMPs for the contrast ED-D28. Eight DMPs were 

shared between the two contrasts. The total 14 significant 

CpGs split perfectly individuals before and after the infec-

tion from those during the infection (Figure 3B), along with 

the first principal component (PC1; accounting for 68.9% 

of the variance). 

In both contrasts (D0-ED and D28-ED) a general hy-

pomethylation toward the infected individuals was ob-

served (Figure 4), with eleven positions out twelve in the 

first comparison and seven positions out ten in the second 

one.  

Specifically, looking at the positions differentially 

methylated in the two contrasts (Table 2), we could observe 

that in both comparisons, the DMPs exhibited similar meth-

ylation patterns, being 11 of them (81%) hypomethylated 

in infected individuals when compared with those before 

and after infection. The CpGs were annotated to nine 

unique genes; for ten CpGs, the delta beta in both contrasts 

is higher than the threshold established (0.10), reflecting 

high methylation differences for these genes among the 

three timepoints. 

The 6 annotated DMPs observed in CD14+ cells, with 

the highest difference in DNA methylation (Delta Beta 

>0.10) were selected to evaluate their ability, in terms of 

methylation levels, to discriminate infected individuals 

from those before and after the infection (Figure 5). In both 

contrasts, it is possible to see how the methylation pattern 

of D0 and D28 are very similar, suggesting that after the 

infection and with the treatment, the methylation level 

changes during infection return to the basal state post-treat-

ment. To assess the potential predictive value of DMPs 

from these genes as biomarkers of paratyphoid infection, 

ROC analysis with AUC calculations was performed. The 

majority of ROC curves for the six genes in the contrast 

D0-ED yielded a mean AUC of 1.000, while the ROC 

curves for the six DMPs for the contrast D28-ED returned 

a mean AUC of 0.939. 

Gene Set Analysis 

Fig. 3. PCA of the significant DMPs found among the three timepoints in (A) CD56+ cells (P-value < 0.001) and (B) in CD14+ cells 

(FDR < 0.05). 
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The analysis of pathways performed in CD56+ cell 

population reveal significant pathways for Reactome data-

base and GO biological processes (BP), considering in the 

analysis all CpGs or only those within the promoter re-

gions. The top BP gene sets in GO (Figure 6A) were found 

to be related with regulation of DNA replication and chro-

mosome / chromatid segregation, as well as ATPase com-

plex and regulation of response to DNA damage stimulus. 

Concerning the Reactome database, the top significant 

pathways observed (Figure 6B) were involved in the tran-

scriptional regulation by TP53, cell cycle checkpoint, 

rRNA processing and DNA repair.  

The same analysis performed in CD14+ cells, revealed 

different results, with statistical significance for GO BP 

(Figure 7) related to Golgi vesicle transport and MHC pro-

tein complex.  

        Table 2. Differentially methylated positions observed in CD14+ cells 

CpG Name Chromosome Gene Name Gene Group FDR P-value DeltaBeta ED-D0 DeltaBeta ED-D28 

cg13575798 chr7 SND1 Body 0,01748 -0,46138 -0,44896 

cg06135068 chr16 
  

0,01642 -0,39513 -0,36122 

cg15854154 chr10 PSAP Body 0,00730 -0,33110 -0,30870 

cg08420353 chr12 
  

0,03600 -0,26076 -0,24170 

cg05304729 chr1 MNDA TSS1500 0,01686 -0,21773 -0,22241 

cg19379599 chr21 
  

0,03600 -0,20559 -0,19190 

cg17661135 chr8 NRG1 Body 0,04830 -0,20421 -0,18618 

cg02495417 chr14 
  

0,03600 -0,19329 -0,18398 

cg25734220 chr10 TCF7L2 Body 0,04634 -0,19098 -0,17371 

cg11941024 chr15 VPS39 Body 0,01156 -0,17378 -0,14973 

cg04218845 chr1 SSU72 Body 0,02053 -0,02441 -0,01870 

cg10675915 chr11 
  

0,04423 0,00609 0,03238 

cg17711596 chr2 DGKD TSS1500 0,04395 0,01576 0,01289 

cg09677297 chr14 LINC01146 Body 0,03137 0,08261 0,11497 

Fig. 4. Volcano plot showing changes in DNA methylation in CD14+ cells in (A) individuals before infection compared with those in-

fected and (B) in subjects after infections with those already treated. Blues and red labels indicated hypomethylated and hypermethyl-

ated positions, respectively, in ED timepoint when compared to D0 and D28. 



 

4 Discussion  

Enteric CHIMs provide a distinctive chance to investi-

gate how the immune system responds to bacterial patho-

gens within a tightly controlled setting. Here, for the first 

time, we explored the immune cell methylation levels be-

fore, during and after paratyphoid infection, in two distinct 

cell populations, CD14+ and CD56+ cells. The analysis of 

the three timepoints performed separately in the two cell 

leukocyte populations revealed that biggest differences in 

DNA methylation were observed in infected individuals in 

CD14+ monocytes cells, where also a significant different 

composition of leukocyte cells, probably due to the purity 

of isolated cells, was observed among timepoints.    

The innate immune system forms a barrier against 

pathogens, involving the participation of cells such as mac-

rophages and dendritic cells (DCs). Circulating monocytes 

exhibit remarkable adaptability and are able to convert into 

different macrophage and DC types upon migrating to tis-

sues or in response to specific cytokine signals (Peters, 

Ruppert, Gieseler, Najar, & Xu, 1991).  

In this study, we observed more changes in the meth-

ylation patterns of some specific genes before, during and 

after the paratyphoid infection in CD14+ cells, than in 

CD56+. This may be due to the fact that CD14+ cells, being 

primarily associated with monocytes and macrophages, are 

the key players in the initial stage of the immune response 

and their activation, migration and differentiation can re-

sults in significant changes in response to pathogen-associ-

ated molecules. 

In this particularly cell types (CD14+), highest differ-

ences in methylation in individuals before, during and after 

the paratyphoid infection, are observed in seven specific 

genes. In all of them, CpGs are found to be hypomethylated 

in infected individuals and the 6 of them settled in the gene 

body, while only one within the promoter. It is not clear 

how the methylation levels in gene body affects the expres-

sion of the gene. A recent review on cancer (Q. Wang et al., 

2022) has revealed that DNA methylation is not limited to 

promoters but extends into gene bodies where methylation 

changes significantly impact gene expression regulation 

and are intricately tied to the development and 

 Fig. 5. Boxplot and ROC curves of the DMPs with the highest difference in methylation between contrasts annotated to genes. 
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advancement of cancerous tumors. Even if the precise func-

tion of gene body methylation in gene transcription remains 

a subject of ongoing debate, it suppresses spurious gene 

transcription, regulate alternative splicing, and maintain 

stable and organized transcription processes. 

The CpG site with the highest difference in DNA meth-

ylation between the three groups settled in the gene body is 

the SND1 gene, the staphylococcal nuclease domain-con-

taining protein 1, that is a multifunctional protein, recently 

Fig. 6. Barplot showing the results of the gene set analysis performed with DMPs found in CD56+ cells in (A) GO biological pro-

cesses and (B) in Reactome database. 

Fig.7. Barplot showing the results of the gene set analysis performed with DMPs found in CD14+ cells in GO biological processes. 
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associated with host defense against intracellular infections 

(X. Wang et al., 2021).  

In this recent study, the gene was explored in the con-

text of chlamydial infection and it was observed that the 

absence of SND1 resulted in a change in the characteristics 

and activity of dendritic cells (DCs), which is linked to an 

incapacity in fostering the creation of safeguarding Th1/17 

immune responses. The second gene with the highest dif-

ference in methylation is the PSAP gene followed by the 

NRG1. PSAP gene, encoding for the lysosomal protein 

prosaposin is found to be present in higher expression lev-

els in adult liver and body fluids (Kolter & Sandhoff, 2005); 

recently, it has been reported the implication of this gene in 

inflammation processes associated with cellular metabo-

lism and mTOR signaling (van Leent et al., 2021). NRG1, 

instead, is the Neuregulin 1, and is a gene involved in cell 

interactions, and in the regulation of vital processes like cell 

proliferation, migration, and apoptosis across various sys-

tems. Recent findings propose NRG1's potential role in im-

mune response modulation, possibly functioning as an anti-

inflammatory or antioxidant agent (Alizadeh, Santhosh, 

Kataria, Gounni, & Karimi-Abdolrezaee, 2018). 

The only one positions of the top seven, found within 

the promoter region is the cg05304729 annotated within the 

TSS1500 of the MNDA, a PYHIN protein, known as mye-

loid cell nuclear differentiation antigen, that is found to be 

primarily expressed in CD14+ monocytes, being signifi-

cantly important in the induction of IFNα (Gu et al., 2022). 

Unlike other PYHIN proteins, the role of MNDA in this 

process isn't related to pathogen sensing; instead, it controls 

the expression of IRF7, a pivotal transcription factor re-

quired for IFNα induction. Intriguingly, MNDA itself be-

comes recruited to the IRF7 promoter following stimula-

tion by type I interferons. These findings highlight 

MNDA's critical role in regulating the type I interferon cas-

cade within human myeloid cells, shedding light on a novel 

function for human PYHIN proteins in the initiation of in-

nate immune gene responses.  

The gene set analysis revealed different results for con-

trasts in CD56+ and CD14+ cells. In the former, the major-

ity of significantly enriched pathways were related to regu-

lation of DNA replication, response to DNA damage stim-

ulus, cell cycle checkpoint, and DNA repair.  

While in the latter, the few significant GO biological 

processes were linked to Golgi vesicle transport and regu-

lation of MHC class complex. These last results are in line 

with previous studies which report an interesting interac-

tion between Salmonella Typhi and the Golgi vesicle 

transport system that contributes to the bacterium's patho-

genicity. In fact, Salmonella species, have evolved mecha-

nisms to manipulate host cells and create a suitable envi-

ronment for their survival and replication (McGhie, Brawn, 

Hume, Humphreys, & Koronakis, 2009).  

During infection, Salmonella Typhimurium can inject 

proteins known as effectors into host cells using a 

specialized structure called the type III secretion system 

(T3SS) (Dos Santos, Ferrari, & Conte-Junior, 2020). These 

effectors play a role in modulating various host cellular 

processes to the bacterium's advantage. In the context of 

Golgi vesicle transport, Salmonella has been found to ma-

nipulate this process to establish a replication niche called 

the Salmonella-containing vacuole (SCV) within host cells 

(Bakowski, Braun, & Brumell, 2008). This vacuole is de-

rived from the host cell's membrane and provides a pro-

tected environment where Salmonella can replicate. The 

bacterium uses effectors to manipulate the SCV's interac-

tions with the host cell's endomembrane system, including 

the Golgi apparatus. By disrupting Golgi vesicle transport 

and manipulating host cell processes, Salmonella can evade 

host defenses and establish a suitable environment for its 

survival and replication. 

5 Conclusions 

In conclusion in the present study, we detected meth-

ylation alterations occurring during paratyphoid infection 

in specific cell populations. The outcomes of this study 

might unveil novel epigenetic biomarkers of paratyphoid 

infection, shedding light on the biological mechanisms re-

lated to proteins and pathways that either facilitate or hin-

der paratyphoid infection. Such insights could be helpful in 

the development of innovative paratyphoid vaccines or en-

teric fever therapies. 

6 Availability of data 

R code used to analyse data is available at the following 

URL: 

https://github.com/spischedda/TFM_OmicsData_Rcode/bl

ob/main/TFM_OmicDataAnalysis_Rscript.R 
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